We present in this paper a pressure correction scheme for the barotropic compressible Navier-Stokes equations, which enjoys an unconditional stability property, in the sense that the energy and maximum-principle-based a priori estimates of the continuous problem also hold for the discrete solution. The stability proof is based on two independent results for general finite volume discretizations, both interesting for their own sake: the -stability of the discrete advection operator provided it is consistent, in some sense, with the mass balance and the estimate of the pressure work by means of the time derivative of the elastic potential. The proposed scheme is built in order to match these theoretical results, and combines a fractional-step time discretization of pressure-correction type with a space discretization associating low order non-conforming mixed finite elements and finite volumes. Numerical tests with an exact smooth solution show the convergence of the scheme.
Mots-clés : compressible Navier-Stokes equations, pressure correction schemes
@article{M2AN_2008__42_2_303_0, author = {Gallou\"et, Thierry and Gastaldo, Laura and Herbin, Raphaele and Latch\'e, Jean-Claude}, title = {An unconditionally stable pressure correction scheme for the compressible barotropic {Navier-Stokes} equations}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {303--331}, publisher = {EDP-Sciences}, volume = {42}, number = {2}, year = {2008}, doi = {10.1051/m2an:2008005}, mrnumber = {2405150}, zbl = {1132.35433}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2008005/} }
TY - JOUR AU - Gallouët, Thierry AU - Gastaldo, Laura AU - Herbin, Raphaele AU - Latché, Jean-Claude TI - An unconditionally stable pressure correction scheme for the compressible barotropic Navier-Stokes equations JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2008 SP - 303 EP - 331 VL - 42 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2008005/ DO - 10.1051/m2an:2008005 LA - en ID - M2AN_2008__42_2_303_0 ER -
%0 Journal Article %A Gallouët, Thierry %A Gastaldo, Laura %A Herbin, Raphaele %A Latché, Jean-Claude %T An unconditionally stable pressure correction scheme for the compressible barotropic Navier-Stokes equations %J ESAIM: Modélisation mathématique et analyse numérique %D 2008 %P 303-331 %V 42 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2008005/ %R 10.1051/m2an:2008005 %G en %F M2AN_2008__42_2_303_0
Gallouët, Thierry; Gastaldo, Laura; Herbin, Raphaele; Latché, Jean-Claude. An unconditionally stable pressure correction scheme for the compressible barotropic Navier-Stokes equations. ESAIM: Modélisation mathématique et analyse numérique, Tome 42 (2008) no. 2, pp. 303-331. doi : 10.1051/m2an:2008005. http://www.numdam.org/articles/10.1051/m2an:2008005/
[1] Analysis of a combined barycentric finite volume-nonconforming finite element method for nonlinear convection-diffusion problems. Appl. Math. 4 (1998) 263-310. | MR | Zbl
, , and ,[2] A unified method for computing incompressible and compressible flows in boundary-fitted coordinates. J. Comp. Phys. 141 (1998) 153-173. | MR | Zbl
and ,[3] Compressible viscous flow calculations using compatible finite element approximations. Internat. J. Numer. Methods Fluids 11 (1990) 719-749. | MR | Zbl
, , , and ,[4] Pressure method for the numerical solution of transient, compressible fluid flows. Internat. J. Numer. Methods Fluids 4 (1984) 1001-1012. | Zbl
and ,[5] Numerical solution of the Navier-Stokes equations. Math. Comp. 22 (1968) 745-762. | MR | Zbl
,[6] Finite elements methods - Basic error estimates for elliptic problems, in Handbook of Numerical Analysis II, P. Ciarlet and J.-L. Lions Eds., North Holland (1991) 17-351. | MR | Zbl
,[7] A projection method for low speed flows. J. Comp. Phys. 149 (1999) 245-269. | MR | Zbl
and ,[8] Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. RAIRO Anal. Numér. 7 (1973) 33-75. | Numdam | MR | Zbl
and ,[9] Nonlinear Functional Analysis. Springer, New-York (1980). | MR | Zbl
,[10] A collocated finite volume method for predicting flows at all speeds. Internat. J. Numer. Methods Fluids 16 (1993) 1029-1050. | Zbl
, and ,[11] Error estimates for barycentric finite volumes combined with nonconforming finite elements applied to nonlinear convection-diffusion problems. Appl. Math. 47 (2002) 301-340. | MR | Zbl
, , and ,[12] Theory and practice of finite elements, Applied Mathematical Sciences 159. Springer (2004). | MR | Zbl
and ,[13] Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal. 18 (1998) 563-594. | MR | Zbl
, , and ,[14] Finite volume methods, in Handbook of Numerical Analysis VII, P. Ciarlet and J.-L. Lions Eds., North Holland (2000) 713-1020. | MR | Zbl
, and ,[15] Dynamics of viscous compressible flows, Oxford Lecture Series in Mathematics and its Applications 6. Oxford University Press (2004). | MR | Zbl
,[16] Mathematical and computational methods for compressible flows, Oxford Science Publications. Clarendon Press (2003). | MR | Zbl
, and ,[17] On finite element approximation and stabilization methods for compressible viscous flows. Internat. J. Numer. Methods Fluids 17 (1993) 477-499. | MR | Zbl
, and ,[18] A projection FEM for variable density incompressible flows. J. Comp. Phys. 165 (2000) 167-188. | MR | Zbl
and ,[19] An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Engrg. 195 (2006) 6011-6045. | MR | Zbl
, and ,[20] Numerical calculation of almost incompressible flow. J. Comp. Phys. 3 (1968) 80-93. | Zbl
and ,[21] A numerical fluid dynamics calculation method for all flow speeds. J. Comp. Phys. 8 (1971) 197-213. | Zbl
and ,[22] Solution of the implicitly discretised fluid flow equations by operator splitting. J. Comp. Phys. 62 (1985) 40-65. | MR | Zbl
,[23] Pressure-based compressible calculation method utilizing total variation diminishing schemes. AIAA J. 36 (1998) 1652-1657.
