Stability of correction procedure via reconstruction with summation-by-parts operators for Burgers' equation using a polynomial chaos approach
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 6, pp. 2215-2245.

In this paper, we consider Burgers’ equation with uncertain boundary and initial conditions. The polynomial chaos (PC) approach yields a hyperbolic system of deterministic equations, which can be solved by several numerical methods. Here, we apply the correction procedure via reconstruction (CPR) using summation-by-parts operators. We focus especially on stability, which is proven for CPR methods and the systems arising from the PC approach. Due to the usage of split-forms, the major challenge is to construct entropy stable numerical fluxes. For the first time, such numerical fluxes are constructed for all systems resulting from the PC approach for Burgers' equation. In numerical tests, we verify our results and show also the performance of the given ansatz using CPR methods. Moreover, one of the simulations, i.e. Burgers’ equation equipped with an initial shock, demonstrates quite fascinating observations. The behaviour of the numerical solutions from several methods (finite volume, finite difference, CPR) differ significantly from each other. Through careful investigations, we conclude that the reason for this is the high sensitivity of the system to varying dissipation. Furthermore, it should be stressed that the system is not strictly hyperbolic with genuinely nonlinear or linearly degenerate fields.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2018072
Classification : 65M12, 65M70, 65M60, 65M08, 65M06
Mots clés : Hyperbolic conservation laws, polynomial chaos method, summation-by-parts, correction procedure via reconstruction, entropy stability
Öffner, Philipp 1 ; Glaubitz, Jan 1 ; Ranocha, Hendrik 1

1
@article{M2AN_2018__52_6_2215_0,
     author = {\"Offner, Philipp and Glaubitz, Jan and Ranocha, Hendrik},
     title = {Stability of correction procedure via reconstruction with summation-by-parts operators for {Burgers'} equation using a polynomial chaos approach},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2215--2245},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {6},
     year = {2018},
     doi = {10.1051/m2an/2018072},
     mrnumber = {3905188},
     zbl = {1420.65094},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2018072/}
}
TY  - JOUR
AU  - Öffner, Philipp
AU  - Glaubitz, Jan
AU  - Ranocha, Hendrik
TI  - Stability of correction procedure via reconstruction with summation-by-parts operators for Burgers' equation using a polynomial chaos approach
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 2215
EP  - 2245
VL  - 52
IS  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2018072/
DO  - 10.1051/m2an/2018072
LA  - en
ID  - M2AN_2018__52_6_2215_0
ER  - 
%0 Journal Article
%A Öffner, Philipp
%A Glaubitz, Jan
%A Ranocha, Hendrik
%T Stability of correction procedure via reconstruction with summation-by-parts operators for Burgers' equation using a polynomial chaos approach
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 2215-2245
%V 52
%N 6
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2018072/
%R 10.1051/m2an/2018072
%G en
%F M2AN_2018__52_6_2215_0
Öffner, Philipp; Glaubitz, Jan; Ranocha, Hendrik. Stability of correction procedure via reconstruction with summation-by-parts operators for Burgers' equation using a polynomial chaos approach. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 6, pp. 2215-2245. doi : 10.1051/m2an/2018072. http://www.numdam.org/articles/10.1051/m2an/2018072/

[1] R. Abgrall, S. Mishra, Uncertainty quantification for hyperbolic systems of conservation laws. In Vol. 18 of Handbook of Numerical Analysis. Elsevier (2017) 507–544. | MR | Zbl

[2] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions. National Bureau of Standards (1972).

[3] R.H. Cameron, W.T. Martin, The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals. Ann. Math. 48 (1947) 385–392. | DOI | MR | Zbl

[4] M.H. Carpenter, T.C. Fisher, High-order entropy stable formulations for computational fluid dynamics. In: 21st AIAA Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics (2013). | DOI

[5] M.H. Carpenter, T.C. Fisher, E.J. Nielsen, S.H. Frankel, Entropy stable spectral collocation schemes for the Navier-Stokes equations: discontinuous interfaces. SIAM J. Sci. Comput. 36 (2014) B835–B867. | DOI | MR | Zbl

[6] A. Chertock, S. Jin, and A. Kurganov. An operator splitting based stochastic Galerkin method for the one-dimensional compressible Euler equations with uncertainty. http://www.ki-net.umd.edu/pubs/files/Euler-UQ.pdf (2015).

