The Virtual Element Method with curved edges
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 2, pp. 375-404.

In this paper we initiate the investigation of Virtual Elements with curved faces. We consider the case of a fixed curved boundary in two dimensions, as it happens in the approximation of problems posed on a curved domain or with a curved interface. While an approximation of the domain with polygons leads, for degree of accuracy k≥2, to a sub-optimal rate of convergence, we show (both theoretically and numerically) that the proposed curved VEM lead to an optimal rate of convergence.

DOI : 10.1051/m2an/2018052
Classification : 65N15, 65N30
Mots-clés : Virtual element method, polygonal meshes, curved elements
Beirão da Veiga, L. 1 ; Russo, A. 1 ; Vacca, G. 1

1
@article{M2AN_2019__53_2_375_0,
     author = {Beir\~ao da Veiga, L. and Russo, A. and Vacca, G.},
     title = {The {Virtual} {Element} {Method} with curved edges},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {375--404},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {2},
     year = {2019},
     doi = {10.1051/m2an/2018052},
     zbl = {1426.65163},
     mrnumber = {3939306},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2018052/}
}
TY  - JOUR
AU  - Beirão da Veiga, L.
AU  - Russo, A.
AU  - Vacca, G.
TI  - The Virtual Element Method with curved edges
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 375
EP  - 404
VL  - 53
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2018052/
DO  - 10.1051/m2an/2018052
LA  - en
ID  - M2AN_2019__53_2_375_0
ER  - 
%0 Journal Article
%A Beirão da Veiga, L.
%A Russo, A.
%A Vacca, G.
%T The Virtual Element Method with curved edges
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 375-404
%V 53
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2018052/
%R 10.1051/m2an/2018052
%G en
%F M2AN_2019__53_2_375_0
Beirão da Veiga, L.; Russo, A.; Vacca, G. The Virtual Element Method with curved edges. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 2, pp. 375-404. doi : 10.1051/m2an/2018052. http://www.numdam.org/articles/10.1051/m2an/2018052/

[1] S. Agmon, Lectures on elliptic boundary value problems. In Vol. 2 of Van Nostrand Mathematical Studies. D. Van Nostrand Co., Inc, Princeton, NJ, Toronto, London (1965). | MR | Zbl

[2] B. Ahmad, A. Alsaedi, F. Brezzi, L.D. Marini and A. Russo, Equivalent projectors for virtual element methods. Comput. Math. Appl. 66 (2013) 376–391. | DOI | MR | Zbl

[3] P.F. Antonietti, L. Mascotto and M. Verani, A multigrid algorithm for the p -version of the virtual element method. ESAIM: M2AN 52 (2018) 337–364. | DOI | Numdam | MR | Zbl

[4] Y. Bazilevs, L. Beirão Da Veiga, J.A. Cottrell, T.J.R. Hughes and G. Sangalli, Isogeometric analysis: approximation, stability and error estimates for h -refined meshes. Math. Models Methods Appl. Sci. 16 (2006) 1031–1090. | DOI | MR | Zbl

[5] L. Beirão Da Veiga, F. Brezzi and L.D. Marini, Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51 (2013) 794–812. | DOI | MR | Zbl

[6] L. Beirão Da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini and A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. | DOI | MR | Zbl

[7] L. Beirão Da Veiga, F. Brezzi, L.D. Marini and A. Russo, The Hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24 (2014) 1541–1573. | DOI | MR | Zbl

[8] L. Beirão Da Veiga, F. Brezzi, L.D. Marini and A. Russo, Serendipity nodal vem spaces. Comput. Fluids 141 (2016) 2–12. | DOI | MR | Zbl

[9] L. Beirão Da Veiga, F. Dassi and A. Russo, High-order virtual element method on polyhedral meshes. Comput. Math. Appl. 74 (2017) 1110–1122. | DOI | MR | Zbl

[10] L. Beirão Da Veiga, C. Lovadina and A. Russo, Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27 (2017) 2557–2594. | DOI | MR | Zbl

[11] L. Beirão Da Veiga, C. Lovadina and G. Vacca, Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM: M2AN 51 (2017) 509–535. | DOI | Numdam | MR | Zbl

[12] M.F. Benedetto, S. Berrone, S. Pieraccini and S. Scialò, The virtual element method for discrete fracture network simulations. Comput. Meth. Appl. Mech. Eng. 280 (2014) 135–156. | DOI | MR | Zbl

[13] L. Botti and D. Di Pietro, Assessment of hybrid high-order methods on curved meshes and comparison with discontinuous Galerkin methods. J. Comput. Phys. 370 (2018) 58–84. | DOI | MR | Zbl

[14] S.C. Brenner, Poincaré-Friedrichs inequalities for piecewise H1 functions. SIAM J. Numer. Anal. 41 (2003) 306–324. | DOI | MR | Zbl

[15] S.C. Brenner, Q. Guan and L. Sung, Some estimates for virtual element methods. Comput. Methods Appl. Math. 17 (2017) 553–574. | DOI | MR | Zbl

[16] S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. In Vol. 15 of Texts in Applied Mathematics. 3rd edn. Springer, New York, NY (2008). | MR | Zbl

