This paper presents new analytical results for a class of nonlinear parabolic systems of partial different equations with small cross-diffusion which describe the macroscopic dynamics of a variety of large systems of interacting particles. Under suitable assumptions, we prove existence of classical solutions and we show exponential convergence in time to the stationary state. Furthermore, we consider the special case of one mobile and one immobile species, for which the system reduces to a nonlinear equation of Fokker–Planck type. In this framework, we improve the convergence result obtained for the general system and we derive sharper L∞-bounds for the solutions in two spatial dimensions. We conclude by illustrating the behaviour of solutions with numerical experiments in one and two spatial dimensions.
Accepté le :
Publié le :
DOI : 10.1051/m2an/2020008
Mots-clés : Cross-diffusion systems, asymptotic behaviour
@article{M2AN_2020__54_5_1661_0, author = {Alasio, Luca and Ranetbauer, Helene and Schmidtchen, Markus and Wolfram, Marie-Therese}, title = {Trend to equilibrium for systems with small cross-diffusion}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1661--1688}, publisher = {EDP-Sciences}, volume = {54}, number = {5}, year = {2020}, doi = {10.1051/m2an/2020008}, mrnumber = {4127953}, zbl = {1466.35027}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2020008/} }
TY - JOUR AU - Alasio, Luca AU - Ranetbauer, Helene AU - Schmidtchen, Markus AU - Wolfram, Marie-Therese TI - Trend to equilibrium for systems with small cross-diffusion JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2020 SP - 1661 EP - 1688 VL - 54 IS - 5 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2020008/ DO - 10.1051/m2an/2020008 LA - en ID - M2AN_2020__54_5_1661_0 ER -
%0 Journal Article %A Alasio, Luca %A Ranetbauer, Helene %A Schmidtchen, Markus %A Wolfram, Marie-Therese %T Trend to equilibrium for systems with small cross-diffusion %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2020 %P 1661-1688 %V 54 %N 5 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2020008/ %R 10.1051/m2an/2020008 %G en %F M2AN_2020__54_5_1661_0
Alasio, Luca; Ranetbauer, Helene; Schmidtchen, Markus; Wolfram, Marie-Therese. Trend to equilibrium for systems with small cross-diffusion. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 5, pp. 1661-1688. doi : 10.1051/m2an/2020008. http://www.numdam.org/articles/10.1051/m2an/2020008/
[1] On quasilinear parabolic systems. Math. Ann. 282 (1988) 315–335. | DOI | MR | Zbl
and ,[2] From a large-deviations principle to the Wasserstein gradient flow: a new micro-macro passage. Commun. Math. Phys. 307 (2011) 791. | DOI | MR | Zbl
, , and ,[3] Global existence for a class of viscous systems of conservation laws. Nonlinear Differ. Equ. Appl. 26 (2019) 32. | DOI | MR | Zbl
and ,[4] Stability estimates for systems with small cross-diffusion. ESAIM: M2AN 52 (2018) 1109–1135. | DOI | Numdam | MR | Zbl
, and ,[5] Dynamic theory of quasilinear parabolic systems. Math. Z. 202 (1989) 219–250. | DOI | MR | Zbl
,[6] On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Commun. Part. Differ. Equ. 26 (2001) 43–100. | DOI | MR | Zbl
, , and ,[7] Diffusions hypercontractives. In: Séminaire de Probabilités XIX 1983/84, edited by and . Springer, Berlin Heidelberg, Berlin, Heidelberg (1985) 177–206. | DOI | Numdam | MR | Zbl
