Numerical analysis of sparse initial data identification for parabolic problems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 4, pp. 1139-1180.

In this paper we consider a problem of initial data identification from the final time observation for homogeneous parabolic problems. It is well-known that such problems are exponentially ill-posed due to the strong smoothing property of parabolic equations. We are interested in a situation when the initial data we intend to recover is known to be sparse, i.e. its support has Lebesgue measure zero. We formulate the problem as an optimal control problem and incorporate the information on the sparsity of the unknown initial data into the structure of the objective functional. In particular, we are looking for the control variable in the space of regular Borel measures and use the corresponding norm as a regularization term in the objective functional. This leads to a convex but non-smooth optimization problem. For the discretization we use continuous piecewise linear finite elements in space and discontinuous Galerkin finite elements of arbitrary degree in time. For the general case we establish error estimates for the state variable. Under a certain structural assumption, we show that the control variable consists of a finite linear combination of Dirac measures. For this case we obtain error estimates for the locations of Dirac measures as well as for the corresponding coefficients. The key to the numerical analysis are the sharp smoothing type pointwise finite element error estimates for homogeneous parabolic problems, which are of independent interest. Moreover, we discuss an efficient algorithmic approach to the problem and show several numerical experiments illustrating our theoretical results.

DOI : 10.1051/m2an/2019083
Classification : 65N30, 65N15
Mots-clés : Optimal control, sparse control, initial data identification, smoothing estimates, parabolic problems, finite elements, discontinuous Galerkin, error estimates, pointwise error estimates
@article{M2AN_2020__54_4_1139_0,
     author = {Leykekhman, Dmitriy and Vexler, Boris and Walter, Daniel},
     title = {Numerical analysis of sparse initial data identification for parabolic problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1139--1180},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {4},
     year = {2020},
     doi = {10.1051/m2an/2019083},
     mrnumber = {4099209},
     zbl = {1446.65114},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019083/}
}
TY  - JOUR
AU  - Leykekhman, Dmitriy
AU  - Vexler, Boris
AU  - Walter, Daniel
TI  - Numerical analysis of sparse initial data identification for parabolic problems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 1139
EP  - 1180
VL  - 54
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019083/
DO  - 10.1051/m2an/2019083
LA  - en
ID  - M2AN_2020__54_4_1139_0
ER  - 
%0 Journal Article
%A Leykekhman, Dmitriy
%A Vexler, Boris
%A Walter, Daniel
%T Numerical analysis of sparse initial data identification for parabolic problems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 1139-1180
%V 54
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019083/
%R 10.1051/m2an/2019083
%G en
%F M2AN_2020__54_4_1139_0
Leykekhman, Dmitriy; Vexler, Boris; Walter, Daniel. Numerical analysis of sparse initial data identification for parabolic problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 4, pp. 1139-1180. doi : 10.1051/m2an/2019083. http://www.numdam.org/articles/10.1051/m2an/2019083/

[1] R.A. Adams and J. Fournier, Cone conditions and properties of Sobolev spaces. J. Math. Anal. Appl. 61 (1977) 713–734. | DOI | MR | Zbl

[2] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2 (2009) 183–202. | DOI | MR | Zbl

[3] V.I. Bogachev, Measure Theory, Vol. I, II, Springer-Verlag, Berlin, II (2007). | DOI | MR | Zbl

[4] E. Casas, Pontryagin’s principle for state-constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35 (1997) 1297–1327. | DOI | MR | Zbl

[5] E. Casas and E. Zuazua, Spike controls for elliptic and parabolic PDEs. Syst. Control Lett. 62 (2013) 311–318. | DOI | MR | Zbl

[6] E. Casas, C. Clason and K. Kunisch, Approximation of elliptic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 50 (2012) 1735–1752. | DOI | MR | Zbl

[7] E. Casas, B. Vexler and E. Zuazua, Sparse initial data identification for parabolic PDE and its finite element approximations. Math. Control Relat. Fields 5 (2015) 377–399. | DOI | MR | Zbl

[8] C. Clason and K. Kunisch, A duality-based approach to elliptic control problems in non-reflexive Banach spaces. ESAIM: COCV 17 (2011) 243–266. | Numdam | MR | Zbl

[9] V. Duval and G. Peyré, Exact support recovery for sparse spikes deconvolution. Found. Comput. Math. 15 (2015) 1315–1355. | DOI | MR | Zbl

[10] K. Eriksson, C. Johnson and V. Thomée, Time discretization of parabolic problems by the discontinuous Galerkin method. ESAIM: M2AN 19 (1985) 611–643. | DOI | Numdam | MR | Zbl

[11] K. Eriksson, C. Johnson and S. Larsson, Adaptive finite element methods for parabolic problems. VI. Analytic semigroups. SIAM J. Numer. Anal. 35 (1998) 1315–1325. | DOI | MR | Zbl