[7] T.C. Fisher, M.H. Carpenter, High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains. J. Comput. Phys. 252 (2013) 518–557. | DOI | MR | Zbl

[8] T.C. Fisher, M.H. Carpenter, J. Nordström, N.K. Yamaleev, C. Swanson, Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: theory and boundary conditions. J. Comput. Phys. 234 (2013) 353–375. | DOI | MR | Zbl

[9] G.J. Gassner, A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35 (2013) A1233–A1253. | DOI | MR | Zbl

[10] G.J. Gassner, A.R. Winters, D.A. Kopriva, Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations. J. Comput. Phys. 327 (2016) 39–66. | DOI | MR | Zbl

[11] R.G. Ghanem, P.D. Spanos, Stochastic Finite Elements: a Spectral Approach. Courier Corporation (2003). | MR | Zbl

[12] J. Giesselmann, F. Meyer, C. Rohde, A posteriori error analysis for random scalar conservation laws using the stochastic galerkin method. Preprint ArXiv:1709.04351 (2017). | MR

[13] J. Glaubitz, P. Öffner, H. Ranocha, T. Sonar, Artificial viscosity for correction procedure via reconstruction using summation-by-parts operators. In: XVI International Conference on Hyperbolic Problems: Theory, Numerics, Applications, Springer, 2016, 363–375. | MR | Zbl

[14] J. Glaubitz, P. Öffner, T. Sonar, Application of modal filtering to a spectral difference method. Math. Comput. 87 (2018) 175–207. | DOI | MR | Zbl

[15] S. Gottlieb, C.-W. Shu, Total variation diminishing Runge-Kutta schemes. Math. Comput. 67 (1998) 73–85. | DOI | MR | Zbl

[16] H. Huynh, A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. AIAA Paper 4079 (2007) 2007.

[17] H. Huynh, Z.J. Wang, P.E. Vincent, High-order methods for computational fluid dynamics: a brief review of compact differential formulations on unstructured grids. Comput. Fluids 98 (2014) 209–220. | DOI | MR | Zbl

[18] T. Kato, Perturbation Theory for Linear Operators. Springer-Verlag, Berlin Heidelberg (1995). | DOI | MR

[19] P.D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. SIAM (1973). | DOI | MR | Zbl

[20] K. Mattsson, M. Svärd, J. Nordström, Stable and accurate artificial dissipation. J. Sci. Comput. 21 (2004) 57–79. | DOI | MR | Zbl

[21] F. Meyer, L. Schlachter, F. Schneider, A hyperbolicity-preserving discontinuous stochastic Galerkin scheme for uncertain hyperbolic systems of equations. Preprint ArXiv:1805.10177 (2018).

[22] S. Mishra, N.H. Risebro, C. Schwab, S. Tokareva, Numerical solution of scalar conservation laws with random flux functions SIAM/ASA. J. Uncertain. Quantif. 4 (2016) 552–591. | DOI | MR | Zbl

[23] S. Mishra, C. Schwab, Sparse tensor multi-level monte carlo finite volume methods for hyperbolic conservation laws with random initial data. Math. Comput. 81 (2012) 1979–2018. | DOI | MR | Zbl

[24] S. Mishra, C. Schwab, J. Šukys, Multi-level monte carlo finite volume methods for uncertainty quantification in nonlinear systems of balance laws. Uncertainty Quantification in Computational Fluid Dynamics Springer (2013) 225–294. | DOI | MR | Zbl

[25] J. Nordström, Conservative finite difference formulations, variable coefficients, energy estimates and artificial dissipation. J. Sci. Comput. 29 (2006) 375–404. | DOI | MR | Zbl

