Numerical approximations for fractional elliptic equations via the method of semigroups
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 3, pp. 751-774.

We provide a novel approach to the numerical solution of the family of nonlocal elliptic equations (−Δ)su = f in Ω, subject to some homogeneous boundary conditions (u)=0 on ∂Ω, where s ∈ (0,1), Ω ⊂ ℝ$$ is a bounded domain, and (-Δ)$$ is the spectral fractional Laplacian associated to on ∂Ω. We use the solution representation (−Δ)$$ f together with its singular integral expression given by the method of semigroups. By combining finite element discretizations for the heat semigroup with monotone quadratures for the singular integral we obtain accurate numerical solutions. Roughly speaking, given a datum f in a suitable fractional Sobolev space of order r ≥ 0 and the discretization parameter h > 0, our numerical scheme converges as O(h$$), providing super quadratic convergence rates up to O(h4) for sufficiently regular data, or simply O(h2s) for merely fL2 (Ω). We also extend the proposed framework to the case of nonhomogeneous boundary conditions and support our results with some illustrative numerical tests.

DOI : 10.1051/m2an/2019076
Classification : 35S15, 65R20, 65N15, 65N25, 41A55, 35R11, 26A33
Mots-clés : Fractional Laplacian, bounded domain, boundary value problem, homogeneous and nonhomogeneous boundary conditions, heat semigroup, finite elements, integral quadrature
@article{M2AN_2020__54_3_751_0,
     author = {Cusimano, Nicole and del Teso, F\'elix and Gerardo-Giorda, Luca},
     title = {Numerical approximations for fractional elliptic equations \protect\emph{via} the method of semigroups},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {751--774},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {3},
     year = {2020},
     doi = {10.1051/m2an/2019076},
     mrnumber = {4080918},
     zbl = {1452.35237},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019076/}
}
TY  - JOUR
AU  - Cusimano, Nicole
AU  - del Teso, Félix
AU  - Gerardo-Giorda, Luca
TI  - Numerical approximations for fractional elliptic equations via the method of semigroups
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 751
EP  - 774
VL  - 54
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019076/
DO  - 10.1051/m2an/2019076
LA  - en
ID  - M2AN_2020__54_3_751_0
ER  - 
%0 Journal Article
%A Cusimano, Nicole
%A del Teso, Félix
%A Gerardo-Giorda, Luca
%T Numerical approximations for fractional elliptic equations via the method of semigroups
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 751-774
%V 54
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019076/
%R 10.1051/m2an/2019076
%G en
%F M2AN_2020__54_3_751_0
Cusimano, Nicole; del Teso, Félix; Gerardo-Giorda, Luca. Numerical approximations for fractional elliptic equations via the method of semigroups. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 3, pp. 751-774. doi : 10.1051/m2an/2019076. http://www.numdam.org/articles/10.1051/m2an/2019076/

N. Abatangelo and L. Dupaigne, Nonhomogeneous boundary conditions for the spectral fractional Laplacian. Ann. Inst. Henri Poincaré AN 34 (2017) 439–467. | Numdam | MR | Zbl

G. Acosta and J.P. Borthagaray, A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55 (2015) 472–495. | DOI | MR | Zbl

G. Acosta, J.P. Borthagaray, O. Bruno and M. Maas, Regularity theory and high order numerical methods for the (1D)-fractional Laplacian. Math. Comput. 87 (2018) 1821–1857. | DOI | MR | Zbl

H. Antil and E. Otárola, A FEM for an optimal control problem of fractional powers of elliptic operators. SIAM J. Control Optim. 53 (2015) 3432–3456. | DOI | MR

H. Antil, J. Pfefferer and S. Rogovs, Fractional operators with inhomogeneous boundary conditions: Analysis, control, and discretization. Commun. Math. Sci. 16 (2018) 1395–1426. | DOI | MR

C. Bacuta, J.H. Bramble and J. Xu, Regularity estimates for elliptic boundary value problems with smooth data on polygonal domains. J. Numer. Math. 11 (2003) 75–94. | DOI | MR | Zbl