and ,[8] Uniqueness of strong solutions and weak–strong stability in a system of cross-diffusion equations. J. Evol. Equ. 20 (2020) 459–483. | DOI | MR | Zbl
, , and ,[9] A finite volume scheme for nonlinear degenerate parabolic equations. SIAM J. Sci. Comput. 34 (2012) B559–B583. | DOI | MR | Zbl
and ,[10] Derivation of macroscopic equations for individual cell-based models: a formal approach. Math. Methods Appl. Sci. 28 (2005) 1757–1779. | DOI | MR | Zbl
and ,[11] Diffusion of multiple species with excluded-volume effects. J. Chem. Phys. 137 (2012) 204116. | DOI
and ,[12] Excluded-volume effects in the diffusion of hard spheres. Phys. Rev. E 85 (2012) 011103. | DOI
and ,[13] Asymptotic gradient flow structures of a nonlinear Fokker-Planck equation, Preprint (2017). | arXiv
, , and ,[14] Cross-diffusion systems with excluded-volume effects and asymptotic gradient flow structures. J. Nonlinear Sci. 27 (2017) 687–719. | DOI | MR | Zbl
, , and ,[15] Nonlinear cross-diffusion with size exclusion. SIAM J. Math. Anal. 42 (2010) 2842–2871. | DOI | MR | Zbl
, , and ,[16] Nonlinear Poisson–Nernst–Planck equations for ion flux through confined geometries. Nonlinearity 25 (2012) 961. | DOI | MR | Zbl
, and ,[17] Lane formation by side-stepping. SIAM J. Math. Anal. 48 (2016) 981–1005. | DOI | MR | Zbl
, , and ,[18] Numerical simulation of nonlinear continuity equations by evolving diffeomorphisms. J. Comput. Phys. 327 (2016) 186–202. | DOI | MR | Zbl
, and ,[19] Convergence of a finite volume scheme for a system of interacting species with cross-diffusion, Preprint (2018). | arXiv | MR | Zbl
, , ,[20] Zoology of a nonlocal cross-diffusion model for two species. SIAM J. Appl. Math. 78 (2018) 1078–1104. | DOI | MR | Zbl
, and ,[21] On the entropic structure of reaction-cross diffusion systems. Commun. Part. Differ. Equ. 40 (2015) 1705–1747. | DOI | MR | Zbl
, , and ,[22] Nonlinear degenerate cross-diffusion systems with nonlocal interaction. Nonlinear Anal. 169 (2018) 94–117. | DOI | MR | Zbl
, and ,[23] Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012) 521–573. | DOI | MR | Zbl
, and ,[24] Large deviations and gradient flows for the brownian one-dimensional hard-rod system Preprint (2019). | arXiv | MR | Zbl
, and ,[25] Elliptic Partial Differential Equations. American Mathematical Society 1 (2011). | Zbl
and ,[26] The boundedness-by-entropy method for cross-diffusion systems Nonlinearity 28 (2015) 1963. | DOI | MR | Zbl
,[27] Entropy Methods for Diffusive Partial Differential Equations Springer (2016). | MR
,[28] Linear and Quasi-Linear Equations of Parabolic Type. American Mathematical Society 23 (1988).
, and ,[29] Convergence of a variational Lagrangian scheme for a nonlinear drift diffusion equation. ESAIM: M2AN 48 (2014) 697–726. | DOI | Numdam | MR | Zbl
and ,[30] An optimal poincaré inequality for convex domains. Arch. Ration. Mech. Anal. 5 (1960) 286–292. | DOI | MR | Zbl
and ,[31] Parabolic Equations in Biology. Springer (2015). | DOI | MR
,[32] Multi-species simple exclusion processes. Phys. A: Stat. Mech. Appl. 388 (2009) 399–406. | DOI
, and ,[33] Elliptic Differential Equations and Obstacle Problems. Springer Science & Business Media (2013). | MR | Zbl
,[34] Analysis of degenerate cross-diffusion population models with volume filling. Ann. Inst. Henri Poincaré C, Anal. non linéaire 34 (2017) 1–29. | DOI | Numdam | MR | Zbl
and ,[35] Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation. Springer Science & Business Media 120 (1989). | MR | Zbl
,Cité par Sources :