[17] F. Brezzi, K. Lipnikov and M. Shashkov, Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes with curved faces. Math. Models Methods Appl. Sci. 16 (2006) 275–297. | DOI | MR | Zbl

[18] A. Cangiani, G. Manzini, A. Russo and N. Sukumar, Hourglass stabilization and the virtual element method. Int. J. Numer. Meth. Eng. 102 (2015) 404–436. | DOI | MR | Zbl

[19] L. Chen and J. Huang, Some error analysis on virtual element methods. Calcolo 55 (2018) 5. | DOI | MR | Zbl

[20] A. Chernov and L. Mascotto, The harmonic virtual element method: stabilization and exponential convergence for the laplace problem on polygonal domains. To appear in: IMA J. Numer. Anal. DOI : (2018). | DOI | MR | Zbl

[21] P.G. Ciarlet and P.A. Raviart, Interpolation theory over curved elements, with applications to finite element methods. Comput. Methods Appl. Mech. Eng. 1 (1972) 217–249. | DOI | MR | Zbl

[22] M. Costabel, Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19 (1988) 613–626. | DOI | MR | Zbl

[23] J.A. Cottrell, T.J.R. Hughes and Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA. John Wiley & Sons, Hoboken, NJ (2009). | DOI | MR

[24] Z. Ding, A proof of the trace theorem of Sobolev spaces on Lipschitz domains. Proc. Am. Math. Soc. 124 (1996) 591–600. | DOI | MR | Zbl

[25] A.L. Gain, C. Talischi and G.H. Paulino, On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Eng. 282 (2014) 132–160. | DOI | MR | Zbl

[26] F. Gardini and G. Vacca, Virtual element method for second order elliptic eigenvalue problems. IMA J. Numer. Anal. 38 (2018) 2026–2054. | DOI | MR | Zbl

[27] P. Grisvard, Singularities in boundary value problems and exact controllability of hyperbolic systems. In Optimization, optimal control and partial differential equations (Iaşi, 1992). In Vol. 107 of Internat. Ser. Numer. Math. Birkhäuser, Basel (1992) 77–84. | DOI | MR | Zbl

[28] T.J.R. Hughes, J.A. Cottrell and Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194 (2005) 4135–4195. | DOI | MR | Zbl

[29] M. Lenoir, Optimal isoparametric finite elements and error estimates for domains involving curved boundaries. SIAM J. Numer. Anal. 23 (1986) 562–580. | DOI | MR | Zbl

[30] J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Travaux et Recherches Mathématiques, No. 17. Dunod, Paris 1 (1968). | MR | Zbl

[31] D. Mora, G. Rivera and R. Rodriguez, A virtual element method for the Steklov eigenvalue problem. Math. Models Methods Appl. Sci. 25 (2015) 1421–1445. | DOI | MR | Zbl

[32] I. Perugia, P. Pietra and A. Russo, A plane wave virtual element method for the Helmholtz problem. ESAIM: M2AN 50 (2016) 783–808. | DOI | Numdam | MR | Zbl

[33] CAA: Padova-Verona research group on “Constructive Approximation and Applications”. NUMERICAL SOFTWARE produced by the CAA group. Available at: https://www.math.unipd.it/ https://www.math.unipd.it/marcov/CAAsoft.html (2019).

[34] R. Scott, Interpolated boundary conditions in the finite element method. SIAM J. Numer. Anal. 12 (1975) 404–427. | DOI | MR | Zbl

[35] R. Sevilla, S. Fernández-Méndez and A. Huerta, Comparison of high-order curved finite elements. Int. J. Numer. Methods Eng. 87 (2011) 719–734. | DOI | MR | Zbl

[36] A. Sommariva and M. Vianello, Product Gauss cubature over polygons based on Green’s integration formula. BIT 47 (2007) 441–453. | DOI | MR | Zbl

[37] A. Sommariva and M. Vianello, Gauss-Green cubature and moment computation over arbitrary geometries. J. Comput. Appl. Math. 231 (2009) 886–896. | DOI | MR | Zbl

[38] A. Sommariva and M. Vianello, Compression of multivariate discrete measures and applications. Numer. Funct. Anal. Optim. 36 (2015) 1198–1223. | DOI | MR | Zbl

[39] E.M. Stein, Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, NJ (1970). | MR | Zbl

[40] G. Vacca, Virtual element methods for hyperbolic problems on polygonal meshes. Comput. Math. Appl. 74 (2017) 882–898. | DOI | MR | Zbl

[41] G. Vacca, An H1-conforming virtual element for Darcy and Brinkman equations. Math. Models Methods Appl. Sci. 28 (2018) 159–194. | DOI | MR | Zbl

[42] P. Wriggers, W.T. Rust and B.D. Reddy, A virtual element method for contact. Comput. Mech. 58 (2016) 1039–1050. | DOI | MR | Zbl

[43] M. Zlámal, Curved elements in the finite element method. I. SIAM J. Numer. Anal. 10 (1973) 229–240. | DOI | MR | Zbl

Cité par Sources :