Convergence analysis of a LDG method for tempered fractional convection–diffusion equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 1, pp. 59-78.

This paper proposes a local discontinuous Galerkin method for tempered fractional convection–diffusion equations. The tempered fractional convection–diffusion is converted to a system of the first order of differential/integral equation, then, the local discontinuous Galerkin method is employed to solve the system. The stability and order of convergence of the method are proven. The order of convergence O(h$$) depends on the choice of numerical fluxes. The provided numerical examples confirm the analysis of the numerical scheme.

DOI : 10.1051/m2an/2019052
Classification : 35R11, 65M60, 65M12
Mots-clés : Local discontinuous method, tempered fractional derivative, stability, error estimates
@article{M2AN_2020__54_1_59_0,
     author = {Ahmadinia, Mahdi and Safari, Zeinab},
     title = {Convergence analysis of a {LDG} method for tempered fractional convection{\textendash}diffusion equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {59--78},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {1},
     year = {2020},
     doi = {10.1051/m2an/2019052},
     mrnumber = {4051846},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019052/}
}
TY  - JOUR
AU  - Ahmadinia, Mahdi
AU  - Safari, Zeinab
TI  - Convergence analysis of a LDG method for tempered fractional convection–diffusion equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 59
EP  - 78
VL  - 54
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019052/
DO  - 10.1051/m2an/2019052
LA  - en
ID  - M2AN_2020__54_1_59_0
ER  - 
%0 Journal Article
%A Ahmadinia, Mahdi
%A Safari, Zeinab
%T Convergence analysis of a LDG method for tempered fractional convection–diffusion equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 59-78
%V 54
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019052/
%R 10.1051/m2an/2019052
%G en
%F M2AN_2020__54_1_59_0
Ahmadinia, Mahdi; Safari, Zeinab. Convergence analysis of a LDG method for tempered fractional convection–diffusion equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 1, pp. 59-78. doi : 10.1051/m2an/2019052. http://www.numdam.org/articles/10.1051/m2an/2019052/

M. Ahmadinia, Z. Safari and S. Fouladi, Analysis of LDG method for time-space fractional convection–diffusion equations. BIT 58 (2018) 533–554. | DOI | MR

B. Baeumer and M.M. Meerschaert, Tempered stable lévy motion and transient super-diffusion. J. Comput. Appl. Math. 233 (2010) 2438–2448. | DOI | MR | Zbl

B. Baeumer, D.A. Benson, M.M. Meerschaert and S.W. Wheatcraft, Subordinated advection-dispersion equation for contaminant transport. Water Resour. Res. 37 (2001) 1543–1550. | DOI

B. Baeumer, M. Kovács and M.M. Meerschaert, Fractional reproduction-dispersal equations and heavy tail dispersal kernels. Bull. Math. Biol. 69 (2007) 2281–2297. | DOI | MR | Zbl

D.A. Benson, S.W. Wheatcraft and M.M. Meerschaert, Application of a fractional advection-dispersion equation. Water Resour. Res. 36 (2000) 1403–1412. | DOI

D.A. Benson, R. Schumer, M.M. Meerschaert, S.W. Wheatcraft, Fractional dispersion, lévy motion, and the made tracer tests. Transp. Porous Media 42 (2001) 211–240. | DOI | MR

P. Carr, H. Geman, D.B. Madan and M. Yor, The fine structure of asset returns: An empirical investigation. J. Bus. 75 (2002) 305–332. | DOI

P. Carr, H. Geman, D.B. Madan and M. Yor, Stochastic volatility for lévy processes. Math. Finance 13 (2003) 345–382. | DOI | MR | Zbl

Á. Cartea and D. Del Castillo-Negrete, Fluid limit of the continuous-time random walk with general lévy jump distribution functions. Phys. Rev. E 76 (2007) 041105. | DOI

P. Castillo, B. Cockburn, D. Schötzau and C. Schwab, Optimal a priori error estimates for the h p -version of the local discontinuous Galerkin method for convection–diffusion problems. Math. Comput. 71 (2002) 455–478. | DOI | MR | Zbl

M. Chen and W. Deng, Discretized fractional substantial calculus. ESAIM: M2AN 49 (2015) 373–394. | Numdam | MR

M. Chen and W. Deng, A second-order accurate numerical method for the space–time tempered fractional diffusion-wave equation. Appl. Math. Lett. 68 (2017) 87–93. | DOI | MR

M. Chen and W. Deng, High order algorithm for the time-tempered fractional Feynman-Kac equation. J. Sci. Comput. 76 (2018) 867–887. | DOI | MR

S. Chen, J. Shen and L.-L. Wang, Laguerre functions and their applications to tempered fractional differential equations on infinite intervals. J. Sci. Comput. 74 (2018) 1286–1313. | DOI | MR

P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). | MR | Zbl

B. Cockburn and K. Mustapha, A hybridizable discontinuous Galerkin method for fractional diffusion problems. Numer. Math. 130 (2015) 293–314. | DOI | MR | Zbl

B. Cockburn, G. Kanschat, I. Perugia and D. Schotzau, Superconvergence of the local discontinuous Galerkin method for elliptic problems on cartesian grids. SIAM J. Numer. Anal. 39 (2001) 264–285. | DOI | MR | Zbl

J.H. Cushman and T.R. Ginn, Fractional advection-dispersion equation: A classical mass balance with convolution-fickian flux. Water Resour. Res. 36 (2000) 3763–3766. | DOI

M. Dehghan and M. Abbaszadeh, A finite difference/finite element technique with error estimate for space fractional tempered diffusion-wave equation. Comput. Math. App. 75 (2018) 2903–2914. | MR

