This paper discusses the properties and the numerical discretizations of the fractional substantial integral
DOI : 10.1051/m2an/2014037
Mots-clés : Fractional substantial calculus, fractional linear multistep methods, fourier transform, stability and convergence
@article{M2AN_2015__49_2_373_0, author = {Chen, Minghua and Deng, Weihua}, title = {Discretized fractional substantial calculus}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {373--394}, publisher = {EDP-Sciences}, volume = {49}, number = {2}, year = {2015}, doi = {10.1051/m2an/2014037}, zbl = {1314.26007}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2014037/} }
TY - JOUR AU - Chen, Minghua AU - Deng, Weihua TI - Discretized fractional substantial calculus JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2015 SP - 373 EP - 394 VL - 49 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2014037/ DO - 10.1051/m2an/2014037 LA - en ID - M2AN_2015__49_2_373_0 ER -
%0 Journal Article %A Chen, Minghua %A Deng, Weihua %T Discretized fractional substantial calculus %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2015 %P 373-394 %V 49 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2014037/ %R 10.1051/m2an/2014037 %G en %F M2AN_2015__49_2_373_0
Chen, Minghua; Deng, Weihua. Discretized fractional substantial calculus. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 2, pp. 373-394. doi : 10.1051/m2an/2014037. http://www.numdam.org/articles/10.1051/m2an/2014037/
Fractional Kramers equation. J. Phys. Chem. B 104 (2000) 3866–3874. | DOI
and ,Fractional Feynman-Kac equation for weak ergodicity breaking. Phys. Rev. E 84 (2011) 061104. | DOI
and ,On distributions of functionals of anomalous diffusion paths. J. Stat. Phys. 141 (2010) 1071-1092. | DOI | Zbl
, and ,Fourth order difference approximations for space Riemann–Liouville derivatives based on weighted and shifted Lubich difference operators. Commun. Comput. Phys. 16 (2014) 516–540. | DOI | Zbl
and ,Fourth order accurate scheme for the space fractional diffusion equations. SIAM J. Numer. Anal. 52 (2014) 1418-1438. | DOI | Zbl
and ,W.H. Deng, M.H. Chen and E. Barkai, Numerical algorithms for the forward and backward fractional Feynman-Kac equations. J. Sci. Comput. (2014). DOI: 10.1007/s10915-014-9873-6.
G.M. Fikhtengoltz, Course of Differential and Integral Calculus, vol. 2. Nauka, Moscow (1969).
Anomalous diffusion of inertial, weakly damped particles. Phys. Rev. Lett. 96 (2006) 230601. | DOI
, , and ,R. Gorenflo and F. Mainardi, Fractional calculus: intergtal and differential equations of fractional order. Fractals and Fractional Calculus in Continuum Mechanics, edited by A. Carpinteri and F. Mainardi. Springer Verlag, Wien and New York (1997). | Zbl
P. Henrici, Discrete Variable Methods in Ordinary Differential Equations. John Wiley, New York (1962). | Zbl
Discretized fractional calculus. SIAM J. Math. Anal. 17 (1986) 704–719. | DOI | Zbl
,The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339 (2000) 1–77. | DOI | Zbl
and ,Fractional diffusion, waiting-time distributions, and Cattaneo-type equations. Phys. Rev. E 57 (1998) 6409. | DOI
and ,Superdiffusive Klein–Kramers equation: Normal and anomalous time evolution and Lévy walk moments. Europhys. Lett. 58 (2002) 482–488. | DOI
and ,K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley-Interscience Publication, USA (1993). | Zbl
K.B. Oldham and J. Spanier, The Fractional Calculus. Academic Press, New York (1974). | Zbl
I. Podlubny, Fractional Differential Equations. Academic Press, New York (1999). | Zbl
Towards deterministic equations for Lévy walks: The fractional material derivative. Phys. Rev. E 67 (2003) 010101(R). | DOI
and ,W.Y. Tian, H. Zhou and W.H. Deng, A class of second order difference approximations for solving space fractional diffusion equations. To appear in Math. Comput. (2015). Doi:10.1090/S0025-5718-2015-02917-2.
Fractional Feynman-Kac Equation for Non-Brownian Functionals. Phys. Rev. Lett. 103 (2009) 190201. | DOI
, and ,Cité par Sources :