and ,[24] The computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme. J. Comp. Phys. 62 (1986) 66-82. | MR | Zbl
, and ,[25] Pressure based calculation procedure for viscous flows at all speeds in arbitrary configurations. AIAA J. 27 (1989) 1167-1174.
and ,[26] Characteristic-based pressure correction at all speeds. AIAA J. 34 (1996) 272-280. | Zbl
and ,[27] How to preserve the mass fractions positivity when computing compressible multi-component flows. J. Comp. Phys. 95 (1991) 59-84. | MR | Zbl
,[28] Mathematical topics in fluid mechanics, Volume 2: Compressible models, Oxford Lecture Series in Mathematics and its Applications 10, Oxford University Press (1998). | MR | Zbl
,[29] Navier-Stokes equations: Theory and approximation, in Handbook of Numerical Analysis VI, P. Ciarlet and J.-L. Lions Eds., North Holland (1998). | MR | Zbl
and ,[30] A high-resolution pressure-based algorithm for fluid flow at all speeds. J. Comp. Phys. 168 (2001) 101-133. | MR | Zbl
and ,[31] The Characteristic-Based Split (CBS) scheme - a unified approach to fluid dynamics. Internat. J. Numer. Methods Engrg. 66 (2006) 1514-1546. | MR | Zbl
, and ,[32] Introduction to the mathematical theory of compressible flow, Oxford Lecture Series in Mathematics and its Applications 27. Oxford University Press (2004). | MR | Zbl
and ,[33] A barely implicit correction for flux-corrected transport. J. Comp. Phys. 71 (1987) 1-20. | Zbl
, , and ,[34] A pressure-based algorithm for high-speed turbomachinery flows. Internat. J. Numer. Methods Fluids 25 (1997) 63-80. | Zbl
and ,[35] Simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differential Equations 8 (1992) 97-111. | MR | Zbl
and ,[36] Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires II. Arch. Rat. Mech. Anal. 33 (1969) 377-385. | MR | Zbl
,[37] Stability analysis of segregated solution methods for compressible flow. Appl. Numer. Math. 38 (2001) 257-274. | MR | Zbl
, and ,[38] A conservative pressure-correction method for flow at all speeds. Comput. Fluids 32 (2003) 1113-1132. | MR | Zbl
, and ,[39] The segregated approach to predicting viscous compressible fluid flows. Trans. ASME 109 (1987) 268-277.
, and ,[40] A superlinearly convergent Mach-uniform finite volume method for the Euler equations on staggered unstructured grids. J. Comput. Phys. 217 (2006) 277-294. | MR | Zbl
, and ,[41] A semi-implicit method for resolution of acoustic waves in low Mach number flows. J. Comp. Phys. 181 (2002) 545-563. | MR
, and ,[42] A Mach-uniform unstructured staggered grid method. Internat. J. Numer. Methods Fluids 40 (2002) 1209-1235. | MR | Zbl
, and ,[43] Principles of computational fluid dynamics, Springer Series in Computational Mathematics 29. Springer (2001). | MR | Zbl
,[44] A general algorithm for compressible and incompressible flow - Part I. The split characteristic-based scheme. Internat. J. Numer. Methods Fluids 20 (1995) 869-885. | MR | Zbl
and ,Cité par Sources :