Analysis of a hybridizable discontinuous Galerkin scheme for the tangential control of the Stokes system
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 6, pp. 2229-2264.

We consider an unconstrained tangential Dirichlet boundary control problem for the Stokes equations with an L2 penalty on the boundary control. The contribution of this paper is twofold. First, we obtain well-posedness and regularity results for the tangential Dirichlet control problem on a convex polygonal domain. The analysis contains new features not found in similar Dirichlet control problems for the Poisson equation; an interesting result is that the optimal control has higher local regularity on the individual edges of the domain compared to the global regularity on the entire boundary. Second, we propose and analyze a hybridizable discontinuous Galerkin (HDG) method to approximate the solution. For convex polygonal domains, our theoretical convergence rate for the control is optimal with respect to the global regularity on the entire boundary. We present numerical experiments to demonstrate the performance of the HDG method.

DOI : 10.1051/m2an/2020015
Classification : 49J20, 65N30
Mots-clés : Tangential Dirichlet boundary control, Stokes equations, hybridizable discontinuous Galerkin method
@article{M2AN_2020__54_6_2229_0,
     author = {Gong, Wei and Hu, Weiwei and Mateos, Mariano and Singler, John R. and Zhang, Yangwen},
     title = {Analysis of a hybridizable discontinuous {Galerkin} scheme for the tangential control of the {Stokes} system},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2229--2264},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {6},
     year = {2020},
     doi = {10.1051/m2an/2020015},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2020015/}
}
TY  - JOUR
AU  - Gong, Wei
AU  - Hu, Weiwei
AU  - Mateos, Mariano
AU  - Singler, John R.
AU  - Zhang, Yangwen
TI  - Analysis of a hybridizable discontinuous Galerkin scheme for the tangential control of the Stokes system
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 2229
EP  - 2264
VL  - 54
IS  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2020015/
DO  - 10.1051/m2an/2020015
LA  - en
ID  - M2AN_2020__54_6_2229_0
ER  - 
%0 Journal Article
%A Gong, Wei
%A Hu, Weiwei
%A Mateos, Mariano
%A Singler, John R.
%A Zhang, Yangwen
%T Analysis of a hybridizable discontinuous Galerkin scheme for the tangential control of the Stokes system
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 2229-2264
%V 54
%N 6
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2020015/
%R 10.1051/m2an/2020015
%G en
%F M2AN_2020__54_6_2229_0
Gong, Wei; Hu, Weiwei; Mateos, Mariano; Singler, John R.; Zhang, Yangwen. Analysis of a hybridizable discontinuous Galerkin scheme for the tangential control of the Stokes system. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 6, pp. 2229-2264. doi : 10.1051/m2an/2020015. http://www.numdam.org/articles/10.1051/m2an/2020015/

[1] T. Apel, M. Mateos, J. Pfefferer and A. Rösch, On the regularity of the solutions of Dirichlet optimal control problems in polygonal domains. SIAM J. Control Optim. 53 (2015) 3620–3641. | DOI

[2] T. Apel, M. Mateos, J. Pfefferer and A. Rösch, Error estimates for Dirichlet control problems in polygonal domains: quasi-uniform meshes. Math. Control Relat. Fields 8 (2018) 217–245. | DOI

[3] T. Apel, M. Mateos, J. Pfefferer and A. Rösch, Superconvergent graded meshes for an elliptic dirichlet control problem, edited by T. Apel, U. Langer, A. Meyer and O. Steinbach. Advanced Finite Element Methods with Applications: Selected Papers from the 30th Chemnitz Finite Element Symposium 2017, Springer International Publishing, Cham (2019). | DOI

[4] N. Arada, Optimal control of shear-thinning fluids. SIAM J. Control Optim. 50 (2012) 2515–2542. | DOI | Zbl

[5] F. Ballarin, A. Manzoni, G. Rozza and S. Salsa, Shape optimization by free-form deformation: existence results and numerical solution for Stokes flows. J. Sci. Comput. 60 (2014) 537–563. | DOI | Zbl

