In this paper we initiate the investigation of Virtual Elements with curved faces. We consider the case of a fixed curved boundary in two dimensions, as it happens in the approximation of problems posed on a curved domain or with a curved interface. While an approximation of the domain with polygons leads, for degree of accuracy k≥2, to a sub-optimal rate of convergence, we show (both theoretically and numerically) that the proposed curved VEM lead to an optimal rate of convergence.
Mots-clés : Virtual element method, polygonal meshes, curved elements
@article{M2AN_2019__53_2_375_0, author = {Beir\~ao da Veiga, L. and Russo, A. and Vacca, G.}, title = {The {Virtual} {Element} {Method} with curved edges}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {375--404}, publisher = {EDP-Sciences}, volume = {53}, number = {2}, year = {2019}, doi = {10.1051/m2an/2018052}, zbl = {1426.65163}, mrnumber = {3939306}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2018052/} }
TY - JOUR AU - Beirão da Veiga, L. AU - Russo, A. AU - Vacca, G. TI - The Virtual Element Method with curved edges JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2019 SP - 375 EP - 404 VL - 53 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2018052/ DO - 10.1051/m2an/2018052 LA - en ID - M2AN_2019__53_2_375_0 ER -
%0 Journal Article %A Beirão da Veiga, L. %A Russo, A. %A Vacca, G. %T The Virtual Element Method with curved edges %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2019 %P 375-404 %V 53 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2018052/ %R 10.1051/m2an/2018052 %G en %F M2AN_2019__53_2_375_0
Beirão da Veiga, L.; Russo, A.; Vacca, G. The Virtual Element Method with curved edges. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 2, pp. 375-404. doi : 10.1051/m2an/2018052. http://www.numdam.org/articles/10.1051/m2an/2018052/
[1] Lectures on elliptic boundary value problems. In Vol. 2 of Van Nostrand Mathematical Studies. D. Van Nostrand Co., Inc, Princeton, NJ, Toronto, London (1965). | MR | Zbl
,[2] Equivalent projectors for virtual element methods. Comput. Math. Appl. 66 (2013) 376–391. | DOI | MR | Zbl
, , , and ,[3] A multigrid algorithm for the -version of the virtual element method. ESAIM: M2AN 52 (2018) 337–364. | DOI | Numdam | MR | Zbl
, and ,[4] Isogeometric analysis: approximation, stability and error estimates for -refined meshes. Math. Models Methods Appl. Sci. 16 (2006) 1031–1090. | DOI | MR | Zbl
, , , and ,[5] Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51 (2013) 794–812. | DOI | MR | Zbl
, and ,[6] Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. | DOI | MR | Zbl
, , , , and ,[7] The Hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24 (2014) 1541–1573. | DOI | MR | Zbl
, , and ,[8] Serendipity nodal vem spaces. Comput. Fluids 141 (2016) 2–12. | DOI | MR | Zbl
, , and ,[9] High-order virtual element method on polyhedral meshes. Comput. Math. Appl. 74 (2017) 1110–1122. | DOI | MR | Zbl
, and ,[10] Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27 (2017) 2557–2594. | DOI | MR | Zbl
, and ,[11] Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM: M2AN 51 (2017) 509–535. | DOI | Numdam | MR | Zbl
, and ,[12] The virtual element method for discrete fracture network simulations. Comput. Meth. Appl. Mech. Eng. 280 (2014) 135–156. | DOI | MR | Zbl
, , and ,[13] Assessment of hybrid high-order methods on curved meshes and comparison with discontinuous Galerkin methods. J. Comput. Phys. 370 (2018) 58–84. | DOI | MR | Zbl
and ,[14] Poincaré-Friedrichs inequalities for piecewise H1 functions. SIAM J. Numer. Anal. 41 (2003) 306–324. | DOI | MR | Zbl
,[15] Some estimates for virtual element methods. Comput. Methods Appl. Math. 17 (2017) 553–574. | DOI | MR | Zbl
, and ,[16] The mathematical theory of finite element methods. In Vol. 15 of Texts in Applied Mathematics. 3rd edn. Springer, New York, NY (2008). | MR | Zbl
