Convergence rates of high dimensional Smolyak quadrature
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 4, pp. 1259-1307.

We analyse convergence rates of Smolyak integration for parametric maps u: U → X taking values in a Banach space X, defined on the parameter domain U = [−1,1]N. For parametric maps which are sparse, as quantified by summability of their Taylor polynomial chaos coefficients, dimension-independent convergence rates superior to N-term approximation rates under the same sparsity are achievable. We propose a concrete Smolyak algorithm to a priori identify integrand-adapted sets of active multiindices (and thereby unisolvent sparse grids of quadrature points) via upper bounds for the integrands’ Taylor gpc coefficients. For so-called “($$,ε)-holomorphic” integrands u with $$$$(∕) for some p ∈ (0, 1), we prove the dimension-independent convergence rate 2/p − 1 in terms of the number of quadrature points. The proposed Smolyak algorithm is proved to yield (essentially) the same rate in terms of the total computational cost for both nested and non-nested univariate quadrature points. Numerical experiments and a mathematical sparsity analysis accounting for cancellations in quadratures and in the combination formula demonstrate that the asymptotic rate 2/p − 1 is realized computationally for a moderate number of quadrature points under certain circumstances. By a refined analysis of model integrand classes we show that a generally large preasymptotic range otherwise precludes reaching the asymptotic rate 2/p − 1 for practically relevant numbers of quadrature points.

DOI : 10.1051/m2an/2020003
Classification : 65D30
Mots-clés : Generalized polynomial chaos, Smolyak quadrature, sparsity, holomorphy, Convergence rates of high dimensional Smolyak quadrature
@article{M2AN_2020__54_4_1259_0,
     author = {Zech, Jakob and Schwab, Christoph},
     title = {Convergence rates of high dimensional {Smolyak} quadrature},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1259--1307},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {4},
     year = {2020},
     doi = {10.1051/m2an/2020003},
     mrnumber = {4113052},
     zbl = {07240638},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2020003/}
}
TY  - JOUR
AU  - Zech, Jakob
AU  - Schwab, Christoph
TI  - Convergence rates of high dimensional Smolyak quadrature
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 1259
EP  - 1307
VL  - 54
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2020003/
DO  - 10.1051/m2an/2020003
LA  - en
ID  - M2AN_2020__54_4_1259_0
ER  - 
%0 Journal Article
%A Zech, Jakob
%A Schwab, Christoph
%T Convergence rates of high dimensional Smolyak quadrature
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 1259-1307
%V 54
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2020003/
%R 10.1051/m2an/2020003
%G en
%F M2AN_2020__54_4_1259_0
Zech, Jakob; Schwab, Christoph. Convergence rates of high dimensional Smolyak quadrature. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 4, pp. 1259-1307. doi : 10.1051/m2an/2020003. http://www.numdam.org/articles/10.1051/m2an/2020003/

M. Bachmayr, A. Cohen and G. Migliorati, Sparse polynomial approximation of parametric elliptic PDEs. Part I: affine coefficients. ESAIM: M2AN 51 (2017) 321–339. | DOI | Numdam | MR | Zbl

V. Barthelmann, E. Novak and K. Ritter, High dimensional polynomial interpolation on sparse grids. Multivariate polynomial interpolation. Adv. Comput. Math. 12 (2000) 273–288. | DOI | MR | Zbl

J. Beck, R. Tempone, F. Nobile and L. Tamellini, On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods. Math. Models Methods Appl. Sci. 22 (2012) 1250023, 33. | DOI | MR | Zbl

H.-J. Bungartz and M. Griebel, Sparse grids. Acta Numer. 13 (2004) 147–269. | DOI | MR | Zbl

J.-P. Calvi and P.V. Manh, Lagrange interpolation at real projections of Leja sequences for the unit disk. Proc. Amer. Math. Soc. 140 (2012) 4271–4284. | DOI | MR | Zbl

J.-P. Calvi and M. Van Phung, On the Lebesgue constant of Leja sequences for the unit disk and its applications to multivariate interpolation. J. Approx. Theory 163 (2011) 608–622. | DOI | MR | Zbl

S.B. Chae, Holomorphy and Calculus in Normed Spaces. With an appendix by Angus E. Taylor. In: Vol. 92 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York (1985). | MR | Zbl

M.A. Chkifa, On the Lebesgue constant of Leja sequences for the complex unit disk and of their real projection. J. Approx. Theory 166 (2013) 176–200. | DOI | MR | Zbl

A. Chkifa, A. Cohen, R. Devore, C. Schwab, Adaptive algorithms for sparse polynomial approximation of parametric and stochastic elliptic pdes. ESAIM: M2AN 47 (2013) 253–280. | DOI | Numdam | MR | Zbl

A. Cohen, R. Devore and C. Schwab, Convergence rates of best N -term Galerkin approximations for a class of elliptic sPDEs. Found. Comput. Math. 10 (2010) 615–646. | DOI | MR | Zbl

A. Cohen, R. Devore and C. Schwab, Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE’s. Anal. Appl. (Singap.) 9 (2011) 11–47. | DOI | MR | Zbl

A. Cohen, A. Chkifa and C. Schwab, Breaking the curse of dimensionality in sparse polynomial approximation of parametric pdes. J. Math. Pures Appl. 103 (2015) 400–428. | DOI | MR

