Convergence of a finite volume scheme for the compressible Navier–Stokes system
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 6, pp. 1957-1979.

We study convergence of a finite volume scheme for the compressible (barotropic) Navier–Stokes system. First we prove the energy stability and consistency of the scheme and show that the numerical solutions generate a dissipative measure-valued solution of the system. Then by the dissipative measure-valued-strong uniqueness principle, we conclude the convergence of the numerical solution to the strong solution as long as the latter exists. Numerical experiments for standard benchmark tests support our theoretical results.

DOI : 10.1051/m2an/2019043
Classification : 35Q30, 65N12, 76M12, 76NXX
Mots-clés : Compressible Navier–Stokes system, convergence, dissipative measure valued solution, finite volume method
Feireisl, Eduard 1 ; Lukáčová-Medvid’ová, Mária 1 ; Mizerová, Hana 1 ; She, Bangwei 1

1
@article{M2AN_2019__53_6_1957_0,
     author = {Feireisl, Eduard and Luk\'a\v{c}ov\'a-Medvid{\textquoteright}ov\'a, M\'aria and Mizerov\'a, Hana and She, Bangwei},
     title = {Convergence of a finite volume scheme for the compressible {Navier{\textendash}Stokes} system},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1957--1979},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {6},
     year = {2019},
     doi = {10.1051/m2an/2019043},
     mrnumber = {4031688},
     zbl = {1447.35243},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019043/}
}
TY  - JOUR
AU  - Feireisl, Eduard
AU  - Lukáčová-Medvid’ová, Mária
AU  - Mizerová, Hana
AU  - She, Bangwei
TI  - Convergence of a finite volume scheme for the compressible Navier–Stokes system
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 1957
EP  - 1979
VL  - 53
IS  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019043/
DO  - 10.1051/m2an/2019043
LA  - en
ID  - M2AN_2019__53_6_1957_0
ER  - 
%0 Journal Article
%A Feireisl, Eduard
%A Lukáčová-Medvid’ová, Mária
%A Mizerová, Hana
%A She, Bangwei
%T Convergence of a finite volume scheme for the compressible Navier–Stokes system
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 1957-1979
%V 53
%N 6
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019043/
%R 10.1051/m2an/2019043
%G en
%F M2AN_2019__53_6_1957_0
Feireisl, Eduard; Lukáčová-Medvid’ová, Mária; Mizerová, Hana; She, Bangwei. Convergence of a finite volume scheme for the compressible Navier–Stokes system. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 6, pp. 1957-1979. doi : 10.1051/m2an/2019043. http://www.numdam.org/articles/10.1051/m2an/2019043/

G. Ansanay-Alex, F. Babik, J.C. Latché and D. Vola, An L 2 –stable approximation of the Navier-Stokes convection operator for low–order non-conforming finite elements. Int. J. Numer. Meth. Fluids 66 (2011) 555–580. | DOI | MR | Zbl

J.M. Ball, A version of the fundamental theorem for Young measures . In, Vol. 344 of Lecture Notes in Physics (1989) 207–215. | DOI | MR | Zbl

P. Birken, Numerical methods for the unsteady compressible Navier-Stokes equations. Habilitation thesis, Kassel (2012).

P.G. Ciarlet, The finite element method for elliptic problems. Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (2002). | MR | Zbl

P. Degond and M. Tang, All speed scheme for the low Mach number limit of the isentropic Euler equations. Commun. Comput. Phys. 10 (2011) 1–31. | DOI | MR | Zbl

V. Dolejší and M. Feistauer, Discontinuous Galerkin method. In Vol. 48 of Springer Series in Computational Mathematics Springer (2015). | DOI | MR

M. Feistauer, Mathematical methods in fluid dynamics. In Vol. 67 of Pitman Monographs and Surveys in Pure and Applied Mathematics. Longman Scientific & Technical, Harlow (1993). | MR | Zbl

M. Feistauer, J. Felcman and M. Lukáčová-Medvid’Ová, Combined finite element-finite volume solution of compressible flow. J. Comput. Appl. Math. 63 (1995) 179–199. | DOI | MR | Zbl

G.J. Gassner, A.R. Winters, F.J. Hindenlang and D.A. Kopriva, The BR1 Scheme is stable for the compressible Navier-Stokes equations. J. Sci. Comput. 77 (2018) 154–200. | DOI | MR | Zbl

R. Eymard, T. Gallouët and R. Herbin, Finite volume methods. In Vol. 7 of Handbook of Nmerical Analysis (2000) 713–1018. | DOI | MR | Zbl

E. Feireisl, P. Gwiazda, A. Świerczewska-Gwiazda and E. Wiedemann, Dissipative measure-valued solutions to the compressible Navier-Stokes system. Calc. Var. Partial Diff. Equ. 55 (2016) 141. | DOI | MR | Zbl

E. Feireisl, T. Karper and A. Novotný, A convergent numerical method for the Navier–Stokes–Fourier system. IMA J. Numer. Anal. 36 (2016) 1477–1535. | DOI | MR | Zbl

