Regularity of the multi-configuration time-dependent Hartree approximation in quantum molecular dynamics
ESAIM: Modélisation mathématique et analyse numérique, Tome 41 (2007) no. 2, pp. 315-331.

We discuss the multi-configuration time-dependent Hartree (MCTDH) method for the approximation of the time-dependent Schrödinger equation in quantum molecular dynamics. This method approximates the high-dimensional nuclear wave function by a linear combination of products of functions depending only on a single degree of freedom. The equations of motion, obtained via the Dirac-Frenkel time-dependent variational principle, consist of a coupled system of low-dimensional nonlinear partial differential equations and ordinary differential equations. We show that, with a smooth and bounded potential, the MCTDH equations are well-posed and retain high-order Sobolev regularity globally in time, that is, as long as the density matrices appearing in the method formulation remain invertible. In particular, the solutions are regular enough to ensure local quasi-optimality of the approximation and to admit an efficient numerical treatment.

DOI : 10.1051/m2an:2007020
Classification : 35F25, 58J90, 81V55
Mots clés : MCTDH method, wavepacket propagation, nonlinear evolution equation, well-posedness, regularity
@article{M2AN_2007__41_2_315_0,
     author = {Koch, Othmar and Lubich, Christian},
     title = {Regularity of the multi-configuration time-dependent {Hartree} approximation in quantum molecular dynamics},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {315--331},
     publisher = {EDP-Sciences},
     volume = {41},
     number = {2},
     year = {2007},
     doi = {10.1051/m2an:2007020},
     mrnumber = {2339631},
     zbl = {1135.81380},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an:2007020/}
}
TY  - JOUR
AU  - Koch, Othmar
AU  - Lubich, Christian
TI  - Regularity of the multi-configuration time-dependent Hartree approximation in quantum molecular dynamics
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2007
SP  - 315
EP  - 331
VL  - 41
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an:2007020/
DO  - 10.1051/m2an:2007020
LA  - en
ID  - M2AN_2007__41_2_315_0
ER  - 
%0 Journal Article
%A Koch, Othmar
%A Lubich, Christian
%T Regularity of the multi-configuration time-dependent Hartree approximation in quantum molecular dynamics
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2007
%P 315-331
%V 41
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an:2007020/
%R 10.1051/m2an:2007020
%G en
%F M2AN_2007__41_2_315_0
Koch, Othmar; Lubich, Christian. Regularity of the multi-configuration time-dependent Hartree approximation in quantum molecular dynamics. ESAIM: Modélisation mathématique et analyse numérique, Tome 41 (2007) no. 2, pp. 315-331. doi : 10.1051/m2an:2007020. http://www.numdam.org/articles/10.1051/m2an:2007020/

[1] H.W. Alt, Lineare Funktionalanalysis. Springer Verlag, Berlin-Heidelberg-New York, 3rd edition (1999). | MR | Zbl

[2] M. Baer and G.D. Billing Eds., The Role of Degenerate States in Chemistry, Advances in Chemical Physics 124, Wiley (2002).

[3] M.H. Beck and H.-D. Meyer, An efficient and robust integration scheme for the equations of the multiconfiguration time-dependent Hartree (MCTDH) method. Z. Phys. D 42 (1997) 113-129.

[4] M.H. Beck, A. Jäckle, G.A. Worth and H.-D. Meyer, The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets. Phys. Rep. 324 (2000) 1-105.

[5] A. Bove, G. Da Prato and G. Fano, An existence proof for the Hartree-Fock time-dependent problem with bounded two-body interaction. Comm. Math. Phys. 37 (1974) 183-191. | Zbl

[6] A. Bove, G. Da Prato and G. Fano, On the Hartree-Fock time-dependent problem. Comm. Math. Phys. 49 (1976) 25-33.

[7] I. Burghardt, H.-D. Meyer and L.S. Cederbaum, Approaches to the approximate treatment of complex molecular systems by the multiconfiguration time-dependent Hartree method. J. Chem. Phys. 111 (1999) 2927-2939.

[8] J. Caillat, J. Zanghellini, M. Kitzler, W. Kreuzer, O. Koch and A. Scrinzi, Correlated multielectron systems in strong laser pulses - an MCTDHF approach. Phys. Rev. A 71 (2005) 012712.

[9] J.M. Chadam and R.T. Glassey, Global existence of solutions to the Cauchy problem for time-dependent Hartree equations. J. Math. Phys. 16 (1975) 1122-1130. | Zbl

[10] P.A.M. Dirac, Note on exchange phenomena in the Thomas atom. Proc. Cambridge Phil. Soc. 26 (1930) 376-385. | JFM

[11] W. Domcke, D.R. Yarkony and H. Köppel Eds., Conical Intersections. Electronic Structure, Dynamics & Spectroscopy. World Scientific, Singapore, 2004.

[12] E. Faou and C. Lubich, A Poisson integrator for Gaussian wavepacket dynamics. Comput. Visual. Sci. 9 (2005) 45-55.

[13] J. Frenkel, Wave Mechanics, Advanced General Theory. Clarendon Press, Oxford (1934). | JFM | Zbl

[14] G. Friesecke, The multiconfiguration equations for atoms and molecules: charge quantization and existence of solutions. Arch. Ration. Mech. Anal. 169 (2003) 35-71. | Zbl

[15] O. Koch, W. Kreuzer and A. Scrinzi, Approximation of the time-dependent electronic Schrödinger equation by MCTDHF. Appl. Math. Comput. 173 (2006) 960-976. | Zbl

[16] M. Lewin, Solutions of the multiconfiguration equations in quantum chemistry. Arch. Ration. Mech. Anal. 171 (2004) 83-114. | Zbl

[17] C. Lubich, A variational splitting integrator for quantum molecular dynamics. Appl. Numer. Math. 48 (2004) 355-368. | Zbl

[18] C. Lubich, On variational approximations in quantum molecular dynamics. Math. Comp. 74 (2005) 765-779. | Zbl

[19] A.D. Mclachlan, A variational solution of the time-dependent Schrödinger equation. Mol. Phys. 8 (1964) 39-44.

[20] H.-D. Meyer and G.A. Worth, Quantum molecular dynamics: propagating wavepackets and density operators using the multi-configuration time-dependent Hartree (MCTDH) method. Theo. Chem. Acc. 109 (2003) 251-267.

[21] H.-D. Meyer, U. Manthe and L.S. Cederbaum, The multi-configurational time-dependent Hartree approach. Chem. Phys. Lett. 165 (1990) 73-78.

[22] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983). | MR | Zbl

[23] A. Raab, G.A. Worth, H.-D. Meyer and L.S. Cederbaum, Molecular dynamics of pyrazine after excitation to the S 2 electronic state using a realistic 24-mode model Hamiltonian. J. Chem. Phys. 110 (1999) 936-946.

[24] D.J. Rowe, A. Ryman and G. Rosensteel, Many-body quantum mechanics as a symplectic dynamical system. Phys. Rev. A 22 (1980) 2362-2373.

[25] H. Wang and M. Thoss, Multilayer formulation of the multiconfiguration time-dependent Hartree theory. J. Chem. Phys. 119 (2003) 1289-1299.

Cité par Sources :