[6] V. Barbu, I. Lasiecka and R. Triggiani, Abstract settings for tangential boundary stabilization of Navier-Stokes equations by high- and low-gain feedback controllers. Nonlinear Anal. 64 (2006) 2704–2746. | DOI | Zbl

[7] V. Barbu, I. Lasiecka and R. Triggiani, Tangential boundary stabilization of Navier-Stokes equations. Mem. Am. Math. Soc. 181 (2006) x+128. | Zbl

[8] M. Berggren, Approximations of very weak solutions to boundary-value problems. SIAM J. Numer. Anal. 42 (2004) 860–877. | DOI | Zbl

[9] P. Bochev and M.D. Gunzburger, Least-squares finite element methods for optimality systems arising in optimization and control problems. SIAM J. Numer. Anal. 43 (2006) 2517–2543. | DOI | Zbl

[10] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. In: Vol. 15 of Springer Series in Computational Mathematics. Springer-Verlag, New York (1991). | Zbl

[11] Z. Cai, C. He and S. Zhang, Discontinuous finite element methods for interface problems: robust a priori and a posteriori error estimates. SIAM J. Numer. Anal. 55 (2017) 400–418. | DOI

[12] E. Casas and K. Chrysafinos, Error estimates for the discretization of the velocity tracking problem. Numer. Math. 130 (2015) 615–643. | DOI

[13] E. Casas and J.-P. Raymond, Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations. SIAM J. Control Optim. 45 (2006) 1586–1611. | DOI | Zbl

[14] E. Casas, M. Mateos and J.-P. Raymond, Error estimates for the numerical approximation of a distributed control problem for the steady-state Navier-Stokes equations. SIAM J. Control Optim. 46 (2007) 952–982. | DOI | Zbl

[15] E. Casas, M. Mateos and J.-P. Raymond, Penalization of Dirichlet optimal control problems. ESAIM Control Optim. Calc. Var. 15 (2009) 782–809. | DOI | Numdam | Zbl

[16] E. Casas, A. Günther and M. Mateos, A paradox in the approximation of Dirichlet control problems in curved domains. SIAM J. Control Optim. 49 (2011) 1998–2007. | DOI | Zbl

[17] A. Cesmelioglu, B. Cockburn and W. Qiu, Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier-Stokes equations. Math. Comput. 86 (2017) 1643–1670. | DOI

[18] L. Chang, W. Gong and N. Yan, Weak boundary penalization for Dirichlet boundary control problems governed by elliptic equations. J. Math. Anal. App. 453 (2017) 529–557. | DOI

[19] G. Chen, W. Hu, J. Shen, J.R. Singler, Y. Zhang and X. Zheng, An HDG method for distributed control of convection diffusion PDEs. J. Comput. Appl. Math. 343 (2018) 643–661. | DOI

[20] G. Chen, G. Fu, J.R. Singler and Y. Zhang, A class of embedded DG methods for Dirichlet boundary control of convection diffusion PDEs. J. Sci. Comput. 81 (2019) 623–648. | DOI

[21] G. Chen, J.R. Singler and Y. Zhang, An HDG method for Dirichlet boundary control of convection dominated diffusion PDEs. SIAM J. Numer. Anal. 57 (2019) 1919–1946. | DOI

[22] S. Chowdhury, T. Gudi and A.K. Nandakumaran, Error bounds for a Dirichlet boundary control problem based on energy spaces. Math. Comput. 86 (2017) 1103–1126. | DOI

[23] B. Cockburn and F. Sayas, Divergence-conforming HDG methods for Stokes flows. Math. Comput. 83 (2014) 1571–1598. | DOI | Zbl

[24] B. Cockburn, J. Gopalakrishnan and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47 (2009) 1319–1365. | DOI | Zbl

[25] B. Cockburn, J. Gopalakrishnan, N.C. Nguyen, J. Peraire and F. Sayas, Analysis of HDG methods for Stokes flow. Math. Comput. 80 (2011) 723–760. | DOI | Zbl

[26] C. Conca, Étude d’un fluide traversant une paroi perforée. II. Comportement limite loin de la paroi. J. Math. Pures Appl. 66 (1987) 45–70. | Zbl

