Convergence of exponential Lawson-multistep methods for the MCTDHF equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 6, pp. 2109-2119.

We consider exponential Lawson multistep methods for the time integration of the equations of motion associated with the multi-configuration time-dependent Hartree–Fock (MCTDHF) approximation for high-dimensional quantum dynamics. These provide high-order approximations at a minimum of evaluations of the computationally expensive nonlocal potential terms, and have been found to enable stable long-time integration. In this work, we prove convergence of the numerical approximation on finite time intervals under minimal regularity assumptions on the exact solution. A numerical illustration shows adaptive time propagation based on our methods.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2019033
Classification : 65L05, 65L06, 65M12, 65M15, 65M20, 81-08
Mots-clés : Multi-configuration time-dependent Hartree–Fock method, exponential Lawson multistep methods, stability, local error, convergence
Koch, Othmar 1

1
@article{M2AN_2019__53_6_2109_0,
     author = {Koch, Othmar},
     title = {Convergence of exponential {Lawson-multistep} methods for the {MCTDHF} equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2109--2119},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {6},
     year = {2019},
     doi = {10.1051/m2an/2019033},
     mrnumber = {4041518},
     zbl = {1431.65148},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019033/}
}
TY  - JOUR
AU  - Koch, Othmar
TI  - Convergence of exponential Lawson-multistep methods for the MCTDHF equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 2109
EP  - 2119
VL  - 53
IS  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019033/
DO  - 10.1051/m2an/2019033
LA  - en
ID  - M2AN_2019__53_6_2109_0
ER  - 
%0 Journal Article
%A Koch, Othmar
%T Convergence of exponential Lawson-multistep methods for the MCTDHF equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 2109-2119
%V 53
%N 6
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019033/
%R 10.1051/m2an/2019033
%G en
%F M2AN_2019__53_6_2109_0
Koch, Othmar. Convergence of exponential Lawson-multistep methods for the MCTDHF equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 6, pp. 2109-2119. doi : 10.1051/m2an/2019033. http://www.numdam.org/articles/10.1051/m2an/2019033/

O.E. Alon, A.I. Streltsov and L.S. Cederbaum, Multiconfigurational time-dependent Hartree method for bosons: many-body dynamics of bosonic systems. Phys. Rev. A 77 (2008) 033613. | DOI

X. Antoine, W. Bao and C. Besse, Computational methods for the dynamics of the nonlinear Schrödinger/Gross–Pitaevskii equations. Comput. Phys. Commun. 184 (2013) 2621–2633. | DOI | MR | Zbl

W. Auzinger, I. Brezinova, H. Hofstätter, K. Ishikawa, O. Koch and T. Sato, Efficient adaptive exponential time integrators for nonlinear Schrödinger equations with nonlocal potential. In preparation.

W. Auzinger, H. Hofstätter and O. Koch, Coefficients of various splitting methodsAvailable at: http://www.asc.tuwien.ac.at/at/~winfried/splitting/ (2017).

S. Balac and A. Fernandez, SPIP: a computer program imlementing the interaction picture method for the simulation of light-wave propagation in optical fibers. Comput. Phys. Commun. 199 (2016) 139–152. | DOI | MR | Zbl

S. Balac, A. Fernandez, F. Mahé, F. Méhats and R. Texier-Picard, The interaction picture method for solving the generalized nonlinear Schrödinger equation in optics. ESAIM: M2AN 50 (2016) 945–964. | DOI | Numdam | MR | Zbl

S. Balac and F. Mahé, Embedded Runge-Kutta scheme for step-size control in the interaction picture method. Comput. Phys. Commun. 184 (2013) 1211–1219. | DOI | MR | Zbl

W. Bao, Q. Tang and Z. Xu, Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrödinger equation. J. Comput. Phys. 235 (2013) 423–445. | DOI | MR | Zbl

M.H. Beck, A. Jäckle, G.A. Worth and H.-D. Meyer, The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets. Phys. Rep. 324 (2000) 1–105. | DOI