E. Feireisl, M. Lukáčová-Medvid’Ová, Convergence of a mixed finite element–finite volume scheme for the isentropic Navier-Stokes system via the dissipative measure–valued solutions. Found. Comput. Math. 18 (2018) 703–730. | DOI | MR | Zbl

E. Feireisl, M. Lukáčová-Medvid’Ová and H. Mizerová, A finite volume scheme for the Euler system inspired by the two velocities approach.Preprint arXiv:1805.05072 (2018). | MR

E. Feireisl, M. Lukáčová-Medvid’Ová and H. Mizerová, Convergence of finite volume schemes for the Euler equations via dissipative measure–valued solutions. Preprint arXiv:1803.08401 (2018). | MR

E. Feireisl and A. Novotný, Singular limits in thermodynamics of viscous fluids, 2nd edition. Birkhäuser–-Basel (2017). | MR

J. Fürst and K. Kozel, Numerical solution of transonic flows through 2D and 3D turbine cascades. Comput. Visual. Sci. 4 (2002) 183–189. | DOI | MR | Zbl

T. Gallouët, L. Gastaldo, R. Herbin and J.C. Latché, An unconditionally stable pressure correction scheme for the compressible barotropic Navier-Stokes equations. ESAIM: M2AN 42 (2008) 303–331. | DOI | Numdam | MR | Zbl

T. Gallouët, R. Herbin, J.-C. Latché and D. Maltese, Convergence of the MAC scheme for the compressible stationary Navier-Stokes equations. Math. Comp. 87 (2018) 1127–1163. | DOI | MR | Zbl

T. Gallouët, D. Maltese and A. Novotný, Error estimates for the implicit MAC scheme for the compressible Navier-Stokes equations. Numer. Math. 141 (2019) 495–567. | DOI | MR | Zbl

D. Grapsas, R. Herbin, W. Kheriji and J.-C. Latché, An unconditionally stable staggered pressure correction scheme for the compressible Navier-Stokes equations. SMAI J. Comput. Math. 2 (2016) 51–97. | DOI | MR | Zbl

J. Haack, S. Jin and J.G. Liu, An all–speed asymptotic–preserving method for the isentropic Euler and Navier-Stokes equations. Commun. Comput. Phys. 12 (2012) 955–980. | DOI | MR | Zbl

R. Hošek and B. She, Stability and consistency of a finite difference scheme for compressible viscous isentropic flow in multi-dimension. J. Numer. Math. 26 (2018) 111–140. | DOI | MR | Zbl

M. Ioriatti and M. Dumbser, Semi-implicit staggered discontinuous Galerkin schemes for axially symmetric viscous compressible flows in elastic tubes. Comput. Fluids 167 (2018) 166–179. | DOI | MR | Zbl

V. Jovanovič, An error estimate for a numerical scheme for the compressible Navier-Stokes system. Kragujevac J. Math. 30 (2007) 263–275. | MR | Zbl

T. Karper, A convergent FEM-DG method for the compressible Navier-Stokes equations. Numer. Math. 125 (2013) 441–510. | DOI | MR | Zbl

P. Louda, J. Příhoda and K. Kozel, Numerical simulation of 3D backward facing step flows at various Reynolds numbers. EPJ Web Conf. 92 (2015) 02049. | DOI

A. Meister and T. Sonar, Finite-volume schemes for compressible flows. Surv. Math. Ind. 8 (1998) 1–36. | MR | Zbl

S. Noelle, G. Bispen, K.R. Arun, M. Lukáčová-Medvid’Ová and Munz C.-D., A weakly asymptotic preserving low Mach number scheme for the Euler equations of gas dynamics. SIAM J. Sci. Comput. 36 (2014) 989–1024. | DOI | MR | Zbl

P. Pedregal, Parametrized Measures and Variational Principles, Birkhäuser, Basel (1997). | DOI | MR | Zbl

P. Pořzková, K. Kozel and J. Horáček, Unsteady compressible flows in channel with varying walls, J. Phys.: Conf. Ser. 490 (2014) 012066.

Y. Sun, C. Wang and Z. Zhang, A Beale-Kato-Majda blow–up criterion for the 3-D compressible Navier-Stokes equations, J. Math. Pures. Appl. 95 (2011) 36–47. | DOI | MR | Zbl

M. Wierse, A new theoretically motivated higher order upwind scheme on unstructured grids of simplices. Adv. Comput. Math. 7 (1997) 303–335. | DOI | MR | Zbl

M. Wierse, D. Kröner, Higher order upwind schemes on unstructured grids for the nonstationary compressible Navier-Stokes equations in complex timedependent geometries in 3D, Flow Simulation With High-performance Computers, II, Notes on Numerical Fluid Mechanics NNFM, edited by E. H. Hirschel, Vieweg+Teubner Verlag (1996) 369–384. | MR | Zbl

O.C. Zienkiewicz, R.L. Taylor and P. Nithiarasu, The Finite Element Method for Fluid Dynamics. Elsevier (2014). | MR | Zbl

Cité par Sources :