[12] L.C. Evans, Partial differential equations. In: Vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2010). | MR | Zbl

[13] C. Fabre, J.-P. Puel and E. Zuazua, On the density of the range of the semigroup for semilinear heat equations. In: Vol. 70 of Control and Optimal Design of Distributed Parameter Systems (Minneapolis, MN, 1992). IMA Vol. Math. Appl. Springer, New York (1995) 73–91. | DOI | MR | Zbl

[14] J.A. Griepentrog, Maximal regularity for nonsmooth parabolic problems in Sobolev-Morrey spaces. Adv. Differ. Equ. 12 (2007) 1031–1078. | MR | Zbl

[15] A. Hansbo, Strong stability and non-smooth data error estimates for discretizations of linear parabolic problems. BIT 42 (2002) 351–379. | DOI | MR | Zbl

[16] V. Isakov, Inverse problems for partial differential equations, 3rd edition. In: Vol. 127 of Applied Mathematical Sciences . Springer, Cham (2017). | MR | Zbl

[17] L.V. Kantorovic and G.V.S. Rubinstein, On a space of completely additive functions. Vestnik Leningrad. Univ. 13 (1958) 52–59. | MR | Zbl

[18] J. Kovats, Real analytic solutions of parabolic equations with time-measurable coefficients. Proc. Amer. Math. Soc. 130 (2002) 1055–1064. | DOI | MR | Zbl

[19] K. Kunisch, K. Pieper and B. Vexler, Measure valued directional sparsity for parabolic optimal control problems. SIAM J. Control Optim. 52 (2014) 3078–3108. | DOI | MR | Zbl

[20] R. Leis, Initial-boundary value problems in mathematical physics. In: Vol. 42 of Modern mathematical methods in diffraction theory and its applications in engineering (Freudenstadt, 1996). Methoden Verfahren Math. Phys. Peter Lang, Frankfurt am Main (1997) 125–144. | MR | Zbl

[21] D. Leykekhman and B. Vexler, Pointwise best approximation results for Galerkin finite element solutions of parabolic problems. SIAM J. Numer. Anal. 54 (2016) 1365–1384. | DOI | MR | Zbl

[22] D. Leykekhman and B. Vexler, Discrete maximal parabolic regularity for Galerkin finite element methods. Numer. Math. 135 (2017) 923–952. | DOI | MR | Zbl

[23] D. Meidner, R. Rannacher and B. Vexler, A priori error estimates for finite element discretizations of parabolic optimization problems with pointwise state constraints in time. SIAM J. Control Optim. 49 (2011) 1961–1997. | DOI | MR | Zbl

[24] P. Merino, I. Neitzel and F. Tröltzsch, On linear-quadratic elliptic control problems of semi-infinite type. Appl. Anal. 90 (2011) 1047–1074. | DOI | MR | Zbl

[25] A. Milzarek and M. Ulbrich, A semismooth Newton method with multidimensional filter globalization for l 1 -optimization. SIAM J. Optim. 24 (2014) 298–333. | DOI | MR | Zbl

[26] C. Palencia, On the stability of variable stepsize rational approximations of holomorphic semigroups. Math. Comput. 62 (1994) 93–103. | DOI | MR | Zbl

[27] K. Pieper and B. Vexler, A priori error analysis for discretization of sparse elliptic optimal control problems in measure space. SIAM J. Control Optim. 51 (2013) 2788–2808. | DOI | MR | Zbl

[28] R. Rannacher and B. Vexler, A priori error estimates for the finite element discretization of elliptic parameter identification problems with pointwise measurements. SIAM J. Control Optim. 44 (2005) 1844–1863. | DOI | MR | Zbl

[29] A.H. Schatz and L.B. Wahlbin, Interior maximum norm estimates for finite element methods. Math. Comput. 31 (1977) 414–442. | DOI | MR | Zbl

[30] A.H. Schatz and L.B. Wahlbin, Interior maximum-norm estimates for finite element methods. II Math. Comput. 64 (1995) 907–928. | MR | Zbl

[31] A. Shapiro, Second-order derivatives of extremal-value functions and optimality conditions for semi-infinite programs. Math. Oper. Res. 10 (1985) 207–219. | DOI | MR | Zbl

[32] V. Thomée, J. Xu and N.Y. Zhang, Superconvergence of the gradient in piecewise linear finite-element approximation to a parabolic problem. SIAM J. Numer. Anal. 26 (1989) 553–573. | DOI | MR | Zbl

[33] D. Walter, On sparse sensor placement for parameter identification problems with partial dierential equations. Ph.D. thesis, Technische Universität München (2019).

Cité par Sources :