[27] M. Dauge, Stationary Stokes and Navier-Stokes systems on two- or three-dimensional domains with corners. I. Linearized equations. SIAM J. Math. Anal. 20 (1989) 74–97. | DOI | Zbl

[28] J.C. De Los Reyes and K. Kunisch, A semi-smooth Newton method for control constrained boundary optimal control of the Navier-Stokes equations. Nonlinear Anal. 62 (2005) 1289–1316. | DOI | Zbl

[29] K. Deckelnick, A. Günther and M. Hinze, Finite element approximation of Dirichlet boundary control for elliptic PDEs on two- and three-dimensional curved domains. SIAM J. Control Optim. 48 (2009) 2798–2819. | DOI | Zbl

[30] Y. Efendiev and T.Y. Hou, Multiscale Finite Element Methods. Theory and Applications. In: Vol. 4 of Surveys and Tutorials in the Applied Mathematical Sciences. Springer, New York (2009). | Zbl

[31] K. El Omari and Y. Le Guer, Alternate rotating walls for thermal chaotic mixing. Int. J. Heat Mass Transfer 53 (2010) 123–134. | DOI | Zbl

[32] D.P.G. Foures, C.P. Caulfield and P.J. Schmid, Optimal mixing in two-dimensional plane Poiseuille flow at finite Péclet number. J. Fluid Mech. 748 (2014) 241–277. | DOI

[33] A.V. Fursikov, M.D. Gunzburger and L. Hou, Boundary value problems and optimal boundary control for the Navier-Stokes system: the two-dimensional case. SIAM J. Control Optim. 36 (1998) 852–894. | DOI | Zbl

[34] R. Glowinski and J.L. Lions, Exact and approximate controllability for distributed parameter systems. Acta Numerica, Cambridge University Press, Cambridge (1995) 159–333. | DOI | Zbl

[35] W. Gong and N. Yan, Mixed finite element method for Dirichlet boundary control problem governed by elliptic PDEs. SIAM J. Control Optim. 49 (2011) 984–1014. | DOI | Zbl

[36] W. Gong, M. Hinze and Z. Zhou, Finite element method and a priori error estimates for Dirichlet boundary control problems governed by parabolic PDEs. J. Sci. Comput. 66 (2016) 941–967. | DOI

[37] W. Gong, W. Hu, M. Mateos, J. Singler, X. Zhang and Y. Zhang, A new HDG method for Dirichlet boundary control of convection diffusion PDEs II: low regularity. SIAM J. Numer. Anal. 56 (2018) 2262–2287. | DOI

[38] W. Gong, W. Hu, M. Mateos, J.R. Singler and Y. Zhang, An HDG method for tangential Dirichlet boundary control of Stokes equations I: high regularity. Preprint (2018). | arXiv

[39] E. Gouillart, N. Kuncio, O. Dauchot, B. Dubrulle, S. Roux and J.-L. Thiffeault, Walls inhibit chaotic mixing. Phys. Rev. Lett. 99 (2007) 114501. | DOI

[40] E. Gouillart, O. Dauchot, B. Dubrulle, S. Roux and J.-L. Thiffeault, Slow decay of concentration variance due to no-slip walls in chaotic mixing. Phys. Rev. E 78 (2008) 026211. | DOI

[41] E. Gouillart, J.-L. Thiffeault and O. Dauchot, Rotation shields chaotic mixing regions from no-slip walls. Phys. Rev. Lett. 104 (2010) 204502. | DOI

[42] P. Grisvard, Elliptic Problems in Nonsmooth Domains. In: Vol. 24 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston, MA (1985). | Zbl

[43] M.D. Gunzburger, Perspectives in Flow Control and Optimization. In: Vol. 5 of Advances in Design and Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2003). | Zbl

[44] M.D. Gunzburger and S. Manservisi, The velocity tracking problem for Navier-Stokes flows with bounded distributed controls. SIAM J. Control Optim. 37 (1999) 1913–1945. | DOI | Zbl

[45] M.D. Gunzburger and S. Manservisi, Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed control. SIAM J. Numer. Anal. 37 (2000) 1481–1512. | DOI | Zbl