[26] J. Nordström, A roadmap to well posed and stable problems in computational physics. J. Sci. Comput. 71 (2017) 365–385. | DOI | MR | Zbl

[27] P. Öffner, J. Glaubitz, H. Ranocha, Stability of correction procedure via reconstruction with summation-by-parts operators for Burgers’ equation using a polynomial chaos approach. Preprint ArXiv:1703.03561 (2017). | Numdam | MR | Zbl

[28] M.P. Pettersson, G. Iaccarino, J. Nordström, Polynomial Chaos Methods for Hyperbolic Partial Differential Equations: Numerical Techniques for Fluid Dynamics Problems in the Presence of Uncertainties. Springer (2015). | DOI | MR

[29] P. Pettersson, G. Iaccarino, J. Nordström, Numerical analysis of the Burgers' equation in the presence of uncertainty. J. Comput. Phys. 228 (2009) 8394–8412. | DOI | MR | Zbl

[30] G. Poëtte, B. Després, D. Lucor, Uncertainty quantification for systems of conservation laws. J. Comput. Phys. 228 (2009) 2443–2467. | DOI | MR | Zbl

[31] H. Ranocha, Shallow water equations: split-form, entropy stable, well-balanced, and positivity preserving numerical methods. GEM Int. J. Geomath. 8 (2017) 85–133. | DOI | MR | Zbl

[32] H. Ranocha, J. Glaubitz, P. Öffner, T. Sonar, Stability of artificial dissipation and modal filtering for flux reconstruction schemes using summation-by-parts operators. Appl. Numer. Math. 128 (2018) 1–23. | DOI | MR | Zbl

[33] H. Ranocha, P. Öffner, L2 stability of explicit Runge-Kutta schemes. J. Sci. Comput. 75 (2018) 1040–1056. | DOI | MR | Zbl

[34] H. Ranocha, P. Öffner, T. Sonar, Summation-by-parts operators for correction procedure via reconstruction. J. Comput. Phys. 311 (2016) 299–328. | DOI | MR | Zbl

[35] H. Ranocha, P. Öffner, T. Sonar, Extended skew-symmetric form for summation-by-parts operators and varying Jacobians. J. Comput. Phys. 342 (2017) 13–28. | DOI | MR | Zbl

[36] M. Svärd, J. Nordström, Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys. 268 (2014) 17–38. | DOI | MR | Zbl

[37] G. Szegö, Orthogonal Polynomials. Vol. 23 of Colloquium Publications. American Mathematical Society, Providence, Rhode Island (1975). | MR | Zbl

[38] E. Tadmor, The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comput. 49 (1987) 91–103. | DOI | MR | Zbl

[39] E. Tadmor, From semidiscrete to fully discrete: stability of Runge-Kutta schemes by the energy method II. In Vol. 109 of Collected lectures on the preservation of stability under discretization. SIAM, USA (2002) 25. | MR

[40] E. Tadmor, Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12 (2003) 451–512. | DOI | MR | Zbl

[41] Z. Wang, H. Gao, A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids. J. Comput. Phys. 228 (2009) 8161–8186. | DOI | MR | Zbl

[42] N. Wiener, The homogeneous chaos. Am. J. Math. 60 (1938) 897–936. | DOI | JFM | MR

[43] D. Xiu, Numerical Methods for Stochastic Computations: a Spectral Method Approach. Princeton University Press (2010). | MR | Zbl

[44] D. Xiu, G.E. Karniadakis, The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24 (2002) 619–644. | DOI | MR | Zbl

[45] D. Xiu, G.E. Karniadakis, Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187 (2003) 137–167. | DOI | MR | Zbl

[46] D. Xiu, G.E. Karniadakis, Supersensitivity due to uncertain boundary conditions. Int. J. Numer. Methods Eng. 61 (2004) 2114–2138. | DOI | MR | Zbl

Cité par Sources :