Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 47 (2013) no. 1, pp. 253-280.

The numerical approximation of parametric partial differential equations is a computational challenge, in particular when the number of involved parameter is large. This paper considers a model class of second order, linear, parametric, elliptic PDEs on a bounded domain D with diffusion coefficients depending on the parameters in an affine manner. For such models, it was shown in [9, 10] that under very weak assumptions on the diffusion coefficients, the entire family of solutions to such equations can be simultaneously approximated in the Hilbert space V = H01(D) by multivariate sparse polynomials in the parameter vector y with a controlled number N of terms. The convergence rate in terms of N does not depend on the number of parameters in V, which may be arbitrarily large or countably infinite, thereby breaking the curse of dimensionality. However, these approximation results do not describe the concrete construction of these polynomial expansions, and should therefore rather be viewed as benchmark for the convergence analysis of numerical methods. The present paper presents an adaptive numerical algorithm for constructing a sequence of sparse polynomials that is proved to converge toward the solution with the optimal benchmark rate. Numerical experiments are presented in large parameter dimension, which confirm the effectiveness of the adaptive approach.

DOI : 10.1051/m2an/2012027
Classification : 65N35, 65L10, 35J25
Keywords: parametric and stochastic PDE's, sparse polynomial approximation, high dimensional problems, adaptive algorithms
@article{M2AN_2013__47_1_253_0,
     author = {Chkifa, Abdellah and Cohen, Albert and DeVore, Ronald and Schwab, Christoph},
     title = {Sparse adaptive {Taylor} approximation algorithms for parametric and stochastic elliptic {PDEs}},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {253--280},
     publisher = {EDP Sciences},
     volume = {47},
     number = {1},
     year = {2013},
     doi = {10.1051/m2an/2012027},
     zbl = {1273.65009},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2012027/}
}
TY  - JOUR
AU  - Chkifa, Abdellah
AU  - Cohen, Albert
AU  - DeVore, Ronald
AU  - Schwab, Christoph
TI  - Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2013
SP  - 253
EP  - 280
VL  - 47
IS  - 1
PB  - EDP Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2012027/
DO  - 10.1051/m2an/2012027
LA  - en
ID  - M2AN_2013__47_1_253_0
ER  - 
%0 Journal Article
%A Chkifa, Abdellah
%A Cohen, Albert
%A DeVore, Ronald
%A Schwab, Christoph
%T Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2013
%P 253-280
%V 47
%N 1
%I EDP Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2012027/
%R 10.1051/m2an/2012027
%G en
%F M2AN_2013__47_1_253_0
Chkifa, Abdellah; Cohen, Albert; DeVore, Ronald; Schwab, Christoph. Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 47 (2013) no. 1, pp. 253-280. doi : 10.1051/m2an/2012027. https://www.numdam.org/articles/10.1051/m2an/2012027/

[1] I. Babuska, R. Tempone and G.E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42 (2004) 800−825. | MR | Zbl

[2] I. Babuška, F. Nobile and R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45 (2007) 1005−1034. | MR | Zbl

[3] C. Bernardi and R. Verfürth, Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85 (2000) 579−608. | MR | Zbl

[4] P. Binev, W. Dahmen, and R. Devore, Adaptive finite element methods with convergence rates. Numer. Math. 97 (2004) 219−268. | MR | Zbl

[5] A. Buffa, Y. Maday, A.T. Patera, C. Prudhomme and G. Turinici, A priori convergence of the greedy algorithm for the parameterized reduced basis. ESAIM : M2AN 3 (2012) 595-603. | Numdam | MR | Zbl

[6] A. Cohen, Numerical analysis of wavelet methods. Elsevier, Amsterdam (2003). | MR | Zbl

[7] A. Cohen, W. Dahmen and R. Devore, Adaptive wavelet methods for elliptic operator equations - Convergence rates. Math. Comput. 70 (2000) 27−75. | MR | Zbl

[8] A. Cohen, W. Dahmen and R. Devore, Adaptive wavelet methods for operator equations - Beyond the elliptic case. J. FoCM 2 (2002) 203−245. | MR | Zbl

[9] A. Cohen, R. Devore and C. Schwab, Convergence rates of best N-term Galerkin approximations for a class of elliptic sPDEs. Found. Comput. Math. 10 (2010) 615-646. | MR | Zbl

[10] A. Cohen, R. Devore and C. Schwab, Analytic regularity and polynomial approximation of parametric and stochastic PDE's. Anal. Appl. 9 (2011) 11-47. | MR | Zbl

