Nonlocal gradient operators with a nonspherical interaction neighborhood and their applications
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 1, pp. 105-128.

Nonlocal gradient operators are prototypical nonlocal differential operators that are very important in the studies of nonlocal models. One of the simplest variational settings for such studies is the nonlocal Dirichlet energies wherein the energy densities are quadratic in the nonlocal gradients. There have been earlier studies to illuminate the link between the coercivity of the Dirichlet energies and the interaction strengths of radially symmetric kernels that constitute nonlocal gradient operators in the form of integral operators. In this work we adopt a different perspective and focus on nonlocal gradient operators with a non-spherical interaction neighborhood. We show that the truncation of the spherical interaction neighborhood to a half sphere helps making nonlocal gradient operators well-defined and the associated nonlocal Dirichlet energies coercive. These become possible, unlike the case with full spherical neighborhoods, without any extra assumption on the strengths of the kernels near the origin. We then present some applications of the nonlocal gradient operators with non-spherical interaction neighborhoods. These include nonlocal linear models in mechanics such as nonlocal isotropic linear elasticity and nonlocal Stokes equations, and a nonlocal extension of the Helmholtz decomposition.

DOI : 10.1051/m2an/2019053
Classification : 45P05, 45A05, 35A23, 75B05, 75D07, 46E35
Mots-clés : Nonlocal operators, nonlocal gradient, smoothed particle hydrodynamics, peridynamics, incompressible flows, Dirichlet integral, Helmholtz decomposition, stability and convergence
@article{M2AN_2020__54_1_105_0,
     author = {Lee, Hwi and Du, Qiang},
     title = {Nonlocal gradient operators with a nonspherical interaction neighborhood and their applications},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {105--128},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {1},
     year = {2020},
     doi = {10.1051/m2an/2019053},
     mrnumber = {4051845},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019053/}
}
TY  - JOUR
AU  - Lee, Hwi
AU  - Du, Qiang
TI  - Nonlocal gradient operators with a nonspherical interaction neighborhood and their applications
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 105
EP  - 128
VL  - 54
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019053/
DO  - 10.1051/m2an/2019053
LA  - en
ID  - M2AN_2020__54_1_105_0
ER  - 
%0 Journal Article
%A Lee, Hwi
%A Du, Qiang
%T Nonlocal gradient operators with a nonspherical interaction neighborhood and their applications
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 105-128
%V 54
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019053/
%R 10.1051/m2an/2019053
%G en
%F M2AN_2020__54_1_105_0
Lee, Hwi; Du, Qiang. Nonlocal gradient operators with a nonspherical interaction neighborhood and their applications. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 1, pp. 105-128. doi : 10.1051/m2an/2019053. http://www.numdam.org/articles/10.1051/m2an/2019053/

F. Andreu and J. Mazón, J. Rossi and J. Toledo, Nonlocal diffusion problems. , In: Vol. 165 of Mathematical Surveys and Monographs. American Mathematical Society (2010). | MR | Zbl

G. Aubert and P. Kornprobst, Can the nonlocal characterization of Sobolev spaces by Bourgain et al. be useful for solving variational problems?. SIAM J. Numer. Anal. 47 (2009) 844–860. | DOI | MR | Zbl

G. Barles, E. Chasseigne and C. Imbert, On the Dirichlet problem for second-order elliptic integro-differential equations. Indiana Univ. Math. J. 57 (2008) 213–246. | DOI | MR | Zbl

J. Bourgain, H. Brezis and P. Mironescu. Another Look at Sobolev Spaces, IOS Press, Amsterdam (2001) 439–455. | MR | Zbl

A. Buades, B. Coll and J. Morel, Image denoising methods. A new nonlocal principle. SIAM Rev. 52 (2010) 113–147. | DOI | MR | Zbl

C. Bucur and E. Valdinoci, Nonlocal diffusion and applications. In: Vol. 20 of Lecture Notes of the Unione Matematica Italiana. Springer (2016). | DOI | MR | Zbl

D. Burago, S. Ivanov and Y. Kurylev, A graph discretization of the Laplace-Beltrami operator. J. Spectral Theory 4 (2014) 675–714. | DOI | MR

N. Burch and R.B. Lehoucq, Classical, nonlocal, and fractional diffusion equations on bounded domains. Int. J. Multiscale Comput. Eng. 9 (2011) 661. | DOI

