Relaxation and simulation of a barotropic three-phase flow model
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 3, pp. 1031-1059.

We focus here on a three-phase flow model in order to represent complex flows involving liquid metal droplets, liquid water, and its vapour. The governing equations and its main properties are given, and focus is given on the pressure–velocity relaxation process on the one hand, and on the structure of solutions of the one-dimensional Riemann problem associated with pure convective effects. A fractional step method that computes successively the convective part and the relaxation effects is used to obtain approximate solutions on unstructured meshes. Details of algorithms are provided, and it is shown that the numerical method preserves positive values of statistical fractions and partial masses. Verification and validation test cases are presented, and some perspectives are eventually drawn.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2019001
Classification : 76M12, 76T30, 35L60, 35Q35, 35L67
Mots-clés : Three-phase flow model, finite volumes, relaxation – shock tube
Boukili, Hamza 1 ; Hérard, Jean-Marc 1

1
@article{M2AN_2019__53_3_1031_0,
     author = {Boukili, Hamza and H\'erard, Jean-Marc},
     title = {Relaxation and simulation of a barotropic three-phase flow model},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1031--1059},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {3},
     year = {2019},
     doi = {10.1051/m2an/2019001},
     zbl = {1418.76032},
     mrnumber = {3973921},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2019001/}
}
TY  - JOUR
AU  - Boukili, Hamza
AU  - Hérard, Jean-Marc
TI  - Relaxation and simulation of a barotropic three-phase flow model
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 1031
EP  - 1059
VL  - 53
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2019001/
DO  - 10.1051/m2an/2019001
LA  - en
ID  - M2AN_2019__53_3_1031_0
ER  - 
%0 Journal Article
%A Boukili, Hamza
%A Hérard, Jean-Marc
%T Relaxation and simulation of a barotropic three-phase flow model
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 1031-1059
%V 53
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2019001/
%R 10.1051/m2an/2019001
%G en
%F M2AN_2019__53_3_1031_0
Boukili, Hamza; Hérard, Jean-Marc. Relaxation and simulation of a barotropic three-phase flow model. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 3, pp. 1031-1059. doi : 10.1051/m2an/2019001. http://www.numdam.org/articles/10.1051/m2an/2019001/

[1] A. Ambroso, C. Chalons, F. Coquel and T. Galié, Relaxation and numerical approximation of a two-fluid two-pressure diphasic model. ESAIM: M2AN 43 (2009) 1063–1097. | DOI | Numdam | MR | Zbl

[2] A. Ambroso, C. Chalons and P.A. Raviart, A Godunov type method for the seven-equation model of compressible two-phase flow. Comput. Fluids 54 (2012) 67–91. | DOI | MR | Zbl

[3] M.R. Baer and J.W. Nunziato, A two phase mixture theory for the deflagration to detonation transition (DDT) in reactive granular materials. Int. J. Multiphase Flow 12 (1986) 861–889. | DOI | Zbl

[4] G. Berthoud, Vapor explosions. Annu. Rev. Fluid Mech. 32 (2000) 573–611. | DOI | Zbl

[5] W. Bo, H. Jin, D. Kim, X. Liu, H. Lee, N. Pestiau, Y. Yu, J. Glimm and J.W. Grove, Comparison and validation of multiphase closure models. Comput. Math. Appl. 56 (2008) 1291–1302. | MR | Zbl

[6] A. Chauvin, Etude expérimentale de l’atténuation d’une onde de choc par un nuage de gouttes et validation numérique. Ph.D. thesis, Université Aix Marseille (2012).

[7] A. Chauvin, G. Jourdan, E. Daniel, L. Houas and R. Tosello, Experimental investigation of the propagation of a planar shock wave through a two-phase gas-liquid medium. Phys. Fluids 23 (2011) 113301. | DOI

[8] F. Coquel, T. Gallouët, J.M. Hérard and N. Seguin, Closure laws for a two fluid two-pressure model. C. R. Math. 334 (2002) 927–932. | DOI | MR | Zbl

[9] F. Coquel, J.M. Hérard, K. Saleh and N. Seguin, A robust entropy-satisfying finite volume scheme for the isentropic Baer Nunziato model. ESAIM: M2AN 48 (2014) 165–206. | DOI | Numdam | MR | Zbl

[10] F. Coquel, J.M. Hérard and K. Saleh, A positive and entropy-satisfying finite volume scheme for the Baer Nunziato model. J. Comput. Phys. 330 (2017) 401–435. | DOI | MR | Zbl

[11] M. Essadki, Contribution to a unified modelling of fuel injection: From dense liquid to polydisperse evaporating spray. Ph.D. thesis, Ecole Polytechnique (2018).