[11] R. Devore, Nonlinear approximation. Acta Numer. 7 (1998) 51-150. | MR | Zbl

[12] W. Dörfler, A convergent adaptive algorithm for Poisson's equation. SIAM J. Numer. Anal. 33 (1996) 1106-1124. | MR | Zbl

[13] Ph. Frauenfelder, Ch. Schwab and R.A. Todor, Finite elements for elliptic problems with stochastic coefficients. Comput. Methods Appl. Mech. Eng. 194 (2005) 205-228. | MR | Zbl

[14] T. Gantumur, H. Harbrecht and R. Stevenson, An optimal adaptive wavelet method without coarsening of the iterands. Math. Comput. 76 (2007) 615-629. | MR | Zbl

[15] R. Ghanem and P. Spanos, Spectral techniques for stochastic finite elements. Arch. Comput. Methods Eng. 4 (1997) 63-100. | MR | Zbl

[16] P. Grisvard, Elliptic problems on non-smooth domains. Pitman (1983). | Zbl

[17] V.H. Hoang and Ch. Schwab, Sparse tensor Galerkin discretizations for parametric and random parabolic PDEs I : Analytic regularity and gpc-approximation. Report 2010-11, Seminar for Applied Mathematics, ETH Zürich (in review). | Zbl

[18] V.H. Hoang and Ch. Schwab, Analytic regularity and gpc approximation for parametric and random 2nd order hyperbolic PDEs. Report 2010-19, Seminar for Applied Mathematics, ETH Zürich (to appear in Anal. Appl. (2011)).

[19] M. Kleiber and T.D. Hien, The stochastic finite element methods. John Wiley & Sons, Chichester (1992). | MR | Zbl

[20] R. Milani, A. Quarteroni and G. Rozza, Reduced basis methods in linear elasticity with many parameters. Comput. Methods Appl. Mech. Eng. 197 (2008) 4812-4829. | MR | Zbl

[21] P. Morin, R.H. Nochetto and K.G. Siebert, Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38 (2000) 466-488. | MR | Zbl

[22] F. Nobile, R. Tempone and C.G. Webster, A sparse grid stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 46 (2008) 2309-2345. | MR | Zbl

[23] F. Nobile, R. Tempone and C.G. Webster, An anisotropic sparse grid stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 46 (2008) 2411-2442. | MR | Zbl

[24] Ch. Schwab and A.M. Stuart Sparse deterministic approximation of Bayesian inverse problems. Report 2011-16, Seminar for Applied Mathematics, ETH Zürich (to appear in Inverse Probl.). | MR | Zbl

[25] Ch. Schwab and R.A. Todor, Karhúnen-Loève, Approximation of random fields by generalized fast multipole methods. J. Comput. Phys. 217 (2000) 100-122. | MR | Zbl

[26] R. Stevenson, Optimality of a standard adaptive finite element method. Found. Comput. Math. 7 (2007) 245-269. | MR | Zbl