W. Deng and J.S. Hesthaven, Local discontinuous Galerkin methods for fractional diffusion equations. ESAIM: M2AN 47 (2013) 1845–1864. | DOI | Numdam | MR | Zbl

W. Deng and J.S. Hesthaven, Local discontinuous Galerkin methods for fractional ordinary differential equations. BIT 55 (2015) 967–985. | DOI | MR | Zbl

Z. Deng, L. Bengtsson and V.P. Singh, Parameter estimation for fractional dispersion model for rivers. Environ. Fluid Mech. 6 (2006) 451–475. | DOI

J. Deng, L. Zhao and Y. Wu, Fast predictor-corrector approach for the tempered fractional differential equations. Numer. Algorithms 74 (2017) 717–754. | DOI | MR

V.J. Ervin and J.P. Roop, Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22 (2006) 558–576. | DOI | MR | Zbl

R. Gorenflo, F. Mainardi, E. Scalas and M. Raberto, Fractional calculus and continuous-time finance III: the diffusion limit Mathematical Finance. Springer (2001) 171–180. | MR | Zbl

X. Guo, Y. Li and H. Wang, A high order finite difference method for tempered fractional diffusion equations with applications to the cgmy model. SIAM J. Sci. Comput. 40 (2018) A3322–A3343. | DOI | MR | Zbl

E. Hanert and C. Piret, A chebyshev pseudospectral method to solve the space-time tempered fractional diffusion equation. SIAM J. Sci. Comput. 36 (2014) A1797–A1812. | DOI | MR | Zbl

A. Hanyga, Wave propagation in media with singular memory. Math. Comput. Model. 34 (2001) 1399–1421. | DOI | MR | Zbl

J.-H. Jeon, H.M.-S. Monne, M. Javanainen and R. Metzler, Anomalous diffusion of phospholipids and cholesterols in a lipid bilayer and its origins. Phys. Rev. Lett. 109 (2012) 188103. | DOI

A.A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier Science Limited. 204 (2006). | MR | Zbl

C. Li and W. Deng, High order schemes for the tempered fractional diffusion equations. Adv. Comput. Math. 42 (2016) 543–572. | DOI | MR

R.L. Magin, Fractional Calculus in Bioengineering. Begell House Redding (2006).

F. Mainardi, M. Raberto, R. Gorenflo and E. Scalas, Fractional calculus and continuous-time finance ii: the waiting-time distribution. Phys. A: Stat. Mech. App. 287 (2000) 468–481. | DOI

O. Marom and E. Momoniat, A comparison of numerical solutions of fractional diffusion models in finance. Nonlinear Anal.: Real World App. 10 (2009) 3435–3442. | DOI | MR | Zbl

W. Mclean and K. Mustapha, Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51 (2013) 491–515. | DOI | MR | Zbl

M.M. Meerschaert and E. Scalas, Coupled continuous time random walks in finance. Phys. A: Stat. Mech. App. 370 (2006) 114–118. | DOI | MR

M.M. Meerschaert, Y. Zhang and B. Baeumer, Tempered anomalous diffusion in heterogeneous systems. Geophys. Res. Lett. 35 (2008). | DOI

R. Metzler and J. Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen. 37 (2004) R161. | DOI | MR | Zbl

K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, 1993. | MR | Zbl

K.K. Mustapha, B. Abdallah and K.M. Furati, A discontinuous Petrov-Galerkin method for time-fractinal diffusion equations. SIAM J. Numer. Anal. 52 (2014) 2512–2529. | DOI | MR

I. Podlubny, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. In Vol. 198 ofMathematics in Science and Engineering (1999). | MR | Zbl

B. Riviere, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Philadelphia, PA (2008). | DOI | MR | Zbl

F. Sabzikar, M.M. Meerschaert and J. Chen, Tempered fractional calculus. J. Comput. Phys. 293 (2015) 14–28. | DOI | MR | Zbl

E. Scalas, Five years of continuous-time random walks in econophysics. In: The Complex Networks of Economic Interactions, Springer (2006) 3–16. | DOI | MR | Zbl

R. Schumer, D.A. Benson, M.M. Meerschaert and S.W. Wheatcraft, Eulerian derivation of the fractional advection–dispersion equation. J. Contam. Hydrol. 48 (2001) 69–88. | DOI

X. Wang and W. Deng, Discontinuous Galerkin methods and their adaptivity for the tempered fractional (convection) diffusion equations. J. Comput. Appl. Math In Press (2019). | MR | Zbl

S. Wang, J. Yuan, W. Deng, Y. Wu, A hybridized discontinuous Galerkin method for 2d fractional convection–diffusion equations. J. Sci. Comput. 68 (2016) 826–847. | DOI | MR

Q. Xu, J.S. Hesthaven, Discontinuous Galerkin method for fractional convection–diffusion equations. SIAM J. Numer. Anal. 52 (2014) 405–423. | DOI | MR | Zbl

Y. Yu, W. Deng, Y. Wu and J. Wu, Third order difference schemes (without using points outside of the domain) for one sided space tempered fractional partial differential equations. Appl. Numer. Math. 112 (2017) 126–145. | DOI | MR | Zbl

M. Zayernouri, M. Ainsworth and G.E. Karniadakis, Tempered fractional sturm–liouville eigenproblems. SIAM J. Sci. Comput. 37 (2015) A1777–A1800. | DOI | MR

Y. Zhang and M.M. Meerschaert, Gaussian setting time for solute transport in fluvial systems. Water Resour. Res. 47 (2011). | DOI

Y. Zhang, M.M. Meerschaert and A.I. Packman, Linking fluvial bed sediment transport across scales. Geophys. Res. Lett. 39 (2012). | DOI

L. Zhao, W. Deng, J.S. Hesthaven, Spectral methods for tempered fractional differential equations. Preprint arXiv:1603.06511 (2016).

Cité par Sources :