Study of an asymptotic preserving scheme for the quasi neutral Euler–Boltzmann model in the drift regime
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 2, pp. 701-728.

We deal with the numerical approximation of a simplified quasi neutral plasma model in the drift regime. Specifically, we analyze a finite volume scheme for the quasi neutral Euler–Boltzmann equations. We prove the unconditional stability of the scheme and give some bounds on the numerical approximation that are uniform in the asymptotic parameter. The proof relies on the control of the positivity and the decay of a discrete energy. The severe non linearity of the scheme being the price to pay to get the unconditional stability, to solve it, we propose an iterative linear implicit scheme that reduces to an elliptic system. The elliptic system enjoys a maximum principle that enables to prove the conservation of the positivity under a CFL condition that does not involve the asymptotic parameter. The linear L2 stability analysis of the iterative scheme shows that it does not request the mesh size and time step to be smaller than the asymptotic parameter. Numerical illustrations are given to illustrate the stability and consistency of the scheme in the drift regime as well as its ability to compute correct shock speeds.

DOI : 10.1051/m2an/2018070
Classification : 65M08, 65M06, 65M12, 65Z05
Mots-clés : Euler–Boltzmann, drift regime, quasi-neutral plasma, asymptotic preserving scheme, stability
Badsi, Mehdi 1

1
@article{M2AN_2019__53_2_701_0,
     author = {Badsi, Mehdi},
     title = {Study of an asymptotic preserving scheme for the quasi neutral {Euler{\textendash}Boltzmann} model in the drift regime},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {701--728},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {2},
     year = {2019},
     doi = {10.1051/m2an/2018070},
     mrnumber = {3955572},
     zbl = {07096603},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2018070/}
}
TY  - JOUR
AU  - Badsi, Mehdi
TI  - Study of an asymptotic preserving scheme for the quasi neutral Euler–Boltzmann model in the drift regime
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 701
EP  - 728
VL  - 53
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2018070/
DO  - 10.1051/m2an/2018070
LA  - en
ID  - M2AN_2019__53_2_701_0
ER  - 
%0 Journal Article
%A Badsi, Mehdi
%T Study of an asymptotic preserving scheme for the quasi neutral Euler–Boltzmann model in the drift regime
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 701-728
%V 53
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2018070/
%R 10.1051/m2an/2018070
%G en
%F M2AN_2019__53_2_701_0
Badsi, Mehdi. Study of an asymptotic preserving scheme for the quasi neutral Euler–Boltzmann model in the drift regime. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 2, pp. 701-728. doi : 10.1051/m2an/2018070. http://www.numdam.org/articles/10.1051/m2an/2018070/

[1] K. Asano, On the incompressible limit of the compressible euler equation. Jpn. J. Appl. Math 4 (1987) 455–488. | DOI | MR | Zbl

[2] M. Badsi, M. Campos Pinto, B. Déspres, A minimization formulation of a bi-kinetic sheath. Kinet. Relat. Mod. 9 (2016) 621–656. | DOI | MR | Zbl

[3] G. Bispen, M. Lukacova-Medvidova, L. Yelash, Asymptotic preserving IMEX finite volume schemes for low mach number euler equations with gravitation. J. Comput. Phys. 335 (2017) 222–248. | DOI | MR | Zbl

[4] F.F. Chen, Introduction to Plasma Physics and Controlled Fusion. Springer, Berlin (1984). | DOI

[5] P. Crispel, P. Degond, M.-H. Vignal, An asymptotic preserving scheme for the two-fluid euler poisson model in the quasineutral limit. J. Comput. Phys. 223 (2007) 208–234. | DOI | MR | Zbl

[6] P. Degond, F. Deluzet, A. Sangam, M.-H. Vignal, An asymptotic-preserving scheme for the euler equations in a strong magnetic field. J. Comput. Phys. 228 (2009) 3540–3558. | DOI | MR | Zbl

[7] F. Deluzet, M. Ottaviani, S. Possaner, A drift-asymptotic scheme for a fluid description of plasmas in strong magnetic fields. Comput. Phys. Commun. 219 (2017) 164–177. | DOI | MR | Zbl

