We present a multigrid algorithm for the solution of the linear systems of equations stemming from the p-version of the virtual element discretization of a two-dimensional Poisson problem. The sequence of coarse spaces are constructed decreasing progressively the polynomial approximation degree of the virtual element space, as in standard p-multigrid schemes. The construction of the interspace operators relies on auxiliary virtual element spaces, where it is possible to compute higher order polynomial projectors. We prove that the multigrid scheme is uniformly convergent, provided the number of smoothing steps is chosen sufficiently large. We also demonstrate that the resulting scheme provides a uniform preconditioner with respect to the number of degrees of freedom that can be employed to accelerate the convergence of classical Krylov-based iterative schemes. Numerical experiments validate the theoretical results.
Mots-clés : Polygonal meshes, virtual element methods, p Galerkin methods, p multigrid
@article{M2AN_2018__52_1_337_0, author = {Antonietti, Paola F. and Mascotto, Lorenzo and Verani, Marco}, title = {A multigrid algorithm for the p-version of the virtual element method}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {337--364}, publisher = {EDP-Sciences}, volume = {52}, number = {1}, year = {2018}, doi = {10.1051/m2an/2018007}, mrnumber = {3808163}, zbl = {1397.65249}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2018007/} }
TY - JOUR AU - Antonietti, Paola F. AU - Mascotto, Lorenzo AU - Verani, Marco TI - A multigrid algorithm for the p-version of the virtual element method JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2018 SP - 337 EP - 364 VL - 52 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2018007/ DO - 10.1051/m2an/2018007 LA - en ID - M2AN_2018__52_1_337_0 ER -
%0 Journal Article %A Antonietti, Paola F. %A Mascotto, Lorenzo %A Verani, Marco %T A multigrid algorithm for the p-version of the virtual element method %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2018 %P 337-364 %V 52 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2018007/ %R 10.1051/m2an/2018007 %G en %F M2AN_2018__52_1_337_0
Antonietti, Paola F.; Mascotto, Lorenzo; Verani, Marco. A multigrid algorithm for the p-version of the virtual element method. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 1, pp. 337-364. doi : 10.1051/m2an/2018007. http://www.numdam.org/articles/10.1051/m2an/2018007/
[1] Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables. (1964). | Zbl
and ,[2] Sobolev Spaces. Academic Press (2003) Vol. 140. | MR | Zbl
and ,[3] Equivalent projectors for virtual element method. Comput. Math. Appl. 66 (2013) 376–391. | DOI | MR | Zbl
, , , and ,[4] Bubble stabilization of discontinuous Galerkin methods. Comput. Methods Appl. Mech. Eng. 198 (2009) 1651–1659. | DOI | MR | Zbl
, and ,[5] hp-version composite discontinuous Galerkin methods for elliptic problems on complicated domains. SIAM J. Sci. Comput. 35 (2013) A1417–A1439 | DOI | MR | Zbl
, and ,[6] A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52 (2014) 386–404. | DOI | MR | Zbl
, and ,[7] Multigrid algorithms for hp-discontinuous Galerkin discretizations of elliptic problems. SIAM J. Numer. Anal. 53 (2015) 598–618. | DOI | MR | Zbl
, and ,[8] A C1 virtual element method for the Cahn-Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54 (2016) 34–56. | DOI | MR | Zbl
, , and ,[9] Discontinuous Galerkin approximation of flows in fractured porous media on polygonal and polyhedral meshes. MOX Report 55/2016 (2016).
, , and ,[10] Multigrid algorithms for high order discontinuous Galerkin methods. Lect. Notes Comput. Sci. Eng. 104 (2016) 3–13. | DOI | MR | Zbl
, and ,[11] On the virtual element method for topology optimization on polygonal meshes: a numerical study. Comput. Math. Appl. 74 (2017) 1091–1109. | DOI | MR | Zbl
, , and[12] Multigrid algorithms for hp-version interior penalty discontinuous Galerkin methods on polygonal and polyhedral meshes. Calcolo 54 (2017) 1169–1198. | DOI | MR | Zbl
, , , and ,[13] The fully nonconforming virtual element method for biharmonic problems. M3AS: Math. Models Methods Appl. Sci. 28 (2018) 387–407. | MR | Zbl
, and ,[14] The nonconforming virtual element method. ESAIM: M2AN 50 (2016) 879–904. | DOI | Numdam | MR | Zbl
, and ,[15] On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations. J. Comput. Phys. 231 (2012) 45–65. | DOI | MR | Zbl
, , , and ,[16] Agglomeration-based physical frame DG discretizations: an attempt to be mesh free. M3AS: Math. Model. Methods Appl. Sci. 24 (2014) 1495–1539. | MR | Zbl
, , , and ,[17] Basic principles of virtual element methods. M3AS: Math. Model. Methods Appl. Sci. 23 (2013) 199–214. | MR | Zbl
, , , , and ,[18] Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51 (2013) 794–812. | DOI | MR | Zbl
, and ,[19] The Hitchhiker’s guide to the virtual element method. M3AS: Math. Model. Methods Appl. Sci. 24 (2014) 1541–1573. | MR | Zbl
, , and ,[20] The Mimetic Finite Difference Method for Elliptic Problems. Vol. 11 of MS&A. Model. Simul. Appl. Springer, Cham (2014). | MR | Zbl
, and ,[21] A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Eng. 295 (2015) 327–346. | DOI | MR | Zbl