R. Coifman and S. Lafon. Diffusion maps. Appl. Comput. Harmonic Anal. 21 (2006) 5–30. | DOI | MR | Zbl

S. Conti, G. Dolzmann and S. Müller, The div-curl lemma for sequences whose divergence and curl are compact in W - 1 , 1 . C.R. Math. 349 (2011) 175–178. | DOI | MR | Zbl

O. Defterli, M. D’Elia, Q. Du, M. Gunzburger, R. Lehoucq and M. Meerschaert, Fractional diffusion on bounded domains. Fract. Calc. Appl. Anal. 18 (2015) 342–360. | DOI | MR | Zbl

P. Degond and S. Mas-Gallic, The weighted particle method for convection-diffusion equations. I. The case of an isotropic viscosity. Math. Comput. 53 (1989) 485–507. | MR | Zbl

Q. Du, Nonlocal modeling, analysis and computation. In: Vol. 94 of CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM (2019). | MR

Q. Du and X. Tian, Stability of nonlocal Dirichlet integrals and implications for peridynamic correspondence material modeling. SIAM J. Appl. Math. 78 (2018) 1536–1552. | DOI | MR

Q. Du and X. Tian, Mathematics of smoothed particle hydrodynamics, a study via nonlocal Stokes equations. To appear in: Found. Comput. Math., DOI: 10.1007/s10208-019-09432-0 (2019). | MR

Q. Du and K. Zhou, Mathematical analysis for the peridynamic nonlocal continuum theory. ESAIM: M2AN 45 (2011) 217–234. | DOI | Numdam | MR | Zbl

Q. Du, M. Gunzburger, R.B. Lehoucq and K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 54 (2012) 667–696. | DOI | MR | Zbl

Q. Du, M. Gunzburger, R.B. Lehoucq and K. Zhou, A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Math. Models Methods Appl. Sci. 23 (2013) 493–540. | DOI | MR | Zbl

Q. Du, Y. Tao, X. Tian and J. Yang, Robust a posteriori stress analysis for quadrature collocation approximations of nonlocal models via nonlocal gradients. Comput. Methods Appl. Mech. Eng. 310 (2016) 605–627. | DOI | MR | Zbl

Q. Du, J. Yang and Z. Zhou, Analysis of a nonlocal-in-time parabolic equation. Discrete Continuous Dyn. Syst. B 22 (2017) 339–368. | DOI | MR

Q. Du, T. Mengesha and X. Tian, Nonlocal criteria for compactness in the space of l p vector fields, Preprint (2018) . | arXiv

L.C. Evans, Weak convergence methods for nonlinear partial differential equations. In: Number 74 of CBMS Regional Conference Series in Mathematics, American Mathematical Soc. (1990). | DOI | MR | Zbl

M. Fuentes, M. Kuperman and V. Kenkre, Nonlocal interaction effects on pattern formation in population dynamics. Phys. Rev. Lett. 91 (2003) 158104. | DOI

M. Felsinger, M. Kassmann and P. Voigt, The Dirichlet problem for nonlocal operators. Math. Z. 279 (2015) 779–809. | DOI | MR | Zbl

G. Gilboa and S. Osher, Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7 (2008) 1005–1028. | DOI | MR | Zbl

R. Gingold and J. Monaghan, Smoothed particle hydrodynamics: theory and application to non-spherical stars. MNRAS 181 (1977) 375–389. | DOI | Zbl

T. Hillen, K. Painter and C. Schmeiser, Global existence for chemotaxis with finite sampling radius. Discrete Continuous Dyn. Syst. Ser. B 7 (2007) 125. | DOI | MR | Zbl

C.-Y. Kao, Y. Lou and W. Shen, Random dispersal vs. nonlocal dispersal. Discrete Continuous. Dyn. Syst. 26 (2010) 551–596. | MR | Zbl

A. Korn, Uber einige ungleichungen, welche in der theorie der elastischen und elektrischen schwingungen eine rolle spielen. Bull. Int. Cracovie Akademie Umiejet Classe Sci. Math. Nat. 3 (1909) 705–724. | JFM

M. Křížek and P. Neittaanmäki, On the validity of friedrichs’inequalities. Math. Scand. 54 (1984) 17–26. | DOI | MR | Zbl

H. Lee and Q. Du, Asymptotically compatible sph-like particle discretizations of one dimensional linear advection models. SIAM J. Numer. Anal. 57 (2019) 127–147. | DOI | MR

R.B. Lehoucq and S.A. Silling, Force flux and the peridynamic stress tensor. J. Mech. Phys. Solids 56 (2008) 1566–1577. | DOI | MR | Zbl