O.G. Bakaunin, Turbulence and Diffusion. Springer Series in Synergetics. Springer-Verlag, Berlin (2008). | MR | Zbl

P. Bates, On some nonlocal evolution equations arising in materials science. Nonlinear dynamics and evolution equations. Fields Inst. Comm. 48 (2006) 13–52. | MR | Zbl

K. Bogdan, K. Burdzy and Z.-Q. Chen, Censored stable processes. Probab. Theory Relat. Fields 127 (2003) 89–152. | DOI | MR | Zbl

M. Bonforte, A. Figalli and J.L. Vázquez, Sharp boundary behaviour of solutions to semilinear nonlocal elliptic equations. Calc. Var. Part. Diff. Equ. 57 (2018) 34. | MR

M. Bonforte, A. Figalli and J.L. Vázquez, Sharp global estimates for local and nonlocal porous medium-type equations in bounded domains. Anal. Part. Differ. Equ. 11 (2018) 945–982. | MR

A. Bonito and J.E. Pasciak, Numerical approximation of fractional powers of elliptic operators. Math. Comput. 84 (2015) 2083–2110. | DOI | MR

A. Bonito and J.E. Pasciak, Corrigendum to the paper “Numerical approximation of fractional powers of regularly accretive operators”. IMA J. Numer. Anal. 37 (2017) 2170. | DOI | MR

A. Bonito and J.E. Pasciak, Numerical approximation of fractional powers of regularly accretive operators. IMA J. Numer. Anal. 37 (2017) 1245–1273. | DOI | MR

A. Bonito, W. Lei and J.E. Pasciak, The approximation of parabolic equations involving fractional powers of elliptic operators. J. Comput. Appl. Math. 315 (2017) 32–48. | DOI | MR

A. Bonito, J.P. Borthagaray, R.H. Nochetto, E. Otárola and A.J. Salgado, Numerical methods for fractional diffision. Comput. Visual Sci. 19 (2018) 19–46. | DOI | MR

A. Bueno-Orovio, D. Kay, V. Grau, B. Rodriguez and K. Burrage, Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization. J. R. Soc. Interf. 11 (2014) 20140352. | DOI

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224 (2010) 2052–2093. | DOI | MR | Zbl

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian. Comm. Part. Differ. Equ. 32 (2007) 1245–1260. | DOI | MR | Zbl

L.A. Caffarelli and P.R. Stinga, Fractional elliptic equation, Cacioppoli estimates and regularity. Ann. Inst. Henri Poincaré AN 33 (2016) 767–807. | Numdam | MR

P. Chatzipantelidis, R.D. Lazarov, V. Thomée and L.B. Wahlbin, Parabolic finite element equations in nonconvex polygonal domains. BIT 46 (2006) S113–S143. | DOI | MR | Zbl

L. Chen, R.H. Nochetto, E. Otárola and A.J. Salgado, A PDE approach to fractional diffusion: a posteriori error analysis. J. Comput. Phys. 293 (2015) 339–358. | DOI | MR

Ó. Ciaurri, L. Roncal, P.R. Stinga, J.L. Torrea and J.L. Varona, Nonlocal discrete diffusion equations and the fractional discrete Laplacian, regularity and applications. Adv. Math. 330 (2018) 688–738. | DOI | MR

S. Cifani and E.R. Jakobsen, On numerical methods and error estimates for degenerate fractional convection-diffusion equations. Numer. Math. 127 (2014) 447–483. | DOI | MR | Zbl

N. Cusimano and L. Gerardo-Giorda, A space-fractional Monodomain model for cardiac electrophysiology combining anisotropy and heterogeneity on realistic geometries. J. Comput. Phys. 362 (2018) 409–424. | DOI | MR

N. Cusimano, F. Del Teso, L. Gerardo-Giorda and G. Pagnini, Discretizations of the spectral fractional Laplacian on general domains with Dirichlet, Neumann, and Robin boundary conditions. SIAM J. Numer. Anal. 56 (2018) 1243–1272. | DOI | MR

