We study convergence of a finite volume scheme for the compressible (barotropic) Navier–Stokes system. First we prove the energy stability and consistency of the scheme and show that the numerical solutions generate a dissipative measure-valued solution of the system. Then by the dissipative measure-valued-strong uniqueness principle, we conclude the convergence of the numerical solution to the strong solution as long as the latter exists. Numerical experiments for standard benchmark tests support our theoretical results.
Mots-clés : Compressible Navier–Stokes system, convergence, dissipative measure valued solution, finite volume method
@article{M2AN_2019__53_6_1957_0, author = {Feireisl, Eduard and Luk\'a\v{c}ov\'a-Medvid{\textquoteright}ov\'a, M\'aria and Mizerov\'a, Hana and She, Bangwei}, title = {Convergence of a finite volume scheme for the compressible {Navier{\textendash}Stokes} system}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1957--1979}, publisher = {EDP-Sciences}, volume = {53}, number = {6}, year = {2019}, doi = {10.1051/m2an/2019043}, mrnumber = {4031688}, zbl = {1447.35243}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2019043/} }
TY - JOUR AU - Feireisl, Eduard AU - Lukáčová-Medvid’ová, Mária AU - Mizerová, Hana AU - She, Bangwei TI - Convergence of a finite volume scheme for the compressible Navier–Stokes system JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2019 SP - 1957 EP - 1979 VL - 53 IS - 6 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2019043/ DO - 10.1051/m2an/2019043 LA - en ID - M2AN_2019__53_6_1957_0 ER -
%0 Journal Article %A Feireisl, Eduard %A Lukáčová-Medvid’ová, Mária %A Mizerová, Hana %A She, Bangwei %T Convergence of a finite volume scheme for the compressible Navier–Stokes system %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2019 %P 1957-1979 %V 53 %N 6 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2019043/ %R 10.1051/m2an/2019043 %G en %F M2AN_2019__53_6_1957_0
Feireisl, Eduard; Lukáčová-Medvid’ová, Mária; Mizerová, Hana; She, Bangwei. Convergence of a finite volume scheme for the compressible Navier–Stokes system. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 6, pp. 1957-1979. doi : 10.1051/m2an/2019043. http://www.numdam.org/articles/10.1051/m2an/2019043/
An –stable approximation of the Navier-Stokes convection operator for low–order non-conforming finite elements. Int. J. Numer. Meth. Fluids 66 (2011) 555–580. | DOI | MR | Zbl
, , and ,A version of the fundamental theorem for Young measures . In, Vol. 344 of Lecture Notes in Physics (1989) 207–215. | DOI | MR | Zbl
,Numerical methods for the unsteady compressible Navier-Stokes equations. Habilitation thesis, Kassel (2012).
,The finite element method for elliptic problems. Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (2002). | MR | Zbl
,All speed scheme for the low Mach number limit of the isentropic Euler equations. Commun. Comput. Phys. 10 (2011) 1–31. | DOI | MR | Zbl
and ,Discontinuous Galerkin method. In Vol. 48 of Springer Series in Computational Mathematics Springer (2015). | DOI | MR
and ,Mathematical methods in fluid dynamics. In Vol. 67 of Pitman Monographs and Surveys in Pure and Applied Mathematics. Longman Scientific & Technical, Harlow (1993). | MR | Zbl
,Combined finite element-finite volume solution of compressible flow. J. Comput. Appl. Math. 63 (1995) 179–199. | DOI | MR | Zbl
, and ,The BR1 Scheme is stable for the compressible Navier-Stokes equations. J. Sci. Comput. 77 (2018) 154–200. | DOI | MR | Zbl
, , and ,Finite volume methods. In Vol. 7 of Handbook of Nmerical Analysis (2000) 713–1018. | DOI | MR | Zbl
