Heterogeneous Multiscale Method for the Maxwell equations with high contrast
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 1, pp. 35-61.

In this paper, we suggest a new Heterogeneous Multiscale Method (HMM) for the (time-harmonic) Maxwell scattering problem with high contrast. The method is constructed for a setting as in Bouchitté, Bourel and Felbacq [C.R. Math. Acad. Sci. Paris 347 (2009) 571–576], where the high contrast in the parameter leads to unusual effective parameters in the homogenized equation. We present a new homogenization result for this special setting, compare it to existing homogenization approaches and analyze the stability of the two-scale solution with respect to the wavenumber and the data. This includes a new stability result for solutions to time-harmonic Maxwell’s equations with matrix-valued, spatially dependent coefficients. The HMM is defined as direct discretization of the two-scale limit equation. With this approach we are able to show quasi-optimality and a priori error estimates in energy and dual norms under a resolution condition that inherits its dependence on the wavenumber from the stability constant for the analytical problem. This is the first wavenumber-explicit resolution condition for time-harmonic Maxwell’s equations. Numerical experiments confirm our theoretical convergence results.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2018064
Classification : 65N30, 65N15, 65N12, 35Q61, 78M40, 35B27
Mots-clés : Multiscale method, finite elements, homogenization, two-scale equation, Maxwell equations
Verfürth, Barbara 1

1
@article{M2AN_2019__53_1_35_0,
     author = {Verf\"urth, Barbara},
     title = {Heterogeneous {Multiscale} {Method} for the {Maxwell} equations with high contrast},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {35--61},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {1},
     year = {2019},
     doi = {10.1051/m2an/2018064},
     zbl = {1422.65415},
     mrnumber = {3922817},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2018064/}
}
TY  - JOUR
AU  - Verfürth, Barbara
TI  - Heterogeneous Multiscale Method for the Maxwell equations with high contrast
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 35
EP  - 61
VL  - 53
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2018064/
DO  - 10.1051/m2an/2018064
LA  - en
ID  - M2AN_2019__53_1_35_0
ER  - 
%0 Journal Article
%A Verfürth, Barbara
%T Heterogeneous Multiscale Method for the Maxwell equations with high contrast
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 35-61
%V 53
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2018064/
%R 10.1051/m2an/2018064
%G en
%F M2AN_2019__53_1_35_0
Verfürth, Barbara. Heterogeneous Multiscale Method for the Maxwell equations with high contrast. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 1, pp. 35-61. doi : 10.1051/m2an/2018064. http://www.numdam.org/articles/10.1051/m2an/2018064/

[1] A. Abdulle, On a priori error analysis of fully discrete heterogeneous multiscale FEM. Multiscale Model. Simul. 4 (2005) 447–459. | DOI | MR | Zbl

[2] G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482–1518. | DOI | MR | Zbl

[3] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber, M. Ohlberger and O. Sander, A generic grid interface for parallel and adaptive scientific computing. II. Implementation and tests in DUNE. Computing 82 (2008) 121–138. | DOI | MR | Zbl

[4] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger and O. Sander, A generic grid interface for parallel and adaptive scientific computing. I. Abstract framework. Computing 82 (2008) 103–119. | DOI | MR | Zbl

[5] A. Bonito, J.-L. Guermond and F. Luddens, Regularity of the Maxwell equations in heterogeneous media and Lipschitz domains. J. Math. Anal. Appl. 408 (2013) 498–512. | DOI | MR | Zbl

[6] G. Bouchitté, C. Bourel and D. Felbacq, Homogenization of the 3D Maxwell system near resonances and artificial magnetism. C. R. Math. Acad. Sci. Paris 347 (2009) 571–576. | DOI | MR | Zbl

[7] G. Bouchitté, C. Bourel and D. Felbacq, Homogenization near resonances and artificial magnetism in three dimensional dielectric metamaterials. Arch. Ration. Mech. Anal. 225 (2017) 1233–1277. | DOI | MR | Zbl

[8] G. Bouchitté. D. Felbacq, Homogenization near resonances and artificial magnetism from dielectrics, C. R. Math. Acad. Sci. Paris 339 (2004) 377–382. | DOI | MR | Zbl

[9] G. Bouchitté and B. Schweizer, Homogenization of Maxwell’s equations in a split ring geometry. Multiscale Model. Simul. 8 (2010) 717–750. | DOI | MR | Zbl

[10] A. Buffa and P. Ciarlet, Jr. On traces for functional spaces related to Maxwell’s equations. I. An integration by parts formula in Lipschitz polyhedra. Math. Methods Appl. Sci. 24 (2001) 9–30. | DOI | MR | Zbl

[11] A. Buffa, M. Costabel and D. Sheen, On traces for H(curl, Ω) in Lipschitz domains. J. Math. Anal. Appl. 276 (2002) 845–867. | DOI | MR | Zbl

