Trend to equilibrium for systems with small cross-diffusion
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 5, pp. 1661-1688.

This paper presents new analytical results for a class of nonlinear parabolic systems of partial different equations with small cross-diffusion which describe the macroscopic dynamics of a variety of large systems of interacting particles. Under suitable assumptions, we prove existence of classical solutions and we show exponential convergence in time to the stationary state. Furthermore, we consider the special case of one mobile and one immobile species, for which the system reduces to a nonlinear equation of Fokker–Planck type. In this framework, we improve the convergence result obtained for the general system and we derive sharper L-bounds for the solutions in two spatial dimensions. We conclude by illustrating the behaviour of solutions with numerical experiments in one and two spatial dimensions.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2020008
Classification : 35B40, 35B45, 35K51, 65N08
Mots-clés : Cross-diffusion systems, asymptotic behaviour
@article{M2AN_2020__54_5_1661_0,
     author = {Alasio, Luca and Ranetbauer, Helene and Schmidtchen, Markus and Wolfram, Marie-Therese},
     title = {Trend to equilibrium for systems with small cross-diffusion},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1661--1688},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {5},
     year = {2020},
     doi = {10.1051/m2an/2020008},
     mrnumber = {4127953},
     zbl = {1466.35027},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2020008/}
}
TY  - JOUR
AU  - Alasio, Luca
AU  - Ranetbauer, Helene
AU  - Schmidtchen, Markus
AU  - Wolfram, Marie-Therese
TI  - Trend to equilibrium for systems with small cross-diffusion
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 1661
EP  - 1688
VL  - 54
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2020008/
DO  - 10.1051/m2an/2020008
LA  - en
ID  - M2AN_2020__54_5_1661_0
ER  - 
%0 Journal Article
%A Alasio, Luca
%A Ranetbauer, Helene
%A Schmidtchen, Markus
%A Wolfram, Marie-Therese
%T Trend to equilibrium for systems with small cross-diffusion
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 1661-1688
%V 54
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2020008/
%R 10.1051/m2an/2020008
%G en
%F M2AN_2020__54_5_1661_0
Alasio, Luca; Ranetbauer, Helene; Schmidtchen, Markus; Wolfram, Marie-Therese. Trend to equilibrium for systems with small cross-diffusion. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 5, pp. 1661-1688. doi : 10.1051/m2an/2020008. http://www.numdam.org/articles/10.1051/m2an/2020008/

[1] P. Acquistapace and B. Terreni, On quasilinear parabolic systems. Math. Ann. 282 (1988) 315–335. | DOI | MR | Zbl

[2] S. Adams, N. Dirr, M.A. Peletier and J. Zimmer, From a large-deviations principle to the Wasserstein gradient flow: a new micro-macro passage. Commun. Math. Phys. 307 (2011) 791. | DOI | MR | Zbl

[3] L. Alasio and S. Marchesani, Global existence for a class of viscous systems of conservation laws. Nonlinear Differ. Equ. Appl. 26 (2019) 32. | DOI | MR | Zbl

[4] L. Alasio, M. Bruna and Y. Capdeboscq, Stability estimates for systems with small cross-diffusion. ESAIM: M2AN 52 (2018) 1109–1135. | DOI | Numdam | MR | Zbl

[5] H. Amann, Dynamic theory of quasilinear parabolic systems. Math. Z. 202 (1989) 219–250. | DOI | MR | Zbl

[6] A. Arnold, P. Markowich, G. Toscani and A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Commun. Part. Differ. Equ. 26 (2001) 43–100. | DOI | MR | Zbl

[7] D. Bakry and M. Émery, Diffusions hypercontractives. In: Séminaire de Probabilités XIX 1983/84, edited by J. Azéma and M. Yor. Springer, Berlin Heidelberg, Berlin, Heidelberg (1985) 177–206. | DOI | Numdam | MR | Zbl

[8] J. Berendsen, M. Burger, V. Ehrlacher and J.-F. Pietschmann, Uniqueness of strong solutions and weak–strong stability in a system of cross-diffusion equations. J. Evol. Equ. 20 (2020) 459–483. | DOI | MR | Zbl

[9] M. Bessemoulin-Chatard and F. Filbet, A finite volume scheme for nonlinear degenerate parabolic equations. SIAM J. Sci. Comput. 34 (2012) B559–B583. | DOI | MR | Zbl

[10] M. Bodnar and J.J.L. Velazquez, Derivation of macroscopic equations for individual cell-based models: a formal approach. Math. Methods Appl. Sci. 28 (2005) 1757–1779. | DOI | MR | Zbl

[11] M. Bruna and S.J. Chapman, Diffusion of multiple species with excluded-volume effects. J. Chem. Phys. 137 (2012) 204116. | DOI