and ,[17] Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes with curved faces. Math. Models Methods Appl. Sci. 16 (2006) 275–297. | DOI | MR | Zbl
, and ,[18] Hourglass stabilization and the virtual element method. Int. J. Numer. Meth. Eng. 102 (2015) 404–436. | DOI | MR | Zbl
, , and ,[19] Some error analysis on virtual element methods. Calcolo 55 (2018) 5. | DOI | MR | Zbl
and ,[20] The harmonic virtual element method: stabilization and exponential convergence for the laplace problem on polygonal domains. To appear in: IMA J. Numer. Anal. DOI : (2018). | DOI | MR | Zbl
and ,[21] Interpolation theory over curved elements, with applications to finite element methods. Comput. Methods Appl. Mech. Eng. 1 (1972) 217–249. | DOI | MR | Zbl
and ,[22] Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19 (1988) 613–626. | DOI | MR | Zbl
,[23] Isogeometric Analysis: Toward Integration of CAD and FEA. John Wiley & Sons, Hoboken, NJ (2009). | DOI | MR
, and ,[24] A proof of the trace theorem of Sobolev spaces on Lipschitz domains. Proc. Am. Math. Soc. 124 (1996) 591–600. | DOI | MR | Zbl
,[25] On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Eng. 282 (2014) 132–160. | DOI | MR | Zbl
, and ,[26] Virtual element method for second order elliptic eigenvalue problems. IMA J. Numer. Anal. 38 (2018) 2026–2054. | DOI | MR | Zbl
and ,[27] Singularities in boundary value problems and exact controllability of hyperbolic systems. In Optimization, optimal control and partial differential equations (Iaşi, 1992). In Vol. 107 of Internat. Ser. Numer. Math. Birkhäuser, Basel (1992) 77–84. | DOI | MR | Zbl
,[28] Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194 (2005) 4135–4195. | DOI | MR | Zbl
, and ,[29] Optimal isoparametric finite elements and error estimates for domains involving curved boundaries. SIAM J. Numer. Anal. 23 (1986) 562–580. | DOI | MR | Zbl
,[30] Problèmes aux limites non homogènes et applications. Travaux et Recherches Mathématiques, No. 17. Dunod, Paris 1 (1968). | MR | Zbl
and ,[31] A virtual element method for the Steklov eigenvalue problem. Math. Models Methods Appl. Sci. 25 (2015) 1421–1445. | DOI | MR | Zbl
, and ,[32] A plane wave virtual element method for the Helmholtz problem. ESAIM: M2AN 50 (2016) 783–808. | DOI | Numdam | MR | Zbl
, and ,[33] CAA: Padova-Verona research group on “Constructive Approximation and Applications”. NUMERICAL SOFTWARE produced by the CAA group. Available at: https://www.math.unipd.it/ https://www.math.unipd.it/marcov/CAAsoft.html (2019).
[34] Interpolated boundary conditions in the finite element method. SIAM J. Numer. Anal. 12 (1975) 404–427. | DOI | MR | Zbl
,[35] Comparison of high-order curved finite elements. Int. J. Numer. Methods Eng. 87 (2011) 719–734. | DOI | MR | Zbl
, and ,[36] Product Gauss cubature over polygons based on Green’s integration formula. BIT 47 (2007) 441–453. | DOI | MR | Zbl
and ,[37] Gauss-Green cubature and moment computation over arbitrary geometries. J. Comput. Appl. Math. 231 (2009) 886–896. | DOI | MR | Zbl
and ,[38] Compression of multivariate discrete measures and applications. Numer. Funct. Anal. Optim. 36 (2015) 1198–1223. | DOI | MR | Zbl
and ,[39] Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, NJ (1970). | MR | Zbl
,[40] Virtual element methods for hyperbolic problems on polygonal meshes. Comput. Math. Appl. 74 (2017) 882–898. | DOI | MR | Zbl
,[41] An H1-conforming virtual element for Darcy and Brinkman equations. Math. Models Methods Appl. Sci. 28 (2018) 159–194. | DOI | MR | Zbl
,[42] A virtual element method for contact. Comput. Mech. 58 (2016) 1039–1050. | DOI | MR | Zbl
, and ,[43] Curved elements in the finite element method. I. SIAM J. Numer. Anal. 10 (1973) 229–240. | DOI | MR | Zbl
,Cité par Sources :