[12] A. Buffa and R. Hiptmair, Topics in computational wave propagation. In: Lect. Notes Comput. Sci. Eng. 31. Springer, Berlin (2003) 83–124. | MR | Zbl

[13] L. Cao, Y. Zhang, W. Allegretto and Y. Lin, Multiscale asymptotic method for Maxwell’s equations in composite materials. SIAM J. Numer. Anal. 47 (2010) 4257–4289. | DOI | MR | Zbl

[14] K. Cherednichenko and S. Cooper, Homogenization of the system of high-contrast Maxwell equations. Mathematika 61 (2015) 475–500. | DOI | MR | Zbl

[15] V.T. Chu and V.H. Hoang, High-dimensional finite elements for multiscale maxwell-type equations. IMA J. Numer. Anal. 38 (2018) 227–270. | DOI | MR | Zbl

[16] P. Ciarlet Jr., S. Fliss and C. Stohrer, On the approximation of electromagnetic fields by edge finite elements. Part 2: A heterogeneous multiscale method for Maxwell’s equations, Comput. Math. Appl. 73 (2017) 1900–1919. | DOI | MR | Zbl

[17] M. Costabel, A remark on the regularity of solutions of Maxwell’s equations on Lipschitz domains. Math. Methods Appl. Sci. 12 (1990) 365–368. | DOI | MR | Zbl

[18] M. Costabel and M. Dauge, Singularities of electromagnetic fields in polyhedral domains. Arch. Ration. Mech. Anal. 151 (2000) 221–276. | DOI | MR | Zbl

[19] M. Costabel and M. Dauge, Weighted regularization of Maxwell equations in polyhedral domains. A rehabilitation of nodal finite elements. Numer. Math. 93 (2002) 239–277. | DOI | MR | Zbl

[20] M. Costabel, M. Dauge and S. Nicaise, Singularities of Maxwell interface problems. ESAIM: M2AN 33 (1999) 627–649. | DOI | Numdam | MR | Zbl

[21] W. E and B. Engquist, The heterogeneous multiscale methods. Commun. Math. Sci. 1 (2003) 87–132. | DOI | MR | Zbl

[22] W. E and B. Engquist, Multiscale methods in science and engineering. Lect. Notes Comput. Sci. Eng. Springer, Berlin (2005) 89–110. | Zbl

[23] W. E, P. Ming and P. Zhang, Analysis of the heterogeneous multiscale method for elliptic homogenization problems. J. Amer. Math. Soc. 18 (2005) 121–156. | MR | Zbl

[24] A. Efros and A. Pokrovsky, Dielectroc photonic crystal as medium with negative electric permittivity and magnetic permeability. Solid State Commun. 129 (2004) 643–647. | DOI

[25] A. Ern and J.-L. Guermond, Analysis of the edge finite element approximation of the Maxwell equations with low regularity solutions, Comput. Math. Appl. 15 (2017) 918–932. | MR | Zbl

[26] A. Ern and J.-L. Guermond, Finite element quasi-interpolation and best approximation. ESAIM: M2AN 51 (2017) 1367–1385. | DOI | Numdam | MR | Zbl

[27] X. Feng, P. Lu and X. Xu, A hybridizable discontinuous Galerkin method for the time-harmonic Maxwell equations with high wave number. Comput. Methods Appl. Math. 16 (2016) 429–445. | DOI | MR | Zbl

[28] X. Feng and H. Wu, An absolutely stable discontinuous Galerkin method for the indefinite time-harmonic Maxwell equations with large wave number. SIAM J. Numer. Anal. 52 (2014) 2356–2380. | DOI | MR | Zbl

[29] D. Gallistl, P. Henning and B. Verfürth, Numerical homogenization of H(curl)-problems. SIAM J. Numer. Anal. 56 (2018) 1570–1596. | DOI | MR | Zbl

[30] D. Gallistl and D. Peterseim, Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering. Comput. Methods Appl. Mech. Engrg. 295 (2015) 1–17. | DOI | MR | Zbl

[31] G.N. Gatica and S. Meddahi, Finite element analysis of a time harmonic Maxwell problem with an impedance boundary condition. IMA J. Numer. Anal. 32 (2012) 534–552. | DOI | MR | Zbl

[32] A. Gloria, An analytical framework for the numerical homogenization of monotone elliptic operators and quasiconvex energies. Multiscale Model. Simul. 5 (2006) 996–1043. | DOI | MR | Zbl

[33] P. Henning and M. Ohlberger, Error control and adaptivity for heterogeneous multiscale approximations of nonlinear monotone problems. Discrete Contin. Dyn. Syst. Ser. S 8 (2015) 119–150. | MR | Zbl

[34] P. Henning, M. Ohlberger and B. Verfürth, A new Heterogeneous Multiscale Method for time-harmonic Maxwell’s equations. SIAM J. Numer. Anal. 54 (2016) 3493–3522. | DOI | MR | Zbl

