Hybrid Discontinuous Galerkin methods with relaxed H(div)-conformity for incompressible flows. Part II
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 2, pp. 503-522.

The present work is the second part of a pair of papers, considering Hybrid Discontinuous Galerkin methods with relaxed H(div)-conformity. The first part mainly dealt with presenting a robust analysis with respect to the mesh size h and the introduction of a reconstruction operator to restore divergence-conformity and pressure robustness (pressure independent velocity error estimates) using a modified force discretization. The aim of this part is the presentation of a high order polynomial robust analysis for the relaxed H(div)-conforming Hybrid Discontinuous Galerkin discretization of the two dimensional Stokes problem. It is based on the recently proven polynomial robust LBB-condition for BDM elements, Lederer and Schöberl (IMA J. Numer. Anal. (2017)) and is derived by a direct approach instead of using a best approximation Céa like result. We further treat the impact of the reconstruction operator on the hp analysis and present a numerical investigation considering polynomial robustness. We conclude the paper presenting an efficient operator splitting time integration scheme for the Navier–Stokes equations which is based on the methods recently presented in Lehrenfeld and Schöberl (Comp. Methods Appl. Mech. Eng. 307 (2016) 339–361) and includes the ideas of the reconstruction operator.

DOI : 10.1051/m2an/2018054
Classification : 35Q30, 65N12, 65N22, 65N30
Mots-clés : Stokes equations, Hybrid Discontinuous Galerkin methods, H(div)-conforming finite elements, pressure robustness, high order methods
Lederer, Philip L. 1 ; Lehrenfeld, Christoph 1 ; Schöberl, Joachim 1

1
@article{M2AN_2019__53_2_503_0,
     author = {Lederer, Philip L. and Lehrenfeld, Christoph and Sch\"oberl, Joachim},
     title = {Hybrid {Discontinuous} {Galerkin} methods with relaxed {H(div)-conformity} for incompressible flows. {Part} {II}},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {503--522},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {2},
     year = {2019},
     doi = {10.1051/m2an/2018054},
     mrnumber = {3942180},
     zbl = {1434.35058},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2018054/}
}
TY  - JOUR
AU  - Lederer, Philip L.
AU  - Lehrenfeld, Christoph
AU  - Schöberl, Joachim
TI  - Hybrid Discontinuous Galerkin methods with relaxed H(div)-conformity for incompressible flows. Part II
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 503
EP  - 522
VL  - 53
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2018054/
DO  - 10.1051/m2an/2018054
LA  - en
ID  - M2AN_2019__53_2_503_0
ER  - 
%0 Journal Article
%A Lederer, Philip L.
%A Lehrenfeld, Christoph
%A Schöberl, Joachim
%T Hybrid Discontinuous Galerkin methods with relaxed H(div)-conformity for incompressible flows. Part II
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 503-522
%V 53
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2018054/
%R 10.1051/m2an/2018054
%G en
%F M2AN_2019__53_2_503_0
Lederer, Philip L.; Lehrenfeld, Christoph; Schöberl, Joachim. Hybrid Discontinuous Galerkin methods with relaxed H(div)-conformity for incompressible flows. Part II. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 2, pp. 503-522. doi : 10.1051/m2an/2018054. http://www.numdam.org/articles/10.1051/m2an/2018054/

[1] I. Babuška, A. Craig, J. Mandel and J. Pitkäranta, Efficient preconditioning for the p -version finite element method in two dimensions. SIAM J. Numer. Anal. 28 (1991) 624–661. | DOI | MR | Zbl

[2] I. Babuška and M. Suri, The h p version of the finite element method with quasiuniform meshes. RAIRO Model. Math. Anal. Numer. 21 (1987) 199–238. | DOI | Numdam | MR | Zbl

[3] J. Carrero, B. Cockburn and D. Schötzau, Hybridized globally divergence-free LDG methods. Part I: the Stokes problem. Math. Comput. 75 (2006) 533–563. | DOI | MR | Zbl

[4] A. Chernov, Optimal convergence estimates for the trace of the polynomial L2-projection operator on a simplex. Math. Comput. 81 (2012) 765–787. | DOI | MR | Zbl

[5] B. Cockburn and J. Gopalakrishnan, Incompressible finite elements via hybridization. Part I: the Stokes system in two space dimensions. SIAM J. Numer. Anal. 43 (2005) 1627–1650. | DOI | MR | Zbl

[6] B. Cockburn and J. Gopalakrishnan, Incompressible finite elements via hybridization. Part II: the Stokes system in three space dimensions. SIAM J. Numer. Anal. 43 (2005) 1651–1672. | DOI | MR | Zbl

[7] B. Cockburn, J. Gopalakrishnan, N. Nguyen, J. Peraire and F.-J. Sayas, Analysis of HDG methods for Stokes flow. Math. Comput. 80 (2011) 723–760. | DOI | MR | Zbl

