@article{M2AN_1987__21_2_199_0, author = {Babu\v{s}ka, I. and Suri, Manil}, title = {The $h-p$ version of the finite element method with quasiuniform meshes}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {199--238}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {21}, number = {2}, year = {1987}, mrnumber = {896241}, zbl = {0623.65113}, language = {en}, url = {http://www.numdam.org/item/M2AN_1987__21_2_199_0/} }
TY - JOUR AU - Babuška, I. AU - Suri, Manil TI - The $h-p$ version of the finite element method with quasiuniform meshes JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1987 SP - 199 EP - 238 VL - 21 IS - 2 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1987__21_2_199_0/ LA - en ID - M2AN_1987__21_2_199_0 ER -
%0 Journal Article %A Babuška, I. %A Suri, Manil %T The $h-p$ version of the finite element method with quasiuniform meshes %J ESAIM: Modélisation mathématique et analyse numérique %D 1987 %P 199-238 %V 21 %N 2 %I AFCET - Gauthier-Villars %C Paris %U http://www.numdam.org/item/M2AN_1987__21_2_199_0/ %G en %F M2AN_1987__21_2_199_0
Babuška, I.; Suri, Manil. The $h-p$ version of the finite element method with quasiuniform meshes. ESAIM: Modélisation mathématique et analyse numérique, Tome 21 (1987) no. 2, pp. 199-238. http://www.numdam.org/item/M2AN_1987__21_2_199_0/
[1] Survey Lectures on the Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, ed.), 3-359, Academic Press, New York, 1972. | MR | Zbl
and ,[2] Error estimates for the combined h and p versions of finite element method. Numer. Math. 37 (1981), 252-277. | MR | Zbl
, ,[3] Theory and performance of the h-p version of the finite element method. To appear.
, , , ,[4] Direct and inverse error estimates for finite element method. . SIAM J. Numer. Anal. 18 (1981), 515-545. | Zbl
, , ,[5] The optimal convergence rate of the p-version of the finite element method. Tech. Note BN-1045, Institute for Physical Science and Technology, University of Maryland, Oct. 1985. | Zbl
, ,[6] The p-version of the finite element method. SIAM J. Numer. Anal. 18 (1981), 515-545. | MR | Zbl
, and ,[7] On the rate of convergence of finite element method. Internat. J. Numer. Math. Engrg. 18 (1982), 323-341. | MR | Zbl
and ,[8] Interpolation Spaces. Springer, Berlin, Heidelberg, New York, 1976. | Zbl
and ,[9] The Finite Element Method for Elliptic Problems. North-Holland, 1978. | MR | Zbl
,[10] The approximation theory for the p-version of the finite element method. SIAM J. Numer. Anal. 21 (1984), 1180-1207. | MR | Zbl
,[11] The Approximation of the Solutions of Elliptic Boundary-Value Problems via the p-Version of the Finite Element Method. SIAM J. Numer. Anal. 23 (1986), 58-77. | MR | Zbl
,[12] Elliptic problems in nonsmooth domains. Pitman, Boston, 1985. | MR | Zbl
,[13] The h, p and h-p versions of the finite element method for one dimensional problem : Part 1 : The error analysis of the p-version. Tech. Note BN-1036 ; Part 2 : The error analysis of the h and h-p versions. Tech. Note BN-1037 ; Part 3 : The adaptive h-p version, Tech. Note BN-1038, IPST, University of Maryland, College Park, 1985. To appear in Nume. Math. | Zbl
and ,[14] The h-p Version of the Finite Element Method. Part I : The basic approximation results. Part II : General results and applications. To appear in Comp. Mech. 1 (1986). | MR | Zbl
, ,[15] Inequalities. Cambridge University Press, Cambridge, 1934. | JFM | Zbl
, , ,[16] Boundary value problems for elliptic equations in domains with conic or angular points. Trans. Moscow Math. Soc. (1967), 227-313. | MR | Zbl
,|17] Non-homogeneous boundary value problems and applications-I. Springer-Verlag, Berlin, Heidelberg, New York, 1972. | Zbl
, ,[18] n-widths in Approximation Theory. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1985. | MR | Zbl
,[19] Singular integrals and differentiability properties of functions. Princeton University Press, Princeton, N. J., 1970. | MR | Zbl
,[20] An Analysis of the Finite Element Method. Prentice-Hall, Inglewood Cliffs, 1973. | MR | Zbl
and ,[21] PROBE : Theoretical Manual. Noetic Technologies Corporation, St Louis, Missouri, 1985.
,[22] Computation of Stress Field Parameters in Area of Steep stress gradients. Tech. Note WU/CCM-85/1, Center for Computational Mechanics, Washington University, 1985. | Zbl
,[23] Mesh Design of the p-Version of the Finite Element Method. Lecture at Joint ASME/ASCE Mechanics Conference, Albuquerque, New Mexico, June 24-26, 1985. Report WV/CCM-85/2, Center for Computational Mechanics, Washington University, St Louis. | Zbl
,[24] Implementation of a Finite Element Software System with h- and p-Extension Capabilities. Proc., 8th Invitational UFEM Symposium : Unification of Finite Element Software Systems. Ed. by H. Kardestuncer, The University of Connecticut, May 1985.
,