[46] M.D. Gunzburger, L. Hou and T.P. Svobodny, Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls. ESAIM: M2AN 25 (1991) 711–748. | DOI | Numdam | Zbl

[47] M.D. Gunzburger, L. Hou and T.P. Svobodny, Boundary velocity control of incompressible flow with an application to viscous drag reduction. SIAM J. Control Optim. 30 (1992) 167–181. | DOI | Zbl

[48] M.D. Gunzburger, L. Hou and T.P. Svobodny, Optimal control problems for a class of nonlinear equations with an application to control of fluids. In: Optimal Control of Viscous Flow. SIAM, Philadelphia, PA (1998) 43–62. | DOI

[49] M. Hinze and K. Kunisch, Second order methods for optimal control of time-dependent fluid flow. SIAM J. Control Optim. 40 (2001) 925–946. | DOI | Zbl

[50] T. Hishida, A. Silvestre and T. Takahashi, A boundary control problem for the steady self-propelled motion of a rigid body in a Navier-Stokes fluid. Ann. Inst. Henri Poincaré Anal. Non Linéaire 34 (2017) 1507–1541. | DOI | Numdam | MR | Zbl

[51] T. Horger, J.M. Melenk and B. Wohlmuth, On optimal L 2 - and surface flux convergence in FEM. Comput. Visual. Sci. 16 (2013) 231–246. | DOI

[52] W. Hu, Enhancement of heat transfer in stokes flows. In: Proceedings of the 56th IEEE Conference on Decision and Control (2017) 59–63.

[53] W. Hu, An approximating control design for optimal mixing by Stokes flows. Appl. Math. Optim. 59 (2018) 1–28.

[54] W. Hu, Boundary control for optimal mixing by Stokes flows. Appl. Math. Optim. 78 (2018) 201–217. | DOI

[55] W. Hu and J. Wu, Boundary control for optimal mixing via Navier-Stokes flows. SIAM J. Control Optim. 56 (2018) 2768–2801. | DOI

[56] W. Hu, J. Shen, J.R. Singler, Y. Zhang and X. Zheng, A superconvergent hybridizable discontinuous Galerkin method for Dirichlet boundary control of elliptic PDEs. Numer. Math. 1–37 (2017).

[57] W. Hu, J. Shen, J.R. Singler, Y. Zhang and X. Zheng, A superconvergent HDG method for distributed control of convection diffusion PDEs. J. Sci. Comput. 76 (2018) 1436–1457. | DOI

[58] W. Hu, M. Mateos, J.R. Singler and Y. Zhang, A new HDG method for Dirichlet boundary control of convection diffusion PDEs I: high regularity Preprint (2018). | arXiv

[59] C. John and D. Wachsmuth, Optimal Dirichlet boundary control of stationary Navier-Stokes equations with state constraint. Numer. Funct. Anal. Optim. 30 (2009) 1309–1338. | DOI | Zbl

[60] V. John, A. Linke, C. Merdon, M. Neilan and L. Rebholz, On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Rev. 59 (2017) 492–544. | DOI

[61] L. John, P. Swierczynski and B. Wohlmuth, Energy corrected FEM for optimal Dirichlet boundary control problems. Numer. Math. 139 (2018) 913–938. | DOI

[62] R. Kellogg and J. Osborn, A regularity result for the Stokes problem in a convex polygon. J. Funct. Anal. 21 (1976) 397–431. | DOI | Zbl

[63] I. Lasiecka and R. Triggiani, Stabilization to an equilibrium of the Navier-Stokes equations with tangential action of feedback controllers. Nonlinear Anal. 121 (2015) 424–446. | DOI

[64] I. Lasiecka and R. Triggiani, Uniform stabilization with arbitrary decay rates of the Oseen equation by finite-dimensional tangential localized interior and boundary controls. In: Vol. 113 of Springer Proceedings in Mathematics & Statistics. Semigroups of Operators – Theory and Applications. Springer, Cham (2015). 125–154. | DOI

[65] E. Marušić Paloka, Solvability of the Navier-Stokes system with L 2 boundary data. Appl. Math. Optim. 41 (2000) 365–375. | DOI | Zbl