  • Pham, Quang Huy; Hoang, Viet Ha Bayesian inversion for electrical impedance tomography by sparse interpolation, Inverse Problems and Imaging, Volume 19 (2025) no. 5, p. 1037 | DOI:10.3934/ipi.2025007
  • Batlle, Pau; Chen, Yifan; Hosseini, Bamdad; Owhadi, Houman; Stuart, Andrew M. Error analysis of kernel/GP methods for nonlinear and parametric PDEs, Journal of Computational Physics, Volume 520 (2025), p. 113488 | DOI:10.1016/j.jcp.2024.113488
  • Lamboni, Matieyendou Optimal ANOVA-Based Emulators of Models With(out) Derivatives, Stats, Volume 8 (2025) no. 1, p. 24 | DOI:10.3390/stats8010024
  • Piazzola, Chiara; Tamellini, Lorenzo Algorithm 1040: The Sparse Grids Matlab Kit - a Matlab implementation of sparse grids for high-dimensional function approximation and uncertainty quantification, ACM Transactions on Mathematical Software, Volume 50 (2024) no. 1, p. 1 | DOI:10.1145/3630023
  • Batlle, Pau; Darcy, Matthieu; Hosseini, Bamdad; Owhadi, Houman Kernel methods are competitive for operator learning, Journal of Computational Physics, Volume 496 (2024), p. 112549 | DOI:10.1016/j.jcp.2023.112549
  • Kovachki, Nikola B.; Lanthaler, Samuel; Stuart, Andrew M. Operator learning, Numerical Analysis Meets Machine Learning, Volume 25 (2024), p. 419 | DOI:10.1016/bs.hna.2024.05.009
  • Long, Da; Mrvaljević, Nicole; Zhe, Shandian; Hosseini, Bamdad A kernel framework for learning differential equations and their solution operators, Physica D: Nonlinear Phenomena, Volume 460 (2024), p. 134095 | DOI:10.1016/j.physd.2024.134095
  • Bhattacharya, Kaushik; Kovachki, Nikola B.; Rajan, Aakila; Stuart, Andrew M.; Trautner, Margaret Learning Homogenization for Elliptic Operators, SIAM Journal on Numerical Analysis, Volume 62 (2024) no. 4, p. 1844 | DOI:10.1137/23m1585015
  • Nelsen, Nicholas H.; Stuart, Andrew M. Operator Learning Using Random Features: A Tool for Scientific Computing, SIAM Review, Volume 66 (2024) no. 3, p. 535 | DOI:10.1137/24m1648703
  • Dinh, Dung Collocation approximation by deep neural ReLU networks for parametric and stochastic PDEs with lognormal inputs, Sbornik: Mathematics, Volume 214 (2023) no. 4, p. 479 | DOI:10.4213/sm9791e
  • Chen, Peng; Ghattas, Omar Sparse Polynomial Approximations for Affine Parametric Saddle Point Problems, Vietnam Journal of Mathematics, Volume 51 (2023) no. 1, p. 151 | DOI:10.1007/s10013-022-00584-1
  • Dinh, Dung Коллокационная аппроксимация глубокими ReLU-нейронными сетями решений параметрических и стохастических уравнений с частными производными c логнормальными входами, Математический сборник, Volume 214 (2023) no. 4, p. 38 | DOI:10.4213/sm9791
  • Yaremenko, Mykola Trace Class in Separable Reflexive Banach Spaces, Lidskii Theorem, EQUATIONS, Volume 2 (2022), p. 123 | DOI:10.37394/232021.2022.2.19
  • Adcock, Ben; Cardenas, Juan M.; Dexter, Nick; Moraga, Sebastian Towards Optimal Sampling for Learning Sparse Approximations in High Dimensions, High-Dimensional Optimization and Probability, Volume 191 (2022), p. 9 | DOI:10.1007/978-3-031-00832-0_2
  • Bonito, Andrea; DeVore, Ronald; Guignard, Diane; Jantsch, Peter; Petrova, Guergana Polynomial Approximation of Anisotropic Analytic Functions of Several Variables, Constructive Approximation, Volume 53 (2021) no. 2, p. 319 | DOI:10.1007/s00365-020-09511-4
  • Bonito, Andrea; Cohen, Albert; DeVore, Ronald; Guignard, Diane; Jantsch, Peter; Petrova, Guergana Nonlinear methods for model reduction, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 55 (2021) no. 2, p. 507 | DOI:10.1051/m2an/2020057
  • Dũng, Dinh Sparse-grid polynomial interpolation approximation and integration for parametric and stochastic elliptic PDEs with lognormal inputs, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 55 (2021) no. 3, p. 1163 | DOI:10.1051/m2an/2021017
  • Nelsen, Nicholas H.; Stuart, Andrew M. The Random Feature Model for Input-Output Maps between Banach Spaces, SIAM Journal on Scientific Computing, Volume 43 (2021) no. 5, p. A3212 | DOI:10.1137/20m133957x