D. Del Castillo-Negrete and L. Chacón, Parallel heat transport in integrable and chaotic magnetic fields. Phys. Plasmas 19 (2012) 056112. | DOI

F. Del Teso, Finite difference method for a fractional porous medium equation. Calcolo 51 (2014) 615–638. | DOI | MR

F. Del Teso, J. Endal and E.R. Jakobsen, Robust numerical methods for nonlocal (and local) equations of porous medium type. Part II: Schemes and experiments. SIAM J. Numer. Anal. 56 (2018) 3611–3647. | DOI | MR

F. Del Teso, J. Endal and E.R. Jakobsen, Robust numerical methods for nonlocal (and local) equations of porous medium type. Part I: Theory. SIAM J. Numer. Anal. 57 (2019) 2266–2299. | DOI | MR

M. D’Elia and M. Gunzburger, The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator. Comp. Math. Appl. 66 (2013) 1245–1260. | DOI | MR

G. Di Blasio and B. Volzone, Comparison and regularity results for the fractional Laplacian via symmetrization methods. J. Differ. Equ. 253 (2012) 2593–2615. | DOI | MR | Zbl

S. Dohr, C. Kahle, S. Rogovs and P. Swierczynski, A FEM for an optimal control problem subject to the fractional Laplace equation. Calcolo 56 (2019) 37. | DOI | MR

J. Droniou, A numerical method for fractal conservation laws. Math. Comput. 79 (2010) 95–124. | DOI | MR | Zbl

J. Droniou and E.R. Jakobsen, A uniformly converging scheme for fractal conservation laws, In: Vol. 77 of Finite volumes for complex applications. VII. Methods and theoretical aspects. Springer Proc. Math. Stat. Springer, Cham (2014) 237–245. | MR | Zbl

P. Garbaczewski and V.A. Stephanovich, Fractional laplacians in bounded domains: killed, reflected, censored and taboo Lévy flights. Phys. Rev. E 99 (2019) 042126. | DOI

D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Classics in Mathematics. 2nd ed. Springer-Verlag, Berlin Heidelberg (2001). | MR | Zbl

G. Gilboa and S. Osher, Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7 (2008) 1005–1028. | DOI | MR | Zbl

P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Publishing (1985). | MR | Zbl

G. Grubb Regularity of spectral fractional Dirichlet and Neumann problems. Math. Nachr. 289 (2016) 831–844. | DOI | MR

Y. Huang and A. Oberman, Numerical methods for the fractional Laplacian: a finite difference quadrature approach. SIAM J. Numer. Anal. 52 (2014) 3056–3084. | DOI | MR

Y. Huang and A. Oberman, Finite difference methods for fractional laplacians. Preprint (2016) . | arXiv

M. Ilić, F. Liu, I. Turner and V. Anh, Turner and V. Anh, Numerical approximation of a fractional-in-space diffusion equation (I). Fract. Calc. Appl. Anal. 8 (2005) 323–341. | MR | Zbl

M. Ilić, F. Liu, I. Turner and V. Anh, Numerical approximation of a fractional-in-space diffusion equation (II) – with nonhomogeneous boundary conditions. Fract. Calc. Appl. Anal. 9 (2006) 333–349. | MR | Zbl

A. Iserles, A First Course in the Numerical Analysis of Differential Equations. Cambridge University Press, Cambridge, 2008. | DOI | MR | Zbl

T. Kato, Perturbation theory for linear operators. In: Classics in Mathematics, Reprint of the 1980 edition. Springer-Verlag, Berlin (1995). | MR | Zbl

J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Dunod, Paris 1 (1968). | Zbl

A. Lischke, G. Pang, M. Gulian, F. Song, C. Glusa, X. Zheng, Z. Mao, W. Cai, M.M. Meerschaert, M. Ainsworth and G.E. Karniadakis, What is the fractional Laplacian? A comparative review with new results. J. Comput. Phys. 404 (2020) 109009. | DOI | MR