M.H. Beck and H.-D. Meyer, An efficient and robust integration scheme for the equations of the multiconfiguration time-dependent Hartree (MCTDH) method. Z. Phys. D 42 (1997) 113–129. | DOI

C. Besse, G. Dujardin and I. Lacroix-Violet, High order exponential integrators for nonlinear Schrödinger equations with application to rotating Bose-Einstein condensates. 86Available from https://hal.archives-ouvertes.fr/hal-01170888v2 (2015). | MR

I. Březinová, A.U.J. Lode, A.I. Streltsov, O.E. Alon, L.S. Cederbaum and J. Burgdörfer, Wave chaos as signature for depletion of Bose-Einstein condensates. Phys. Rev. A 86 (2012) 013630. | DOI

J. Caillat, J. Zanghellini, M. Kitzler, W. Kreuzer, O. Koch and A. Scrinzi, Correlated multielectron systems in strong laser pulses – an MCTDHF approach, Phys. Rev. A 71 (2005) 012712. | DOI

B. Cano and A. González-Pachón, Projected explicit Lawson methods for the integration of Schrödinger equation. Numer. Methods Partial Differ. Eq. 31 (2015) 78–104. | DOI | MR | Zbl

B. Caradoc-Davies, Vortex dynamics in Bose-Einstein condensate, Ph.D. thesis, University of Otago, New Zealand (2000).

Q. Chang, E. Jia and W. Sun, Difference schemes for solving the generalized nonlinear Schrödinger equation. J. Comput. Phys. 148 (1999) 397–415. | DOI | MR | Zbl

M. Davis, Dynamics in Bose-Einstein condensates. Ph.D. thesis, University of Oxford, , UK (2001).

P.A.M. Dirac, Note on exchange phenomena in the Thomas atom. Proc. Cambridge Phil. Soc. 26 (1930) 376–385. | DOI | JFM

J. Dormand and P. Prince, A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6 (1980) 19–26. | DOI | MR | Zbl

J. Feist, S. Nagele, R. Pazourek, E. Persson, B.I. Schneider, L.A. Collins and J. Burgdörfer, Nonsequential two-photon double ionization of helium. Phys. Rev. A 77 (2008) 043420. | DOI

J. Frenkel, Wave Mechanics, Advanced General Theory. Clarendon Press, Oxford (1934). | Zbl

E. Hairer, S.P. Nørsett and G. Wanner, Solving Ordinary Differential Equations I. Springer-Verlag, Berlin–Heidelberg–New York (1987). | MR | Zbl

D.J. Haxton, K.V. Lawler and C.W. Mccurdy, Multiconfiguration time-dependent Hartree-Fock treatment of electronic and nuclear dynamics in diatomic molecules. Phys. Rev. A 83 (2011) 063416. | DOI

P. Henning and J. Wärnegård, Numerical comparison of mass-conservative schemes for the Gross-Pitaevskii equation Preprint https://arxiv.org/abs/1804.10547arXiv (2018). | MR

M. Hochbruck and A. Ostermann, On the convergence of Lawson methods for semilinear stiff problems. CRC Preprint 2017/9, KIT Karlsruhe Institute of Technology. Preprint available from https://www.waves.kit.edu/downloads/CRC1173_Preprint_2017-9.pdf (2017).

J. Hult, A fourth-order Runge-Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers. J. Lightwave Technol. 25 (2007) 3770–3775. | DOI

T. Kato and H. Kono, Time-dependent multiconfiguration theory for electronic dynamics of molecules in an intense laser field. Chem. Phys. Lett. 392 (2018) 533–540. | DOI

O. Koch, W. Kreuzer and A. Scrinzi, Approximation of the time-dependent electronic Schrödinger equation by MCTDHF. Appl. Math. Comput. 173 (2006) 960–976. | MR | Zbl