  • Bhattacharya, Kaushik; Hosseini, Bamdad; Kovachki, Nikola B.; Stuart, Andrew M. Model Reduction And Neural Networks For Parametric PDEs, The SMAI journal of computational mathematics, Volume 7 (2021), p. 121 | DOI:10.5802/smai-jcm.74
  • Bonizzoni, Francesca; Nobile, Fabio Regularity and sparse approximation of the recursive first moment equations for the lognormal Darcy problem, Computers Mathematics with Applications, Volume 80 (2020) no. 12, p. 2925 | DOI:10.1016/j.camwa.2020.10.014
  • Zech, Jakob; Schwab, Christoph Convergence rates of high dimensional Smolyak quadrature, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 54 (2020) no. 4, p. 1259 | DOI:10.1051/m2an/2020003
  • Lang, J.; Scheichl, R.; Silvester, D. A fully adaptive multilevel stochastic collocation strategy for solving elliptic PDEs with random data, Journal of Computational Physics, Volume 419 (2020), p. 109692 | DOI:10.1016/j.jcp.2020.109692
  • Beck, Joakim; Tamellini, Lorenzo; Tempone, Raúl IGA-based multi-index stochastic collocation for random PDEs on arbitrary domains, Computer Methods in Applied Mechanics and Engineering, Volume 351 (2019), p. 330 | DOI:10.1016/j.cma.2019.03.042
  • Dexter, Nick; Tran, Hoang; Webster, Clayton A mixed ℓ1 regularization approach for sparse simultaneous approximation of parameterized PDEs, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 53 (2019) no. 6, p. 2025 | DOI:10.1051/m2an/2019048
  • Zech, Jakob; Dũng, Dinh; Schwab, Christoph Multilevel approximation of parametric and stochastic PDES, Mathematical Models and Methods in Applied Sciences, Volume 29 (2019) no. 09, p. 1753 | DOI:10.1142/s0218202519500349
  • Dũng, Dinh Linear collective collocation approximation for parametric and stochastic elliptic PDEs, Sbornik: Mathematics, Volume 210 (2019) no. 4, p. 565 | DOI:10.1070/sm9068
  • Dinh, Dung Линейная совместная коллокационная аппроксимация для параметрических и стохастических эллиптических дифференциальных уравнений с частными производными, Математический сборник, Volume 210 (2019) no. 4, p. 103 | DOI:10.4213/sm9068
  • Nouy, Anthony; Pled, Florent A multiscale method for semi-linear elliptic equations with localized uncertainties and non-linearities, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 52 (2018) no. 5, p. 1763 | DOI:10.1051/m2an/2018025
  • Cohen, Albert; Schwab, Christoph; Zech, Jakob Shape Holomorphy of the Stationary Navier–Stokes Equations, SIAM Journal on Mathematical Analysis, Volume 50 (2018) no. 2, p. 1720 | DOI:10.1137/16m1099406
  • Gantner, Robert N.; Herrmann, Lukas; Schwab, Christoph Quasi–Monte Carlo Integration for Affine-Parametric, Elliptic PDEs: Local Supports and Product Weights, SIAM Journal on Numerical Analysis, Volume 56 (2018) no. 1, p. 111 | DOI:10.1137/16m1082597
  • Guignard, Diane; Nobile, Fabio A Posteriori Error Estimation for the Stochastic Collocation Finite Element Method, SIAM Journal on Numerical Analysis, Volume 56 (2018) no. 5, p. 3121 | DOI:10.1137/17m1155454
  • Adcock, Ben; Brugiapaglia, Simone; Webster, Clayton G. Compressed Sensing Approaches for Polynomial Approximation of High-Dimensional Functions, Compressed Sensing and its Applications (2017), p. 93 | DOI:10.1007/978-3-319-69802-1_3
  • Bachmayr, Markus; Cohen, Albert; Migliorati, Giovanni Sparse polynomial approximation of parametric elliptic PDEs. Part I: affine coefficients, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 51 (2017) no. 1, p. 321 | DOI:10.1051/m2an/2016045
  • Gunzburger, Max; Webster, Clayton G.; Zhang, Guannan Sparse Collocation Methods for Stochastic Interpolation and Quadrature, Handbook of Uncertainty Quantification (2017), p. 717 | DOI:10.1007/978-3-319-12385-1_29
  • Chen, Peng; Schwab, Christoph Model Order Reduction Methods in Computational Uncertainty Quantification, Handbook of Uncertainty Quantification (2017), p. 937 | DOI:10.1007/978-3-319-12385-1_70