A. Cohen, C. Schwab and J. Zech, Shape holomorphy of the stationary Navier-Stokes equations. SIAM J. Math. Anal. 50 (2018) 1720–1752. | DOI | MR

J. Dick, F.Y. Kuo, Q.T.L. Gia, D. Nuyens and C. Schwab, Higher order QMC Petrov-Galerkin discretization for affine parametric operator equations with random field inputs. SIAM J. Numer. Anal. 52 (2014) 2676–2702. | DOI | MR

J. Dick, F.Y. Kuo and I.H. Sloan, High-dimensional integration: the quasi-Monte Carlo way. Acta Numer. 22 (2013) 133–288. | DOI | MR | Zbl

R.N. Gantner and C. Schwab, Computational higher order quasi-Monte Carlo integration, In: Vol. 163 Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Leuven, Belgium, April 2014 (2016) 271–288. | DOI | MR

T. Gerstner and M. Griebel, Numerical integration using sparse grids. Numer. Algorithms 18 (1998) 209–232. | DOI | MR | Zbl

T. Gerstner and M. Griebel, Dimension-adaptive tensor-product quadrature. Computing 71 (2003) 65–87. | DOI | MR | Zbl

I.G. Graham, F.Y. Kuo, J.A. Nichols, R. Scheichl, C. Schwab and I.H. Sloan, Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients. Numer. Math. 131 (2015) 329–368. | DOI | MR

M. Griebel and J. Oettershagen, On tensor product approximation of analytic functions. J. Approx. Theory 207 (2016) 348–379. | DOI | MR

A.-L. Haji-Ali, F. Nobile, L. Tamellini and R. Tempone, Multi-index stochastic collocation for random PDEs. Comput. Methods Appl. Mech. Eng. 306 (2016) 95–122. | DOI | MR

A.-L. Haji-Ali, H. Harbrecht, M. Peters and M. Siebenmorgen, Novel results for the anisotropic sparse grid quadrature. J. Complexity 47 (2018) 62–85. | DOI | MR

H. Harbrecht, M. Peters and M. Siebenmorgen, Analysis of the domain mapping method for elliptic diffusion problems on random domains. Numer. Math. 134 (2016) 823–856. | DOI | MR

M. Hervé, Analyticity in Infinite-dimensional Spaces. In: Vol. 10 of De Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin (1989). | MR | Zbl

R. Hiptmair, L. Scarabosio, C. Schillings and C. Schwab, Large deformation shape uncertainty quantification in acoustic scattering. Adv. Comput. Math. 44 (2018) 1475–1518. | DOI | MR

V.H. Hoang and C. Schwab, N -term Wiener chaos approximation rate for elliptic PDEs with lognormal Gaussian random inputs. Math. Models Methods Appl. Sci. 24 (2014) 797–826. | DOI | MR | Zbl

C. Jerez-Hanckes, C. Schwab and J. Zech, Electromagnetic wave scattering by random surfaces: shape holomorphy. Math. Mod. Meth. Appl. Sci. 27 (2017) 2229–2259. | DOI | MR

F.Y. Kuo and D. Nuyens, Application of quasi-Monte Carlo methods to elliptic PDEs with random diffusion coefficients: a survey of analysis and implementation. Found. Comput. Math. 16 (2016) 1631–1696. | DOI | MR

F. Kuo, R. Scheichl, C. Schwab, I. Sloan and E. Ullmann, Multilevel Quasi-Monte Carlo Methods for Lognormal Diffusion Problems. Technical Report 2015–22, Seminar for Applied Mathematics, ETH Zürich (2016). | MR

F. Nobile, R. Tempone and C.G. Webster, An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46 (2008) 2411–2442. | DOI | MR | Zbl

H. Robbins, A remark on Stirling’s formula. Amer. Math. Monthly 62 (1955) 26–29. | DOI | MR | Zbl

C. Schillings and C. Schwab, Sparse, adaptive Smolyak quadratures for Bayesian inverse problems. Inverse Prob. 29 (2013) 065011. | DOI | MR | Zbl

C. Schwab and C. Gittelson, Sparse tensor discretizations of high-dimensional parametric and stochastic pdes. Acta Numer. 20 (2011) 291–467. | DOI | MR | Zbl

C. Schwab and A.M. Stuart, Sparse deterministic approximation of Bayesian inverse problems. Inverse Prob. 28 (2012) 045003. | DOI | MR | Zbl

S. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of functions. Sov. Math. Dokl. 4 (1963) 240–243. | MR | Zbl

R.A. Todor and C. Schwab, Convergence rates of sparse chaos approximations of elliptic problems with stochastic coefficients. IMA J. Numer. Anal. 44 (2007) 232–261. | DOI | MR | Zbl

J. Zech, Sparse-grid approximation of high-dimensional parametric PDEs. Ph.D. thesis. Dissertation 25683, ETH Zürich (2018). doi: . | DOI

J. Zech, D. Dung and C. Schwab, Multilevel approximation of parametric and stochastic PDEs. Math. Models Methods Appl. Sci. 29 (2019) 1753–1817. | DOI | MR

Cité par Sources :