O. Koch and C. Lubich, Regularity of the multi-configuration time-dependent Hartree approximation in quantum molecular dynamics. ESAIM: M2AN 41 (2007) 315–331. | DOI | Numdam | MR | Zbl

O. Koch and C. Lubich, Variational splitting time integration of the MCTDHF equations in electron dynamics. IMA J. Numer. Anal. 31 (2011) 379–395. | DOI | MR | Zbl

O. Koch, C. Neuhauser and M. Thalhammer, Embedded split-step formulae for the time integration of nonlinear evolution equations. Appl. Numer. Math. 63 (2013) 14–24. | DOI | MR | Zbl

O. Koch, C. Neuhauser and M. Thalhammer, Error analysis of high-order splitting methods for nonlinear evolutionary Schrödinger equations and application to the MCTDHF equations in electron dynamics. ESAIM: M2AN 47 (2013) 1265–1284. | DOI | Numdam | MR | Zbl

S. Krogstad, Generalized integrating factor methods for stiff PDEs. J. Comput. Phys. 203 (2005) 72–88. | DOI | MR | Zbl

J.D. Lawson, Generalized Runge-Kutta processes for stable systems with large Lipschitz constants. SIAM J. Numer. Anal. 4 (1967) 372–380. | DOI | MR | Zbl

C. Lubich, On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations. Math. Comp. 77 (2008) 2141–2153. | DOI | MR | Zbl

H.-D. Meyer, U. Manthe and L.S. Cederbaum, The multi-configurational time-dependent Hartree approach. Chem. Phys. Lett. 165 (1990) 73–78. | DOI

H.-D. Meyer and G.A. Worth, Quantum molecular dynamics: propagating wavepackets and density operators using the multi-configuration time-dependent Hartree (MCTDH) method. Theo. Chem. Acc. 109 (2003) 251–267. | DOI

I. Nagy, R. Diez Muiño, J.I. Juaristi and P.M. Echenique, Spin-resolved pair-distribution functions in an electron gas: a scattering approach based on consistent potentials. Phys. Rev. B 69 (2004) 233105. | DOI

M. Nest and T. Klamroth, Correlated many-electron dynamics: Application to inelastic electron scattering at a metal film. Phys. Rev. A 72 (2005) 012710. | DOI

M. Nest, T. Klamroth and P. Saalfrank, The multiconfiguration time-dependent Hartree-Fock method for quantum chemical calculations. J. Chem. Phys. 122 (2005) 124102. | DOI

C.J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases. Cambridge University Press, Cambridge (2008). | DOI

A. Quarteroni, R. Sacco and F. Saleri, Numerical Mathematics, 2nd edition. Springer-Verlag, Berlin-Heidelberg (2007.) | MR | Zbl

C. Raman, J.R. Abo-Shaeer, J.M. Vogels, K. Xu and W. Ketterle, Vortex nucleation in a stirred Bose-Einstein condensate. Phys. Rev. Lett. 87 (2001) 210402. | DOI

T. Sato and K.L. Ishikawa, Time-dependent complete-active-space self-consistent-field method for multielectron dynamics in intense laser fields. Phys. Rev. A 88 (2013) 023402. | DOI

C.A. Ullrich, Time-dependent Density-functional Theory: Concepts and Applications. Oxford University Press, Oxford; New York, NY (2011). | DOI | Zbl

P. Whalen, M. Brio and J.V. Moloney, Exponential time-differencing with embedded Runge-Kutta adaptive step control. J. Comput. Phys. 280 (2015) 579–601. | DOI | MR | Zbl

J. Zanghellini, M. Kitzler, T. Brabec and A. Scrinzi, Testing the multi-configuration time-dependent Hartree-Fock method. J. Phys. B: At. Mol. Phys. 37 (2004) 763–773. | DOI

J. Zanghellini, M. Kitzler, C. Fabian, T. Brabec and A. Scrinzi, An MCTDHF approach to multi-electron dynamics in laser fields. Laser Phys. 13 (2003) 1064–1068.

Cité par Sources :