On the mach-uniformity of the Lagrange-projection scheme
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 4, pp. 1343-1366.

In the present work, we show that the Implicit-Explicit Lagrange-projection scheme applied to the isentropic Euler equations, presented in Coquel et al.’s paper (Math. Comp. 79 (2010) 1493–1533), is asymptotic preserving regarding the Mach number, i.e., it is asymptotically stable in -norm with unrestrictive CFL condition for all-Mach flows, and asymptotically consistent which means that it gives a consistent discretization to the incompressible Euler equations in the limit, e.g., it preserves the incompressible limit as to satisfy the div-free condition and the analogues of continuous-level asymptotic expansion for the density. This consistency analysis has been done formally as well as rigorously. Moreover, we prove that the scheme is positivity-preserving and entropy-admissible under some Mach-uniform restrictions. The analysis is similar to what has been presented in the original paper, but with the emphasis on the uniformity regarding the Mach number, which is crucial for a scheme to be useful in the low-Mach regime. We then extend the modified (but similar) analysis to the shallow water equations with topography and get similar stability and consistency results.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016064
Classification : 35L81, 65M12, 35L65, 65M08
Mots-clés : All-Mach number scheme, Lagrange-projection scheme, asymptotic preserving scheme, stability analysis
Zakerzadeh, Hamed 1

1 Institut für Geometrie und Praktische Mathematik, RWTH Aachen, Templergraben 55, 52056 Aachen, Germany.
@article{M2AN_2017__51_4_1343_0,
     author = {Zakerzadeh, Hamed},
     title = {On the mach-uniformity of the {Lagrange-projection} scheme},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1343--1366},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {4},
     year = {2017},
     doi = {10.1051/m2an/2016064},
     mrnumber = {3702416},
     zbl = {06790780},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2016064/}
}
TY  - JOUR
AU  - Zakerzadeh, Hamed
TI  - On the mach-uniformity of the Lagrange-projection scheme
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 1343
EP  - 1366
VL  - 51
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2016064/
DO  - 10.1051/m2an/2016064
LA  - en
ID  - M2AN_2017__51_4_1343_0
ER  - 
%0 Journal Article
%A Zakerzadeh, Hamed
%T On the mach-uniformity of the Lagrange-projection scheme
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 1343-1366
%V 51
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2016064/
%R 10.1051/m2an/2016064
%G en
%F M2AN_2017__51_4_1343_0
Zakerzadeh, Hamed. On the mach-uniformity of the Lagrange-projection scheme. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 4, pp. 1343-1366. doi : 10.1051/m2an/2016064. http://www.numdam.org/articles/10.1051/m2an/2016064/

S. Abarbanel, P. Duth and D. Gottlieb, Splitting methods for low Mach number Euler and Navier–Stokes equations. Comput. Fluids 17 (1989) 1–12. | DOI | Zbl

G. Bispen, IMEX finite volume methods for the shallow water equations. Ph.D. thesis, Johannes Gutenberg-Universität (2015).

G. Bispen, K. Revi Arun, M. Lukčáová-Medvidová and S. Noelle, IMEX large time step finite volume methods for low Froude number shallow water flows. Commun. Comput. Phys. 16 (2014) 307–347. | DOI | MR | Zbl

F. Bouchut and M. Westdickenberg, Gravity driven shallow water models for arbitrary topography. Commun. Math. Sci. 2 (2004) 359–389. | DOI | MR | Zbl

F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws: And well-balanced schemes for sources. Springer Science & Business Media (2004). | MR | Zbl

C. Chalons and J.-F. Coulombel, Relaxation approximation of the Euler equations. J. Math. Anal. Appl. 348 (2008) 872–893. | DOI | MR | Zbl

C. Chalons, M. Girardin and S. Kokh, Large time step and asymptotic preserving numerical schemes for the gas dynamics equations with source terms. SIAM J. Sci. Comput. 35 (2013) A2874–A2902. | DOI | MR | Zbl

