This paper is concerned with the analysis of the finite element approximations of Dirichlet control problem using boundary penalty method for unsteady Navier–Stokes equations. Boundary penalty method has been used as a computationally convenient approach alternative to Dirichlet boundary control problems governed by Navier−Stokes equations due to its variational properties. Analysis of the mixed Galerkin finite element method applied to the spatial semi-discretization of the optimality system, from which optimal control can be computed, is presented. An optimal error estimate of the numerical approximations of the optimality system is derived. Feasibility and applicability of the approach are illustrated by numerically solving a canonical flow control problem.
Accepté le :
DOI : 10.1051/m2an/2016040
Mots-clés : Boundary penalty method, Dirichlet boundary control, Navier–Stokes equations, optimal error estimates, mixed Galerkin finite element, adjoint equations
@article{M2AN_2017__51_3_825_0, author = {Ravindran, Sivaguru S.}, title = {Finite element approximation of {Dirichlet} control using boundary penalty method for unsteady {Navier{\textendash}Stokes} equations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {825--849}, publisher = {EDP-Sciences}, volume = {51}, number = {3}, year = {2017}, doi = {10.1051/m2an/2016040}, mrnumber = {3666648}, zbl = {1457.65133}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2016040/} }
TY - JOUR AU - Ravindran, Sivaguru S. TI - Finite element approximation of Dirichlet control using boundary penalty method for unsteady Navier–Stokes equations JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 825 EP - 849 VL - 51 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2016040/ DO - 10.1051/m2an/2016040 LA - en ID - M2AN_2017__51_3_825_0 ER -
%0 Journal Article %A Ravindran, Sivaguru S. %T Finite element approximation of Dirichlet control using boundary penalty method for unsteady Navier–Stokes equations %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 825-849 %V 51 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2016040/ %R 10.1051/m2an/2016040 %G en %F M2AN_2017__51_3_825_0
Ravindran, Sivaguru S. Finite element approximation of Dirichlet control using boundary penalty method for unsteady Navier–Stokes equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 3, pp. 825-849. doi : 10.1051/m2an/2016040. http://www.numdam.org/articles/10.1051/m2an/2016040/
Experimental and theoretical investigation of backward-facing step flow. J. Fluid Mech. 127 (1983) 473–496. | DOI
, and ,A penalized approach for solving a parabolic equation with non-smooth Dirichlet boundary conditions Asymptot. Anal. 34 (2003) 121–136. | MR | Zbl
, and ,Dirichlet boundary control for a parabolic equation with final observation: A space-time mixed formulation and penalization. Asymptot. Anal. 71 (2011) 101–121. | MR | Zbl
, and ,Penalization of Dirichlet optimal control problems. ESAIM: COCV 15 (2009) 782–809. | Numdam | MR | Zbl
, and ,Existence of optimal controls for viscous flow problems. Proc. R. Soc. Lond. Ser. A 439 (1992) 81–102. | DOI | MR | Zbl
and ,Boundary value problems and optimal boundary control for the Navier−Stokes system: the two-dimensional case. SIAM J. Control Optim. 36 (1998) 852–894 | DOI | MR | Zbl
, and ,Proprieta di alcune classi di funzioni in piu variabili. Ric. Mat. 7 (1958) 102–137. | MR | Zbl
,M. Gad-el-Hak, A. Pollard and J.P. Bonnet, (eds.) Flow Control, Fundamentals and Practices. Lecture Notes in Physics. Springer, Berlin (1998). | Zbl
A test problem for outfow boundary conditions-fow over a backward facing step. Int. J. Numer. Methods Fluids 11 (1990) 953–967. | DOI
,V. Girault and P.A. Raviart, Finite Element Method for Navier−Stokes Equations. Springer, Berlin (1986). | MR | Zbl
M.D. Gunzburger, (ed.) Flow Control, IMA 68. Springer-Verlag, New York (1995). | MR | Zbl
Treating inhomogeneous essential boundary conditions in finite element and calculation of the boundary stresses. SIAM J. Numer. Anal. 29 (1992) 390–424. | DOI | MR | Zbl
and ,Analysis and finite approximation of optimal control problems for the stationary Navier−Stokes equations with Dirichlet control. Math. Model. Numer. Anal. 25 (1990) 711–748. | DOI | Numdam | MR | Zbl
, and ,Finite element approximation of the non-stationary Navier−Stokes problem. Part 1: Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19 (1982) 275–311. | DOI | MR | Zbl
and ,A Penalized Neumann Control Approach for Solving an Optimal Dirichlet Control Problem for the Navier−Stokes Equations. SIAM J. Control Optim. 36 (1998) 1795–1814. | DOI | MR | Zbl
and ,Numerical approximation of optimal flow control problems by a penalty method: Error estimates and numerical results. SIAM J. Sci. Comput. 20 (1999) 1753–1777. | DOI | MR | Zbl
and ,G. Hellwig, Differential Operators of Mathematical Physics: An Introduction. Addison-Wesley, Reading, MA (1967). | MR | Zbl
J. Necas, Les Méthods Directes en Théorie des Équations Elliptiques. Masson et Cie, Paris (1967). | MR | Zbl
On elliptic partial differential equations. Ann. Sci. Norm. Sup. Pisa 13 (1959) 116–162. | Numdam | MR | Zbl
,Reduced-Order Adaptive Controllers for Fluid Flows Using POD. J. Sci. Comput. 15 (2000) 457–478. | DOI | MR | Zbl
,Dirichlet Control of Unsteady Navier−Stokes type System related to Soret Convection by Boundary Penalty Method, ESAIM: COCV 40 (2014) 840–863. | Numdam | MR | Zbl
,Convergence of Extrapolated BDF2 Finite Element Schemes For Unsteady Penetrative Convection Model. Numer. Funct. Anal. Optim. 33 (2012) 48–79. | DOI | MR | Zbl
,S.S. Sritharan, Optimal Control of Viscous Flows. SIAM, Philadelphia (1998). | MR | Zbl
Cité par Sources :