  • Jerez-Hanckes, Carlos; Schwab, Christoph; Zech, Jakob Electromagnetic wave scattering by random surfaces: Shape holomorphy, Mathematical Models and Methods in Applied Sciences, Volume 27 (2017) no. 12, p. 2229 | DOI:10.1142/s0218202517500439
  • Tran, Hoang; Webster, Clayton G.; Zhang, Guannan Analysis of quasi-optimal polynomial approximations for parameterized PDEs with deterministic and stochastic coefficients, Numerische Mathematik, Volume 137 (2017) no. 2, p. 451 | DOI:10.1007/s00211-017-0878-6
  • Binev, Peter; Cohen, Albert; Dahmen, Wolfgang; DeVore, Ronald; Petrova, Guergana; Wojtaszczyk, Przemyslaw Data Assimilation in Reduced Modeling, SIAM/ASA Journal on Uncertainty Quantification, Volume 5 (2017) no. 1, p. 1 | DOI:10.1137/15m1025384
  • Bonizzoni, F.; Nobile, F.; Kressner, D. Tensor train approximation of moment equations for elliptic equations with lognormal coefficient, Computer Methods in Applied Mechanics and Engineering, Volume 308 (2016), p. 349 | DOI:10.1016/j.cma.2016.05.026
  • Stoyanov, Miroslav K.; Webster, Clayton G. A dynamically adaptive sparse grids method for quasi-optimal interpolation of multidimensional functions, Computers Mathematics with Applications, Volume 71 (2016) no. 11, p. 2449 | DOI:10.1016/j.camwa.2015.12.045
  • Mustonen, Lauri Numerical study of a parametric parabolic equation and a related inverse boundary value problem, Inverse Problems, Volume 32 (2016) no. 10, p. 105008 | DOI:10.1088/0266-5611/32/10/105008
  • Dũng, Dinh; Griebel, Michael Hyperbolic cross approximation in infinite dimensions, Journal of Complexity, Volume 33 (2016), p. 55 | DOI:10.1016/j.jco.2015.09.006
  • Chen, Peng; Schwab, Christoph Sparse-grid, reduced-basis Bayesian inversion: Nonaffine-parametric nonlinear equations, Journal of Computational Physics, Volume 316 (2016), p. 470 | DOI:10.1016/j.jcp.2016.02.055
  • Nobile, F.; Tamellini, L.; Tempone, R. Convergence of quasi-optimal sparse-grid approximation of Hilbert-space-valued functions: application to random elliptic PDEs, Numerische Mathematik, Volume 134 (2016) no. 2, p. 343 | DOI:10.1007/s00211-015-0773-y
  • Kunoth, Angela; Schwab, Christoph Sparse Adaptive Tensor Galerkin Approximations of Stochastic PDE-Constrained Control Problems, SIAM/ASA Journal on Uncertainty Quantification, Volume 4 (2016) no. 1, p. 1034 | DOI:10.1137/15m1041390
  • Chen, Peng; Schwab, Christoph Adaptive Sparse Grid Model Order Reduction for Fast Bayesian Estimation and Inversion, Sparse Grids and Applications - Stuttgart 2014, Volume 109 (2016), p. 1 | DOI:10.1007/978-3-319-28262-6_1
  • Cohen, Albert; DeVore, Ronald Approximation of high-dimensional parametric PDEs, Acta Numerica, Volume 24 (2015), p. 1 | DOI:10.1017/s0962492915000033
  • Hakula, H.; Kaarnioja, V.; Laaksonen, M. Approximate methods for stochastic eigenvalue problems, Applied Mathematics and Computation, Volume 267 (2015), p. 664 | DOI:10.1016/j.amc.2014.12.112
  • Chkifa, Abdellah; Cohen, Albert; Migliorati, Giovanni; Nobile, Fabio; Tempone, Raul Discrete least squares polynomial approximation with random evaluations − application to parametric and stochastic elliptic PDEs, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 49 (2015) no. 3, p. 815 | DOI:10.1051/m2an/2014050
  • Eigel, Martin; Gittelson, Claude Jeffrey; Schwab, Christoph; Zander, Elmar A convergent adaptive stochastic Galerkin finite element method with quasi-optimal spatial meshes, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 49 (2015) no. 5, p. 1367 | DOI:10.1051/m2an/2015017
  • Schwab, Christoph Methods for High-Dimensional Parametric and Stochastic Elliptic PDEs, Encyclopedia of Applied and Computational Mathematics (2015), p. 903 | DOI:10.1007/978-3-540-70529-1_526
  • Gunzburger, Max; Webster, Clayton G.; Zhang, Guannan Sparse Collocation Methods for Stochastic Interpolation and Quadrature, Handbook of Uncertainty Quantification (2015), p. 1 | DOI:10.1007/978-3-319-11259-6_29-1
  • Chen, Peng; Schwab, Christoph Model Order Reduction Methods in Computational Uncertainty Quantification, Handbook of Uncertainty Quantification (2015), p. 1 | DOI:10.1007/978-3-319-11259-6_70-1