[8] B. Cockburn, G. Kanschat and D. Schötzau, A locally conservative LDG method for the incompressible Navier-Stokes equations. Math. Comput. 74 (2005) 1067–1095. | DOI | MR | Zbl

[9] B. Cockburn, G. Kanschat and D. Schötzau, A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations. J. Sci. Comput. 31 (2007) 61–73. | DOI | MR | Zbl

[10] D.A. Di Pietro, A. Ern, A. Linke and F. Schieweck, A discontinuous skeletal method for the viscosity-dependent stokes problem. Comput. Methods Appl. Mech. Eng. 306 (2016) 175–195. | DOI | MR | Zbl

[11] H. Egger and C. Waluga, h p analysis of a hybrid DG method for Stokes flow. IMA J. Numer. Anal. 33 (2012) 687–721. | DOI | MR | Zbl

[12] FEATFLOW Finite element software for the incompressible Navier–Stokes equations. Available at: www.featflow.de (2019).

[13] G. Fu, A high-order HDG method for the Biot’s consolidation model. Preprint arXiv: 1804.10329 (2018). | MR | Zbl

[14] G. Fu, Y. Jin and W. Qiu Parameter-free superconvergent h ( div ) -conforming HDG methods for the brinkman equations. Preprint arXiv: 1607.07662 (2016). | MR | Zbl

[15] G. Fu and C. Lehrenfeld, A strongly conservative hybrid DG/mixed FEM for the coupling of Stokes and Darcy flow. J. Sci. Comput. 77 (2018) 1605–1620. | DOI | MR | Zbl

[16] V. John, A. Linke, C. Merdon, M. Neilan and L. Rebholz, On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Rev. 59 (2017) 492–544. | DOI | MR | Zbl

[17] L.I.G. Kovasznay, Laminar flow behind a two-dimensional grid. Math. Proc. Camb. Philos. Soc. 44 (1948) 58–62. | DOI | MR | Zbl

[18] P.L. Lederer, C. Lehrenfeld and J. Schöberl Hybrid Discontinuous Galerkin methods with relaxed H ( div ) -conformity for incompressible flows. Part I. Preprint arXiv: 1707.02782 (2017). | MR | Zbl

[19] P.L. Lederer and J. Schöberl, Polynomial robust stability analysis for H(div)-conforming finite elements for the Stokes equations. IMA J. Numer. Anal. 38 (2018) 1832–1860. | DOI | MR | Zbl

[20] C. Lehrenfeld and J. Schöberl, High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows. Comput. Methods Appl. Mech. Eng. 307 (2016) 339–361. | DOI | MR | Zbl

[21] A. Linke, On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime. Comput. Methods Appl. Mech. Eng. 268 (2014) 782–800. | DOI | MR | Zbl

[22] A.J. Majda and A.L. Bertozzi, Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002). | MR | Zbl

[23] J.M. Melenk and T. Wurzer, On the stability of the boundary trace of the polynomial L2-projection on triangles and tetrahedra. Comput. Math. Appl. 67 (2014) 944–965. | DOI | MR | Zbl

[24] J.M. Melenk and T. Apel, Interpolation and quasi-interpolation in h- and hp-version finite element spaces (extended version). ASC Report – Institute for analysis and Scientific Computing – Vienna University of Technology (2015) 39.

[25] S. Rhebergen and G.N. Wells, Analysis of a hybridized/interface stabilized finite element method for the stokes equations. SIAM J. Numer. Anal. 55 (2017) 1982–2003. | DOI | MR | Zbl

[26] M. Schäfer, S. Turek, F. Durst, E. Krause and R. RannacherBenchmark computations of laminar flow around a cylinder, in Flow Simulation with High-Performance Computers II, edited by E.H. By Hirschel. In Vol. 48 of Notes on Numerical Fluid Mechanics (NNFM). Springer Vieweg+Teubner Verlag (1996).

[27] J. Schöberl, NETGEN An advancing front 2D/3D-mesh generator based on abstract rules. Comput. Visual. Sci. 1 (1997) 41–52. | DOI | Zbl

[28] J. Schöberl, C++11 implementation of finite elements in NGSolve. Technical Report ASC-2014-30, Institute for Analysis and Scientific Computing (September 2014).

[29] P.W. Schroeder and G. Lube, Divergence-free H(div)-fem for time-dependent incompressible flows with applications to high Reynolds number vortex dynamics. J. Sci. Comput. 75 (2018) 830–858. | DOI | MR | Zbl

[30] C. Schwab, p-and hp-finite Element Methods: Theory and Applications in Solid and Fluid Mechanics. Oxford University Press, Oxford (1998). | MR | Zbl

[31] B. Stamm and T.P. Wihler, h p -optimal discontinuous Galerkin methods for linear elliptic problems. Math. Comp. 79 (2010) 2117–2133. | DOI | MR | Zbl

Cité par Sources :