F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010). | DOI | MR | Zbl

R. Metzler, J.-H. Jeon, A.G. Cherstvy and E. Barkai, Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 16 (2014) 24128. | DOI

R. Musina and A.I. Nazarov, On fractional Laplacians. Comm. Part. Differ. Equ. 39 (2014) 1780–1790. | DOI | MR | Zbl

R.H. Nochetto, E. Otárola and A.J. Salgado, A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math. 15 (2015) 733–791. | DOI | MR | Zbl

A. Pazy, Semigroups of operators in Banach spaces, In: Vol. 1017 of Equadiff 82 (Würzburg, 1982)., Springer, Berlin (1983) 508–524. | MR | Zbl

Ł Płociniczak, Derivation of the nonlocal pressure form of the fractional porous medium equation in the hydrological setting. Commun. Nonlinear Sci. Numer. Simul. 76 (2019) 66–70. | DOI | MR | Zbl

A. Quarteroni and A. Valli, Numerical approximation of partial differential equations. Springer Series in Computational Mathematics. Springer-Verlag, Berlin Heidelberg (2008). | MR | Zbl

Y.A. Rossikhin and M.V. Shitikova, Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Appl. Mech. Rev. 63 (2010) 010801. | DOI

R. Seeley, Singular integrals and boundary value problems. Am. J. Math. 88 (1966) 781–809. | DOI | MR | Zbl

R. Seeley, Complex powers of an elliptic operator. In: Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966), Am. Math. Soc., Providence, RI (1967) 288–307. | MR | Zbl

R. Seeley, The resolvent of an elliptic boundary problem. Amer. J. Math. 91 (1969) 889–920. | DOI | MR | Zbl

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators. Proc. Roy. Soc. Edinburgh Sect. A 144 (2014) 831–855. | DOI | MR | Zbl

F. Song, C. Xu and G.E. Karniadakis, Computing fractional Laplacians on complex-geometry domains: algorithms and simulations. SIAM J. Sci. Comput. 39 (2017) A1320–A1344. | DOI | MR | Zbl

P.R. Stinga and J.L. Torrea, Extension problem and Harnack’s inequality for some fractional operators. Comm. Part. Differ. Equ. 35 (2010) 2092–2122. | DOI | MR | Zbl

V. Thomée, Galerkin finite element methods for parabolic problems. In: Vol. 25 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin (1997). | MR | Zbl

P.N. Vabishchevich, Numerically solving an equation for fractional powers of elliptic operators. J. Comput. Phys. 282 (2015) 289–302. | DOI | MR | Zbl

P.N. Vabishchevich, A splitting scheme to solve an equation for fractional powers of elliptic operators. Comput. Methods Appl. Math. 16 (2016) 161–174. | DOI | MR | Zbl

J.L. Vázquez, Nonlinear diffusion with fractional Laplacian operators. In: Vol. 7 of Nonlinear Partial Differential Equations. Abel Symp. Springer, Heidelberg (2012) 271–298. | DOI | MR | Zbl

J.L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators. Disc. Cont. Dyn. Sys. – Ser. S 7 (2014) 857–885. | MR | Zbl

J.L. Vázquez, The mathematical theories of diffusion: nonlinear and fractional diffusion. In: Vol. 2186 of Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions. Lecture Notes in Math. Springer, Cham (2017) 205–278. | MR

B. Volzone, Symmetrization for fractional Neumann problems. Nonlinear Anal. 147 (2016) 1–25. | DOI | MR | Zbl

M. Wrobel, Mathematical and numerical analysis of initial boundary value problem for a linear nonlocal equation. Math. Comput. Simul. (2019). | MR | Zbl

K. Yosida, Functional analysis. In: Classics in Mathematics. Reprint of the sixth (1980) edition. Springer-Verlag, Berlin (1995). | MR | Zbl

Y. Zhang, M.M. Meerschaert and R.M. Neupauer, Backward fractional advection dispersion model for contaminant source prediction. Water Resour. Res. 52 (2016) 2462–2473. | DOI

Cité par Sources :