[35] R. Hiptmair, Finite elements in computational electromagnetism. Acta Numer. 11 (2002) 237–339. | DOI | MR | Zbl

[36] R. Hiptmair, Computational electromagnetism. In Vol. 2148 of Lecture Notes in Math. Springer, Cham (2015) 1–58. | MR

[37] R. Hiptmair, A. Moiola and I. Perugia, Stability results for the time-harmonic Maxwell equations with impedance boundary conditions. Math. Models Methods Appl. Sci. 21 (2011) 2263–2287. | DOI | MR | Zbl

[38] R. Hiptmair, A. Moiola and I. Perugia, Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations. Math. Comp. 82 (2013) 247–268. | DOI | MR | Zbl

[39] V.H. Hoang and C. Schwab, High-dimensional finite elements for elliptic problems with multiple scales. Multiscale Model. Simul. 3 (2004) 168–194. | DOI | MR | Zbl

[40] A. Lamacz and B. Schweizer, A negative index meta-material for Maxwell’s equations. SIAM J. Math. Anal. 48 (2016) 4155–4174. | DOI | MR | Zbl

[41] P. Lu, H. Chen and W. Qiu, An absolutely stable #-HDG method for the time-harmonic Maxwell equations with high wave number. Math. Comp. 86 (2017) 1553–1577. | DOI | MR | Zbl

[42] C. Luo, S.G. Johnson, J. Joannopolous and J. Pendry, All-angle negative refraction without negative effective index. Phys. Rev. B 65 (2002) 2001104.

[43] A. Målqvist and D. Peterseim, Localization of elliptic multiscale problems. Math. Comp. 83 (2014) 2583–2603. | DOI | MR | Zbl

[44] J.M. Melenk and S. Sauter, Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation. SIAM J. Numer. Anal. 49 (2011) 1210–1243. | DOI | MR | Zbl

[45] J.M. Melenk and S. Sauter, Wavenumber-explicit hp-FEM analysis for Maxwell’s equations with transparent boundary conditions. Preprint arXiv:1803.01619 (2018). | MR

[46] R. Milk, F. Schindler, dune-gdt, 2015

[47] A. Moiola, Trefftz-Discontinuous Galerkin methods for time-harmonic wave problems. Ph.D. thesis, ETH Zürich (2011).

[48] P. Monk, Finite element methods for Maxwell’s equations, Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2003). | DOI | MR | Zbl

[49] M. Ohlberger, A posteriori error estimates for the heterogeneous multiscale finite element method for elliptic homogenization problems. Multiscale Model. Simul. 4 (2005) 88–114. | DOI | MR | Zbl

[50] M. Ohlberger and B. Verfürth, Localized Orthogonal Decomposition for two-scale Helmholtz-type problems. AIMS Math. 2 (2017) 458–478. | DOI | Zbl

[51] M. Ohlberger and B. Verfürth, A new Heterogeneous Multiscale Method for the Helmholtz equation with high contrast. Mulitscale Model. Simul. 16 (2018) 385–411. | DOI | MR | Zbl

[52] D. Peterseim, Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, edited by G.R. Barrenechea, F. Brezzi, A. Cangiani and E.H. Georgoulis. In Vol. 114 of Lect. Notes Comput. Sci. Eng. Springer (2016) 341–367.

[53] D. Peterseim, Eliminating the pollution effect in Helmholtz problems by local subscale correction. Math. Comp. 86 (2017) 1005–1036. | DOI | MR | Zbl

[54] A. Pokrovsky and A. Efros, Diffraction theory and focusing of light by a slab of left-handed material. Proceedings of the Sixth International Conference on Electrical Transport and Optical Properties of Inhomogeneous Media. Phys. B: Cond. Matter 338 (2003) 333–337. | DOI

[55] S.A. Sauter, A refined finite element convergence theory for highly indefinite Helmholtz problems. Computing 78 (2006) 101–115. | DOI | MR | Zbl

[56] B. Verfürth, Numerical homogenization for indefinite H(curl)-problems, edited by K. Mikula, D. Sevcovic and J. Urban. In: Proceedings of Equadiff 2017 Conference. Slovak University of Technology, Bratislava (2017) 137–146.

[57] A. Visintin, Two-scale convergence of first-order operators, Z. Anal. Anwend. 26 (2007) 133–164. | DOI | MR | Zbl

[58] N. Wellander, The two-scale Fourier transform approach to homogenization; periodic homogenization in Fourier space. Asymptot. Anal. 62 (2009) 1–40. | MR | Zbl

[59] N. Wellander and G. Kristensson, Homogenization of the Maxwell equations at fixed frequency, SIAM J. Appl. Math. 64 (2003) 170–195. | DOI | MR | Zbl

Cité par Sources :