[8] G. Dimarco, R. Loubère, M.-H. Vignal, Study of a new asymptotic preserving scheme for the euler system in the low mach number limit. SIAM J. Sci. Comput. 39 (2017) A2099–A2128. | DOI | MR | Zbl

[9] T.F. Riemann, Solvers and Numerical Methods for Fluid Dynamics. Springer-Verlag, Berlin (1997). | MR | Zbl

[10] F. Filbet, S. Jin, An asymptotic-preserving scheme for the ES-BGK model of the boltzmann equation. J. Sci. Comput. 46 (2011) 204–224. | DOI | MR | Zbl

[11] L. Gastaldo, R. Herbin, J.-C. Latché, A discretization of the phase mass balance in fractional step algorithms for the drift-flux model. IMA J. Numer. Anal. 31 (2011) 116–146. | DOI | MR | Zbl

[12] D. Grapsas, R. Herbin, W. Kheriji, J.-C. Latché, An unconditionnaly stable staggered pressure correction scheme for the compressible navier-stokes equations. J. Comput. Math. 2 (2016) 51–97. | MR | Zbl

[13] H. Guillard, C. Viozat, On the behavior of upwind schemes in the low Mach number limit. Comput. Fluids 28 (1999) 63–86. | DOI | MR | Zbl

[14] R. Hazeltine, J. Meiss, Plasma Confinement, Inc. Mineola, New York, NY (2003).

[15] J. Haack, S. Jin, J.-G. Liu, An all-speed asymptotic-preserving method for the isentropic euler and navier-stokes equations. Commun. Comput. Phys. 12 (2012) 955–980. | DOI | MR | Zbl

[16] S. Jin, Runge-Kutta methods for hyperbolic conservation laws with stiff relaxation terms. J. Comput. Phys. 122 (1995) 51–67. | DOI | MR | Zbl

[17] S. Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21 (1999) 441–154. | DOI | MR | Zbl

[18] T. Kato, The cauchy problem for quasi-linear symmetric hyperbolic systems. Ration. Mech. Anal. 58 (1975) 181–205. | DOI | MR | Zbl

[19] K. Klainerman, A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 4 (1981) 481–524. | DOI | MR | Zbl

[20] R.J. Leveque, Numerical Methods for Conservation Laws. Birkhauser, Basel (1992). | DOI | MR | Zbl

[21] R.J. Leveque, Finite-Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2004). | MR | Zbl

[22] A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Springer, Berlin (1984). | DOI | MR | Zbl

[23] G. Metivier, S. Schochet, The incompressible limit of the non-isentropic euler equations. Arch. Rational Mech. Anal. 158 (2001) 61–90. | DOI | MR | Zbl

[24] C. Negulescu, S. Possaner, Closure of the strongly-magnetized electron fluid equations in the adiabatic regime. Multi. Model. Simul. 14 (2016) 839–873. | DOI | MR | Zbl

[25] P. Degond, F. Deluzet, C. Negulescu, An asymptotic-preserving scheme for strongly anisotropic problems. Multi. Model. Simul. 8 (2010) 645–666. | DOI | MR | Zbl

[26] P. Degond, M. Tang, All speed scheme for the low mach number limit of the itenstropic euler equations. Commun. Comput. Phys. 10 (2011) 1–31. | DOI | MR | Zbl

[27] R. Herbin, J. Latché, T.T. Nguyen, Consistent explicit staggered schemes for the Euler equations. Part II: The Euler equation. Preprint Hal-00821070 (2013).

[28] S. Brull, P. Degond, F. Deluzet, A. Mouton, An asymptotic-preserving scheme for a bi-fluid Euler-Lorentz model. Kinet. Relat. Mod. 4 (2011) 991–1023. | DOI | MR | Zbl

[29] S. Schochet, The compressible euler equations in a bounded domain: existence of solutions and the incompressible limit. Commun. Math. Phys. 104 (1986) 49–75. | DOI | MR | Zbl

[30] P. Stangeby, The Plasma Boundary of Magnetic Fusion Devices. Institute of Physics Publishing, Bristol (2000). | DOI

[31] H. Zakerzadeh, On the mach-uniformity of the lagrange-projection scheme. ESAIM: M2AN 51 (2017) 1343–1366. | Numdam | MR | Zbl

Cité par Sources :