  • Chkifa, Abdellah; Cohen, Albert; Schwab, Christoph Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs, Journal de Mathématiques Pures et Appliquées, Volume 103 (2015) no. 2, p. 400 | DOI:10.1016/j.matpur.2014.04.009
  • Cohen, Albert; Chkifa, Abdellah On the Stability of Polynomial Interpolation Using Hierarchical Sampling, Sampling Theory, a Renaissance (2015), p. 437 | DOI:10.1007/978-3-319-19749-4_12
  • Hakula, Harri; Laaksonen, Mikael Hybrid Stochastic Finite Element Method for Mechanical Vibration Problems, Shock and Vibration, Volume 2015 (2015), p. 1 | DOI:10.1155/2015/812069
  • Beck, Joakim; Nobile, Fabio; Tamellini, Lorenzo; Tempone, Raúl Convergence of quasi-optimal Stochastic Galerkin methods for a class of PDES with random coefficients, Computers Mathematics with Applications, Volume 67 (2014) no. 4, p. 732 | DOI:10.1016/j.camwa.2013.03.004
  • Cancès, Eric; Ehrlacher, Virginie; Lelièvre, Tony Greedy Algorithms for High-Dimensional Eigenvalue Problems, Constructive Approximation, Volume 40 (2014) no. 3, p. 387 | DOI:10.1007/s00365-014-9266-y
  • Dahmen, Wolfgang; Huang, Chunyan; Kutyniok, Gitta; Lim, Wang-Q; Schwab, Christoph; Welper, Gerrit Efficient Resolution of Anisotropic Structures, Extraction of Quantifiable Information from Complex Systems, Volume 102 (2014), p. 25 | DOI:10.1007/978-3-319-08159-5_2
  • Chkifa, Abdellah; Cohen, Albert; Schwab, Christoph High-Dimensional Adaptive Sparse Polynomial Interpolation and Applications to Parametric PDEs, Foundations of Computational Mathematics, Volume 14 (2014) no. 4, p. 601 | DOI:10.1007/s10208-013-9154-z
  • Schillings, Cl; Schwab, Ch Sparsity in Bayesian inversion of parametric operator equations, Inverse Problems, Volume 30 (2014) no. 6, p. 065007 | DOI:10.1088/0266-5611/30/6/065007
  • Hansen, Markus; Schillings, Claudia; Schwab, Christoph Sparse Approximation Algorithms for High Dimensional Parametric Initial Value Problems, Modeling, Simulation and Optimization of Complex Processes - HPSC 2012 (2014), p. 63 | DOI:10.1007/978-3-319-09063-4_6
  • Bonizzoni, Francesca; Nobile, Fabio Perturbation Analysis for the Darcy Problem with Log-Normal Permeability, SIAM/ASA Journal on Uncertainty Quantification, Volume 2 (2014) no. 1, p. 223 | DOI:10.1137/130949415
  • Porta, G.; Tamellini, L.; Lever, V.; Riva, M. Inverse modeling of geochemical and mechanical compaction in sedimentary basins through Polynomial Chaos Expansion, Water Resources Research, Volume 50 (2014) no. 12, p. 9414 | DOI:10.1002/2014wr015838
  • Schillings, Claudia; Schwab, Christoph Sparse, adaptive Smolyak quadratures for Bayesian inverse problems, Inverse Problems, Volume 29 (2013) no. 6, p. 065011 | DOI:10.1088/0266-5611/29/6/065011
  • Hoang, Viet Ha; Schwab, Christoph; Stuart, Andrew M Complexity analysis of accelerated MCMC methods for Bayesian inversion, Inverse Problems, Volume 29 (2013) no. 8, p. 085010 | DOI:10.1088/0266-5611/29/8/085010
  • Chkifa, Moulay Abdellah On the Lebesgue constant of Leja sequences for the complex unit disk and of their real projection, Journal of Approximation Theory, Volume 166 (2013), p. 176 | DOI:10.1016/j.jat.2012.11.005
  • Kunoth, Angela; Schwab, Christoph Analytic Regularity and GPC Approximation for Control Problems Constrained by Linear Parametric Elliptic and Parabolic PDEs, SIAM Journal on Control and Optimization, Volume 51 (2013) no. 3, p. 2442 | DOI:10.1137/110847597
  • Kouri, D. P.; Heinkenschloss, M.; Ridzal, D.; van Bloemen Waanders, B. G. A Trust-Region Algorithm with Adaptive Stochastic Collocation for PDE Optimization under Uncertainty, SIAM Journal on Scientific Computing, Volume 35 (2013) no. 4, p. A1847 | DOI:10.1137/120892362
  • Gittelson, Claude Jeffrey Uniformly convergent adaptive methods for a class of parametric operator equations, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 46 (2012) no. 6, p. 1485 | DOI:10.1051/m2an/2012013

Cité par 70 documents. Sources : Crossref