X.H. Li and J. Lu, Quasi-nonlocal coupling of nonlocal diffusions. SIAM J. Numer. Anal. 55 (2017) 2394–2415. | DOI | MR | Zbl

L.B. Lucy, A numerical approach to the testing of the fission hypothesis. Astron. J. 82 (1977) 1013–1024. | DOI

K. Mazowiecka and A. Schikorra, Fractional div-curl quantities and applications to nonlocal geometric equations. J. Funct. Anal. 275 (2018) 1–44. | DOI | MR

T. Mengesha, Nonlocal Korn-type characterization of Sobolev vector fields. Commun. Contemp. Math. 14 (2012) 1250028. | DOI | MR | Zbl

T. Mengesha and Q. Du, The bond-based peridynamic system with dirichlet-type volume constraint. Proc. R. Soc. Edinburgh Sect. A: Math. 144 (2014) 161–186. | DOI | MR | Zbl

T. Mengesha and Q. Du, Characterization of function spaces of vector fields and an application in nonlinear peridynamics. Nonlinear Anal. 140 (2016) 82–111. | DOI | MR

T. Mengesha and D. Spector, Localization of nonlocal gradients in various topologies. Calculus Variations Partial Differ. Equ. 52 (2015) 253–279. | DOI | MR | Zbl

F. Murat, Compacité par compensation. Anal. Scuola Normale Superiore Pisa-Classe Sci. 5 (1978) 489–507. | Numdam | MR | Zbl

J. Necas and I. Hlavácek, Mathematical Theory of Elastic and Elasto-plastic Bodies: An Introduction. In Vol. 3. . Elsevier (2017). | MR | Zbl

S. Nugent and H.A. Posch, Liquid drops and surface tension with smoothed particle applied mechanics. Phys. Rev. E 62 (2000) 4968. | DOI

J. Peddieson, G.R. Buchanan and R.P. Mcnitt, Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41 (2003) 305–312. | DOI

L. Pismen, Nonlocal diffuse interface theory of thin films and the moving contact line. Phys. Rev. E 64 (2001) 021603. | DOI

W. Radu and K. Wells, A doubly nonlocal laplace operator and its connection to the classical laplacian. J. Integral Equ. Appl. 31 (2019) 379–409. | DOI | MR

J. Saranen, On an inequality of friedrichs. Math. Scand. 51 (1983) 310–322. | DOI | MR | Zbl

S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces. J. Mechan. Phys. Solids 48 (2000) 175–209. | DOI | MR | Zbl

S.A. Silling, Stability of peridynamic correspondence material models and their particle discretizations. Comput. Methods App. Mech. Eng. 322 (2017) 42–57. | DOI | MR

V. Tarasov, Fractional vector calculus and fractional Maxwell’s equations. Ann. Phys. 323 (2008) 2756–2778. | DOI | MR | Zbl

R. Temam, Navier–Stokes Equations: Theory and Numerical Analysis. In Vol. 343. American Mathematical Soc. (2001). | MR | Zbl

X. Tian and Q. Du, Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations. SIAM J. Numer. Anal. 51 (2013) 3458–3482. | DOI | MR | Zbl

H. Tian, L. Ju and Q. Du, A conservative nonlocal convection-diffusion model and asymptotically compatible finite difference discretization. Comput. Methods Appl. Mech. Eng. 320 (2017) 46–67. | DOI | MR | Zbl

C.M. Topaz, A.L. Bertozzi and M.A. Lewis, A nonlocal continuum model for biological aggregation. Bull. Math. Biol. 68 (2006) 1601. | DOI | MR

A.-K. Tornberg and B. Engquist, Regularization techniques for numerical approximation of pdes with singularities. J. Sci. Comput. 19 (2003) 527–552. | DOI | MR | Zbl

N. Trillos and D. Slepcev, A variational approach to the consistency of spectral clustering. Appl. Comput. Harmonic Anal. (2016). | MR | Zbl

Y. Van Gennip and A. Bertozzi, Γ -convergence of graph Ginzburg-Landau functionals. Adv. Differ. Equ. 17 (2012) 1115–1180. | MR | Zbl

K. Zhou and Q. Du, Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions. SIAM J. Numer. Anal. 48 (2010) 1759–1780. | DOI | MR | Zbl

Y. Zhu and P.J. Fox, Smoothed particle hydrodynamics model for diffusion through porous media. Transp. Porous Media 43 (2001) 441–471. | DOI

Cité par Sources :