[12] M. Bruna and S.J. Chapman, Excluded-volume effects in the diffusion of hard spheres. Phys. Rev. E 85 (2012) 011103. | DOI

[13] M. Bruna, M. Burger, H. Ranetbauer and M.-T. Wolfram, Asymptotic gradient flow structures of a nonlinear Fokker-Planck equation, Preprint (2017). | arXiv

[14] M. Bruna, M. Burger, H. Ranetbauer and M.-T. Wolfram, Cross-diffusion systems with excluded-volume effects and asymptotic gradient flow structures. J. Nonlinear Sci. 27 (2017) 687–719. | DOI | MR | Zbl

[15] M. Burger, M. Di Francesco, J.-F. Pietschmann and B. Schlake, Nonlinear cross-diffusion with size exclusion. SIAM J. Math. Anal. 42 (2010) 2842–2871. | DOI | MR | Zbl

[16] M. Burger, B. Schlake and M.-T. Wolfram, Nonlinear Poisson–Nernst–Planck equations for ion flux through confined geometries. Nonlinearity 25 (2012) 961. | DOI | MR | Zbl

[17] M. Burger, S. Hittmeir, H. Ranetbauer and M.-T. Wolfram, Lane formation by side-stepping. SIAM J. Math. Anal. 48 (2016) 981–1005. | DOI | MR | Zbl

[18] J.A. Carrillo, H. Ranetbauer and M.-T. Wolfram, Numerical simulation of nonlinear continuity equations by evolving diffeomorphisms. J. Comput. Phys. 327 (2016) 186–202. | DOI | MR | Zbl

[19] J.A. Carrillo, F. Filbet, M. Schmidtchen, Convergence of a finite volume scheme for a system of interacting species with cross-diffusion, Preprint (2018). | arXiv | MR | Zbl

[20] J.A. Carrillo, Y. Huang and M. Schmidtchen, Zoology of a nonlocal cross-diffusion model for two species. SIAM J. Appl. Math. 78 (2018) 1078–1104. | DOI | MR | Zbl

[21] L. Desvillettes, T. Lepoutre, A. Moussa and A. Trescases, On the entropic structure of reaction-cross diffusion systems. Commun. Part. Differ. Equ. 40 (2015) 1705–1747. | DOI | MR | Zbl

[22] M. Di Francesco, A. Esposito and S. Fagioli, Nonlinear degenerate cross-diffusion systems with nonlocal interaction. Nonlinear Anal. 169 (2018) 94–117. | DOI | MR | Zbl

[23] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012) 521–573. | DOI | MR | Zbl

[24] N. Gavish, P. Nyquist and M. Peletier, Large deviations and gradient flows for the brownian one-dimensional hard-rod system Preprint (2019). | arXiv | MR | Zbl

[25] Q. Han and F. Lin, Elliptic Partial Differential Equations. American Mathematical Society 1 (2011). | Zbl

[26] A. Jüngel, The boundedness-by-entropy method for cross-diffusion systems Nonlinearity 28 (2015) 1963. | DOI | MR | Zbl

[27] A. Jüngel, Entropy Methods for Diffusive Partial Differential Equations Springer (2016). | MR

[28] O.A. Ladyzhenskaia, V.A. Solonnikov and N.N. Ural’Tseva, Linear and Quasi-Linear Equations of Parabolic Type. American Mathematical Society 23 (1988).

[29] D. Matthes and H. Osberger, Convergence of a variational Lagrangian scheme for a nonlinear drift diffusion equation. ESAIM: M2AN 48 (2014) 697–726. | DOI | Numdam | MR | Zbl

[30] L.E. Payne and H.F. Weinberger, An optimal poincaré inequality for convex domains. Arch. Ration. Mech. Anal. 5 (1960) 286–292. | DOI | MR | Zbl

[31] B. Perthame, Parabolic Equations in Biology. Springer (2015). | DOI | MR

[32] M.J. Simpson, K.A. Landman and B.D. Hughes, Multi-species simple exclusion processes. Phys. A: Stat. Mech. Appl. 388 (2009) 399–406. | DOI

[33] G.M. Troianiello, Elliptic Differential Equations and Obstacle Problems. Springer Science & Business Media (2013). | MR | Zbl

[34] N. Zamponi and A. Jüngel, Analysis of degenerate cross-diffusion population models with volume filling. Ann. Inst. Henri Poincaré C, Anal. non linéaire 34 (2017) 1–29. | DOI | Numdam | MR | Zbl

[35] W.P. Ziemer, Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation. Springer Science & Business Media 120 (1989). | MR | Zbl

Cité par Sources :