, and ,[22] Virtual element methods for parabolic problems on polygonal meshes. Numer. Methods Partial Differ. Equ. 31 (2015) 2110–2134. | DOI | MR | Zbl
and ,[23] Basic principles of hp virtual elements on quasiuniform meshes. M3AS: Math. Model. Methods Appl. Sci. 26 (2016) 1567–1598. | MR | Zbl
, , and ,[24] Virtual element method for general second order elliptic problems on polygonal meshes. M3AS: Math. Model. Methods Appl. Sci. 26 (2016) 729–750. | MR | Zbl
, , and ,[25] Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM: M2AN 50 (2016) 727–747. | DOI | Numdam | MR | Zbl
, , and ,[26] H (div) and H(curl)-conforming virtual element methods. Numer. Math. 133 (2016) 303–332. | MR | Zbl
, , and ,[27] Serendipity nodal VEM spaces. Comput. Fluids 141 (2016) 2–12. | DOI | MR | Zbl
, , and ,[28] Exponential convergence of the hp virtual element method with corner singularity. Numer. Math. 138 (2018) 581–613. | DOI | MR | Zbl
, , and ,[29] The virtual element method for discrete fracture network simulations. Comput. Methods Appl. Mech. Eng. 280 (2014) 135–156. | DOI | MR | Zbl
, , and ,[30] Polynomial interpolation results in Sobolev spaces. J. Comput. Appl. Math. 43 (1992) 53–80. | DOI | MR | Zbl
and ,[31] BDDC and FETI-DP for the virtual element method. Calcolo 54 (2017) 1565–1593. | DOI | MR | Zbl
, and ,[32] Multigrid Methods. CRC Press (1993) Vol. 294. | MR | Zbl
,[33] The Mathematical Theory of Finite Element Methods, 3rd edn. Vol. 15 of Texts in Applied Mathematics. Springer-Verlag, New York (2008). | DOI | MR | Zbl
and ,[34] Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253 (2013) 455–462. | DOI | MR | Zbl
and ,[35] Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43 (2005) 1872–1896. | DOI | MR | Zbl
, and ,[36] Basic principles of mixed virtual element methods. ESAIM: M2AN 48 (2014) 1227–1240. | DOI | Numdam | MR | Zbl
, and ,[37] hp-version discontinuous Galerkin methods on polygonal and polyhedral meshes. M3AS: Math. Model. Methods Appl. Sci. 24 (2014) 2009–2041. | MR | Zbl
, and ,[38] hp-version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes. ESAIM: M2AN 50 (2016) 699–725. | DOI | Numdam | MR | Zbl
, , and ,[39] The nonconforming virtual element method for the Stokes equations. SIAM J. Numer. Anal. 54 (2016) 3411–3435. | DOI | MR | Zbl
, and ,[40] hp-version space-time discontinuous Galerkin methods for parabolic problems on prismatic meshes. SIAM J. Sci. Comput. 39 (2017) A1251–A1279. | DOI | MR | Zbl
, and[41] A posteriori error estimates for the virtual element method. Numer. Math. 137 (2017) 857–893. | DOI | MR | Zbl
, , and ,[42] A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comput. 77 (2008) 1887–1916. | DOI | MR | Zbl
, and ,[43] Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM: M2AN 50 (2016) 635–650. | DOI | Numdam | MR | Zbl
, and ,[44] Exploring high-order three dimensional virtual elements: bases and stabilizations. Comput. Math Appl. 75 (2018) 3379–3401. | DOI | MR | Zbl
and ,[45] An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14 (2014) 461–472. | DOI | MR | Zbl
, and ,[46] Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations. M3AS: Math. Model. Methods Appl. Sci. 23 (2013) 2395–2432. | MR | Zbl
, , and ,[47] Partial Differential Equations. American Mathematical Society (2010). | MR | Zbl
,[48] Small-stencil 3D schemes for diffusive flows in porous media. ESAIM: M2AN 46 (2012) 265–290. | DOI | Numdam | MR | Zbl
, and ,[49] Virtual element method for the Laplace Beltrami equation on surfaces. To appear in: ESAIM: M2AN DOI: (2017). | DOI | Numdam | MR | Zbl
and ,[50] On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Eng. 282 (2014) 132–160. | DOI | MR | Zbl
, and ,[51] The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials. J. Comput. Phys. 132 (1997) 130–148. | DOI | MR | Zbl
, and ,[52] Mimetic finite difference method. J. Comput. Phys. 257 (2014) 1163–1227. | DOI | MR | Zbl
, and ,[53] Ill-conditioning in the virtual element method: stabilizations and bases. To appear in: Numer. Methods Partial Differ. Equ. DOI: (2017). | DOI | MR | Zbl
,[54] A virtual element method for the Steklov eigenvalue problem. M3AS: Math. Model. Methods Appl. Sci. 25 (2015) 1421–1445. | MR | Zbl
, and ,[55] A plane wave virtual element method for the Helmholtz problem. ESAIM: M2AN 50 (2016) 783–808. | DOI | Numdam | MR | Zbl
, and ,[56] Higher order BEM-based FEM on polygonal meshes. SIAM J. Numer. Anal. 50 (2012) 2357–2378. | DOI | MR | Zbl
and ,[57] p-and hp-Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics. Clarendon Press, Oxford (1998). | MR | Zbl
,[58] Conforming polygonal finite elements. Int. J. Numer. Methods Eng. 61 (2014) 2045–2066. | DOI | MR | Zbl
and ,[59] Extended finite element method on polygonal and quadtree meshes. Comput. Methods Appl. Mech. Eng. 197 (2008) 425–438. | DOI | MR | Zbl
and ,[60] An Introduction to Sobolev Spaces and Interpolation Spaces. Springer Science & Business Media Vol. 3 (2007). | MR | Zbl
,[61] Interpolation Theory, Function Spaces, Differential Operators. North-Holland (1978). | MR | Zbl
,[62] The nonconforming virtual element method for plate bending problems. M3AS: Math. Model. Methods Appl. Sci. 26 (2016) 1671–1687. | MR | Zbl
, and ,Cité par Sources :