C. Chalons, M. Girardin and S. Kokh, An all-regime Lagrange-projection like scheme for the gas dynamics equations on unstructured meshes. Commun. Comput. Phys. 20 (2016) 188–233. | DOI | MR | Zbl

C. Chalons, P. Kestener, S. Koch and M. Stauffert, A large time-step and well-balanced Lagrange-projection type scheme for the shallow water equations, Preprint (2016). | arXiv | MR

C. Chalons, M. Massot and A. Vié, On the Eulerian large eddy simulation of disperse phase flows: An asymptotic preserving scheme for small Stokes number flows. Multiscale Model. Simul. 13 (2015) 291–315. | DOI | MR | Zbl

G.-Q. Chen, C.D. Levermore and T.-P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy. Commun. Pure Appl. Math. 47 (1994) 787–830. | DOI | MR | Zbl

F. Coquel, E. Godlewski and N. Seguin, Regularization and relaxation tools for interface coupling. In Proc. of XX Congresso de Ecuaciones Differenciales Y Aplicaicones, CEDYA (2007).

F. Coquel, Q. Nguyen, M. Postel and Q. Tran, Entropy-satisfying relaxation method with large time-steps for Euler IBVPs. Math. Comput. 79 (2010) 1493–1533. | DOI | MR | Zbl

F. Cordier, P. Degond and A. Kumbaro, An asymptotic-preserving all-speed scheme for the Euler and Navier–Stokes equations. J. Comput. Phys. 231 (2012) 5685–5704. | DOI | MR | Zbl

G. Dal Maso, P.G. Lefloch and F. Murat, Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74 (1995) 483–548. | MR | Zbl

P. Degond, J.-G. Liu and M.-H. Vignal, Analysis of an asymptotic preserving scheme for the Euler–Poisson system in the quasineutral limit. SIAM J. Numer. Anal. 46 (2008) 1298–1322. | DOI | MR | Zbl

P. Degond and M. Tang, All speed scheme for the low Mach number limit of the isentropic Euler equation. Commun. Comput. Phys. 10 (2011) 1–31. | DOI | MR | Zbl

S. Dellacherie, Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number. J. Comput. Phys. 229 (2010) 978–1016. | DOI | MR | Zbl

S. Dellacherie, J. Jung, P. Omnes and P.-A. Raviart, Construction of modified Godunov type schemes accurate at any Mach number for the compressible Euler system. submitted, hal-00776629, November 2015. | MR

S. Dellacherie, P. Omnes and F. Rieper, The influence of cell geometry on the Godunov scheme applied to the linear wave equation. J. Comput. Phys. 229 (2010) 5315–5338. | DOI | MR | Zbl

J. Donea, A. Huerta, J.-Ph. Ponthot and A. Rodríguez-Ferran, Arbitrary Lagrangian–Eulerian methods. John Wiley & Sons, Ltd (2004).

E. Godlewski and P.-A. Raviart, Numerical approximation of hyperbolic systems of conservation laws. Vol. 118. Springer (1996). | MR | Zbl

R.M. Gray, Toeplitz and circulant matrices: A review. Now Publishers Inc. (2006). | Zbl

E. Grenier, Oscillatory perturbations of the Navier–Stokes equations. J. Math. Pures Appl. 76 (1997) 477–498. | DOI | MR | Zbl

H. Guillard and A. Murrone, On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes. Comput. Fluids 33 (2004) 655–675. | DOI | Zbl

H. Guillard and C. Viozat, On the behaviour of upwind schemes in the low Mach number limit. Comput. Fluids 28 (1999) 63–86. | DOI | MR | Zbl

J. Haack, S. Jin and J.-G. Liu, An all-speed asymptotic-preserving method for the isentropic Euler and Navier–Stokes equations. Commun. Comput. Phys. 12 (2012) 955–980. | DOI | MR | Zbl

H. Holden, K.H. Karlsen, K.-A. Lie and N.H. Risebro, Splitting methods for partial differential equations with rough solutions. European Math. Soc. Publishing House (2010). | MR | Zbl