, and ,Dissipative measure-valued solutions to the compressible Navier-Stokes system. Calc. Var. Partial Diff. Equ. 55 (2016) 141. | DOI | MR | Zbl
, , and ,A convergent numerical method for the Navier–Stokes–Fourier system. IMA J. Numer. Anal. 36 (2016) 1477–1535. | DOI | MR | Zbl
, and ,Convergence of a mixed finite element–finite volume scheme for the isentropic Navier-Stokes system via the dissipative measure–valued solutions. Found. Comput. Math. 18 (2018) 703–730. | DOI | MR | Zbl
, ,A finite volume scheme for the Euler system inspired by the two velocities approach.Preprint arXiv:1805.05072 (2018). | MR
, and ,Convergence of finite volume schemes for the Euler equations via dissipative measure–valued solutions. Preprint arXiv:1803.08401 (2018). | MR
, and ,Singular limits in thermodynamics of viscous fluids, 2nd edition. Birkhäuser–-Basel (2017). | MR
and ,Numerical solution of transonic flows through 2D and 3D turbine cascades. Comput. Visual. Sci. 4 (2002) 183–189. | DOI | MR | Zbl
and ,An unconditionally stable pressure correction scheme for the compressible barotropic Navier-Stokes equations. ESAIM: M2AN 42 (2008) 303–331. | DOI | Numdam | MR | Zbl
, , and ,Convergence of the MAC scheme for the compressible stationary Navier-Stokes equations. Math. Comp. 87 (2018) 1127–1163. | DOI | MR | Zbl
, , and ,Error estimates for the implicit MAC scheme for the compressible Navier-Stokes equations. Numer. Math. 141 (2019) 495–567. | DOI | MR | Zbl
, and ,An unconditionally stable staggered pressure correction scheme for the compressible Navier-Stokes equations. SMAI J. Comput. Math. 2 (2016) 51–97. | DOI | MR | Zbl
, , and ,An all–speed asymptotic–preserving method for the isentropic Euler and Navier-Stokes equations. Commun. Comput. Phys. 12 (2012) 955–980. | DOI | MR | Zbl
, and ,Stability and consistency of a finite difference scheme for compressible viscous isentropic flow in multi-dimension. J. Numer. Math. 26 (2018) 111–140. | DOI | MR | Zbl
and ,Semi-implicit staggered discontinuous Galerkin schemes for axially symmetric viscous compressible flows in elastic tubes. Comput. Fluids 167 (2018) 166–179. | DOI | MR | Zbl
and ,An error estimate for a numerical scheme for the compressible Navier-Stokes system. Kragujevac J. Math. 30 (2007) 263–275. | MR | Zbl
,A convergent FEM-DG method for the compressible Navier-Stokes equations. Numer. Math. 125 (2013) 441–510. | DOI | MR | Zbl
,Numerical simulation of 3D backward facing step flows at various Reynolds numbers. EPJ Web Conf. 92 (2015) 02049. | DOI
, and ,Finite-volume schemes for compressible flows. Surv. Math. Ind. 8 (1998) 1–36. | MR | Zbl
and ,A weakly asymptotic preserving low Mach number scheme for the Euler equations of gas dynamics. SIAM J. Sci. Comput. 36 (2014) 989–1024. | DOI | MR | Zbl
, , , and ,Parametrized Measures and Variational Principles, Birkhäuser, Basel (1997). | DOI | MR | Zbl
,Unsteady compressible flows in channel with varying walls, J. Phys.: Conf. Ser. 490 (2014) 012066.
, and ,A Beale-Kato-Majda blow–up criterion for the 3-D compressible Navier-Stokes equations, J. Math. Pures. Appl. 95 (2011) 36–47. | DOI | MR | Zbl
, and ,A new theoretically motivated higher order upwind scheme on unstructured grids of simplices. Adv. Comput. Math. 7 (1997) 303–335. | DOI | MR | Zbl
,Higher order upwind schemes on unstructured grids for the nonstationary compressible Navier-Stokes equations in complex timedependent geometries in 3D, Flow Simulation With High-performance Computers, II, Notes on Numerical Fluid Mechanics NNFM, edited by , Vieweg+Teubner Verlag (1996) 369–384. | MR | Zbl
, ,The Finite Element Method for Fluid Dynamics. Elsevier (2014). | MR | Zbl
, and ,Cité par Sources :