[12] G. Faccanoni, S. Kokh and G. Allaire, Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium. ESAIM: M2AN 46 (2012) 1029–1054. | DOI | Numdam | MR | Zbl

[13] T. Flätten and H. Lund, Relaxation two-phase flow models and the subcharacteristic condition. Math. Models Methods Appl. Sci. 21 (2011) 2379–2407. | DOI | MR | Zbl

[14] S. Gavrilyuk, The structure of pressure relaxation terms: The one-velocity case. EDF report H-I83-2014-0276-EN (2014).

[15] S. Gavrilyuk and R. Saurel, Mathematical and numerical modelling of two-phase compressible flows with micro inertia. J. Comput. Phys. 175 (2002) 326–360. | DOI | MR | Zbl

[16] B.E. Gelfand, Droplet breakup phenomena in flows with velocity lag. Progr. Energy Combust. Sci. 22 (1996) 201–265. | DOI

[17] P. Helluy and H. Mathis, Pressure laws and fast Legendre transform. Math. Models Methods Appl. Sci. 21 (2011) 745–775. | DOI | MR | Zbl

[18] P. Helluy and N. Seguin, Relaxation models of phase transition flows. ESAIM: M2AN 40 (2006) 331–352. | DOI | Numdam | MR | Zbl

[19] J.M. Hérard, A three-phase flow model. Math. Comput. Model. 45 (2007) 732–755. | DOI | MR | Zbl

[20] J.M. Hérard, A class of compressible multiphase flow models. C. R. Math 354 (2016) 954–959. | DOI | MR | Zbl

[21] J.M. Hérard and O. Hurisse, A fractional step method to compute a class of compressible gas-liquid flows. Comput. Fluids 55 (2012) 57–69. | DOI | MR | Zbl

[22] J.M. Hérard, K. Saleh and N. Seguin, Some mathematical properties of a hyperbolic multiphase flow model. Preprint Hal: 01921027v1 (2018).

[23] T. Hibiki, M. Ishii, One-group interfacial area transport of bubbly flows in vertical round tubes. Int. J. Heat Mass Transf. 43 (2000) 2711–2726. | DOI | Zbl

[24] A.K. Kapila, S.F. Son, J.B. Bdzil, R. Menikoff and D.S. Stewart, Two phase flow modeling of deflagration to detonation transition: Srtucture of the velocity relaxation zone. Phys. Fluids 9 (1997) 12180–3590. | DOI

[25] H. Mathis, A thermodynamically consistent model of a liquid-vapor fluid with a gas. ESAIM: M2AN 53 (2019) 63–84. | DOI | Numdam | MR | Zbl

[26] M. Massot, F. Laurent, D. Kah and S. De Chaisemartin, A robust moment method for evaluation of the disappearance rate of evaporating sprays. SIAM J. Appl. Math. 70 (2010) 3203–3234. | DOI | MR | Zbl

[27] R. Meignen, B. Raverdy, S. Picchi and J. Lamome, The challenge of modelling fuel-coolant interaction. Part II: Steam explosion. Nucl. Eng. Design 280 (2014) 528–541. | DOI

[28] S. Müller, M. Hantke and P. Richter, Closure conditions for non-equilibrium multi-component models. Continuum Mech. Thermodyn. 28 (2016) 1157–1190. | DOI | MR | Zbl

[29] S. Picchi, MC3D version 3.9. Description of the physical models of the premixing application. IRSN internal report PSN-RES/SAG/2017-0073 (2017).

[30] M. Pilch, Acceleration induced fragmentation of liquid drops. Ph.D. thesis, University of Virginia (1981).

[31] M. Pilch and C.A. Erdman, Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration induced breakup of a liquid drop. Int. J. Multiphase Flow 28 (1987) 741–757. | DOI

[32] X. Rogue, G. Rodriguez, J.F. Haas and R. Saurel, Experimental and numerical investigation of the shock induced fluidization of a particles bed. Shock Waves 8 (2014) 29–46. | DOI | Zbl

[33] E. Romenski, A.A. Belozerov, I.M. Peshkov, Conservative formulation for compressible multiphase flows. Preprint ArXiv:1405.3456 (2014). | MR

[34] E. Rusanov, Calculation of interaction of non steady shock waves with obstacles. J. Comput. Math. Phys. 1 (1961) 267–279.

[35] K. Saleh, A relaxation scheme for a hyperbolic multiphase flow model. Part I: barotropic EOS. Preprint Hal:0173768v1 (2018). | Numdam | MR

[36] W. Yao and C. Morel, Volumetric interfacial area prediction in upward bubbly two-phase flow. Int. J. Heat Mass Transf. 47 (2004) 307–328. | DOI | Zbl

Cité par Sources :