R.A. Horn and C.R. Johnson, Matrix analysis. Cambridge University Press, New York (1986). | MR | Zbl

S. Jin, Runge–Kutta methods for hyperbolic conservation laws with stiff relaxation terms. J. Comput. Phys. 122 (1995) 51–67. | DOI | MR | Zbl

S. Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21 (1999) 441–454. | DOI | MR | Zbl

S. Jin, Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: A review. Lecture Notes for Summer School on Methods and Models of Kinetic Theory (M&MKT), Porto Ercole. Grosseto, Italy (2010) 177–216. | MR | Zbl

S. Jin and Z. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pure Appl. Math. 48 (1995) 235–276. | DOI | MR | Zbl

S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34 (1981) 481–524. | DOI | MR | Zbl

S. Klainerman and A. Majda, Compressible and incompressible fluids. Commun. Pure Appl. Math. 35 (1982) 629–651. | DOI | MR | Zbl

H.-O. Kreiss, J. Lorenz and M.J. Naughton, Convergence of the solutions of the compressible to the solutions of the incompressible Navier–Stokes equations. Adv. Appl. Math. 12 (1991) 187–214. | DOI | MR | Zbl

E.W. Larsen, J.E. Morel and W.F. Miller, Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes. J. Comput. Phys. 69 (1987) 283–324. | DOI | MR | Zbl

C. Lattanzio and D. Serre, Convergence of a relaxation scheme for hyperbolic systems of conservation laws. Numer. Math. 88 (2001) 121–134. | DOI | MR | Zbl

P.G. Lefloch and M. Westdickenberg, Finite energy solutions to the isentropic Euler equations with geometric effects. J. Math. Pures Appl. 88 (2007) 389–429. | DOI | MR | Zbl

T.-P. Liu, Hyperbolic conservation laws with relaxation. Commun. Math. Phys. 108 (1987) 153–175. | DOI | MR | Zbl

N. Masmoudi, Examples of singular limits in hydrodynamics. In Vol. 3 of Handbook of Differential Equations: Evolutionary Equations (2007) 195–275. | MR | Zbl

A. Meister, Asymptotic single and multiple scale expansions in the low Mach number limit. SIAM J. Appl. Math. 60 (1999) 256–271. | DOI | MR | Zbl

G. Métivier and S. Schochet, The incompressible limit of the non-isentropic Euler equations. Arch. Ratio. Mech. Anal. 158 (2001) 61–90. | DOI | MR | Zbl

S. Noelle, G. Bispen, K. Revi Arun, M. Lukcáˇová-Medviďováand C.-D. Munz, A weakly asymptotic preserving low Mach number scheme for the Euler equations of gas dynamics. SIAM J. Sci. Comput. 36 (2014) B989–B1024. | DOI | MR | Zbl

F. Rieper, On the dissipation mechanism of upwind-schemes in the low Mach number regime: A comparison between Roe and HLL. J. Comput. Phys. 229 (2010) 221–232. | DOI | MR | Zbl

F. Rieper, A low-Mach number fix for Roe’s approximate Riemann solver. J. Comput. Phys. 230 (2011) 5263–5287. | DOI | MR | Zbl

F. Rieper and G. Bader, The influence of cell geometry on the accuracy of upwind schemes in the low Mach number regime. J. Comput. Phys. 228 (2009) 2918–2933. | DOI | MR | Zbl

J. Schütz and S. Noelle, Flux splitting for stiff equations: A notion on stability. J. Sci. Comput. (2014) 1–19. | MR

J.M. Varah, A lower bound for the smallest singular value of a matrix. Linear Algebra Appl. 11 (1975) 3–5. | DOI | MR | Zbl

H. Weyl, Shock waves in arbitrary fluids. Commun. Pure Appl. Math. 2 (1949) 103–122. | DOI | MR | Zbl

H. Zakerzadeh and S. Noelle, A note on the stability of implicit-explicit flux-splittings for stiff systems of hyperbolic conservation laws. IGPM report 449, RWTH Aachen University (2016). | MR

Cité par Sources :