[66] M. Mateos and I. Neitzel, Dirichlet control of elliptic state constrained problems. Comput. Optim. App. 63 (2016) 825–853. | DOI

[67] G. Mathew, I. Mezić, S. Grivopoulos, U. Vaidya and L. Petzold, Optimal control of mixing in Stokes fluid flows. J. Fluid Mech. 580 (2007) 261–281. | DOI | Zbl

[68] S. May, R. Rannacher and B. Vexler, Error analysis for a finite element approximation of elliptic Dirichlet boundary control problems. SIAM J. Control Optim. 51 (2013) 2585–2611. | DOI | Zbl

[69] C. Meyer and A. Rösch, Superconvergence properties of optimal control problems. SIAM J. Control Optim. 43 (2004) 970–985. | DOI | Zbl

[70] M. Moussaoui and A. Zine, Existence and regularity results for the Stokes system with non-smooth boundary data in a polygon. Math. Models Methods Appl. Sci. 8 (1998) 1307–1315. | DOI | Zbl

[71] N.C. Nguyen, J. Peraire and B. Cockburn, An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations. J. Comput. Phys. 230 (2011) 1147–1170. | DOI | Zbl

[72] G. Of, T.X. Phan and O. Steinbach, An energy space finite element approach for elliptic Dirichlet boundary control problems. Numer. Math. 129 (2015) 723–748. | DOI

[73] A. Osses, A rotated multiplier applied to the controllability of waves, elasticity, and tangential Stokes control. SIAM J. Control Optim. 40 (2001) 777–800. | DOI | Zbl

[74] J.W. Pearson, Preconditioned iterative methods for Navier-Stokes control problems. J. Comput. Phys. 292 (2015) 194–207. | DOI

[75] J. Pfefferer and M. Winkler, Finite element error estimates for normal derivatives on boundary concentrated meshes. SIAM J. Numer. Anal. 57 (2019) 2043–2073. | DOI

[76] W. Qiu and K. Shi, An HDG method for convection diffusion equation. J. Sci. Comput. 66 (2016) 346–357. | DOI

[77] W. Qiu and K. Shi, A superconvergent HDG method for the incompressible Navier-Stokes equations on general polyhedral meshes. IMA J. Numer. Anal. 36 (2016) 1943–1967. | DOI

[78] S.S. Ravindran, Finite element approximation of Dirichlet control using boundary penalty method for unsteady Navier-Stokes equations. ESAIM: M2AN 51 (2017) 825–849. | DOI | Numdam | MR | Zbl

[79] J.-P. Raymond, Stokes and Navier-Stokes equations with nonhomogeneous boundary conditions. Ann. Inst. Henri Poincaré Anal. Non Linéaire 24 (2007) 921–951. | DOI | Numdam | Zbl

[80] J.-L. Thiffeault, E. Gouillart and O. Dauchot, Moving walls accelerate mixing. Phys. Rev. E 84 (2011) 036313. | DOI

[81] M.P. Ueckermann and P.F.J. Lermusiaux, Hybridizable discontinuous Galerkin projection methods for Navier-Stokes and Boussinesq equations. J. Comput. Phys. 306 (2016) 390–421. | DOI

[82] M. Winkler, Error estimates for variational normal derivatives and Dirichlet control problems with energy regularization. Numer. Math. 1–33 (2019).

[83] Y. Yan and D.E. Keyes, Smooth and robust solutions for Dirichlet boundary control of fluid–solid conjugate heat transfer problems. J. Comput. Phys. 281 (2015) 759–786. | DOI

[84] H. Yang and X.-C. Cai, Two-level space-time domain decomposition methods for flow control problems. J. Sci. Comput. 70 (2017) 717–743. | DOI

[85] P. You, Z. Ding and J. Zhou, Optimal boundary control of the Stokes fluids with point velocity observations. SIAM J. Control Optim. 36 (1998) 981–1004. | DOI | Zbl

[86] H. Zhu and F. Celiker, Error analysis of an HDG method for a distributed optimal control problem. J. Comput. Appl. Math. 307 (2016) 2–12. | DOI

Cité par Sources :