Motion with friction of a heavy particle on a manifold. Applications to optimization
ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 3, pp. 505-516.

Let Φ:H be a 𝒞 2 function on a real Hilbert space and ΣH× the manifold defined by Σ:= Graph (Φ). We study the motion of a material point with unit mass, subjected to stay on Σ and which moves under the action of the gravity force (characterized by g>0), the reaction force and the friction force (γ>0 is the friction parameter). For any initial conditions at time t=0, we prove the existence of a trajectory x(.) defined on + . We are then interested in the asymptotic behaviour of the trajectories when t+. More precisely, we prove the weak convergence of the trajectories when Φ is convex. When Φ admits a strong minimum, we show moreover that the mechanical energy exponentially decreases to its minimum.

DOI : 10.1051/m2an:2002023
Classification : 34A12, 34G20, 37N40, 70Fxx
Mots-clés : mechanics of particles, dissipative dynamical system, optimization, convex minimization, asymptotic behaviour, gradient system, heavy ball with friction
@article{M2AN_2002__36_3_505_0,
     author = {Cabot, Alexandre},
     title = {Motion with friction of a heavy particle on a manifold. {Applications} to optimization},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {505--516},
     publisher = {EDP-Sciences},
     volume = {36},
     number = {3},
     year = {2002},
     doi = {10.1051/m2an:2002023},
     mrnumber = {1918942},
     zbl = {1032.34059},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an:2002023/}
}
TY  - JOUR
AU  - Cabot, Alexandre
TI  - Motion with friction of a heavy particle on a manifold. Applications to optimization
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2002
SP  - 505
EP  - 516
VL  - 36
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an:2002023/
DO  - 10.1051/m2an:2002023
LA  - en
ID  - M2AN_2002__36_3_505_0
ER  - 
%0 Journal Article
%A Cabot, Alexandre
%T Motion with friction of a heavy particle on a manifold. Applications to optimization
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2002
%P 505-516
%V 36
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an:2002023/
%R 10.1051/m2an:2002023
%G en
%F M2AN_2002__36_3_505_0
Cabot, Alexandre. Motion with friction of a heavy particle on a manifold. Applications to optimization. ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 3, pp. 505-516. doi : 10.1051/m2an:2002023. http://www.numdam.org/articles/10.1051/m2an:2002023/

[1] F. Alvarez, On the minimizing property of a second order dissipative system in Hilbert space. SIAM J. Control Optim. 38 (2000) 1102-1119. | Zbl

[2] H. Attouch, X. Goudou and P. Redont, The heavy ball with friction method. I The continuous dynamical system. Commun. Contemp. Math. 2 (2000) 1-34. | Zbl

[3] J. Bolte, Exponential decay of the energy for a second-order in time dynamical system. Working paper, Département de Mathématiques, Université Montpellier II.

[4] R.E. Bruck, Asymptotic convergence of nonlinear contraction semigroups in Hilbert space. J. Funct. Anal. 18 (1975) 15-26. | Zbl

[5] J.K. Hale, Asymptotic behavior of dissipative systems. Mathematical Surveys and Monographs, 25. American Mathematical Society, Providence, RI (1988). | MR | Zbl

[6] A. Haraux, Systèmes dynamiques dissipatifs et applications. RMA 17, Masson, Paris (1991). | MR | Zbl

[7] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Amer. Math. Soc. 73 (1967) 591-597. | Zbl

Cité par Sources :