A variational formulation of the BDF2 method for metric gradient flows
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 1, pp. 145-172.

We propose a variational form of the BDF2 method as an alternative to the commonly used minimizing movement scheme for the time-discrete approximation of gradient flows in abstract metric spaces. Assuming uniform semi-convexity – but no smoothness – of the augmented energy functional, we prove well-posedness of the method and convergence of the discrete approximations to a curve of steepest descent. In a smooth Hilbertian setting, classical theory would predict a convergence order of two in time, we prove convergence order of one-half in the general metric setting and under our weak hypotheses. Further, we illustrate these results with numerical experiments for gradient flows on a compact Riemannian manifold, in a Hilbert space, and in the L2-Wasserstein metric.

DOI : 10.1051/m2an/2018045
Classification : 34G25, 35A15, 35G25, 35K46, 65L06, 65J08
Mots-clés : Gradient flow, second order scheme, BDF2, multistep discretization, minimizing movements, parabolic equations, nonlinear diffusion equations
Matthes, Daniel 1 ; Plazotta, Simon 1

1
@article{M2AN_2019__53_1_145_0,
     author = {Matthes, Daniel and Plazotta, Simon},
     title = {A variational formulation of the {BDF2} method for metric gradient flows},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {145--172},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {1},
     year = {2019},
     doi = {10.1051/m2an/2018045},
     mrnumber = {3934881},
     zbl = {1416.65150},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2018045/}
}
TY  - JOUR
AU  - Matthes, Daniel
AU  - Plazotta, Simon
TI  - A variational formulation of the BDF2 method for metric gradient flows
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 145
EP  - 172
VL  - 53
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2018045/
DO  - 10.1051/m2an/2018045
LA  - en
ID  - M2AN_2019__53_1_145_0
ER  - 
%0 Journal Article
%A Matthes, Daniel
%A Plazotta, Simon
%T A variational formulation of the BDF2 method for metric gradient flows
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 145-172
%V 53
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2018045/
%R 10.1051/m2an/2018045
%G en
%F M2AN_2019__53_1_145_0
Matthes, Daniel; Plazotta, Simon. A variational formulation of the BDF2 method for metric gradient flows. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 1, pp. 145-172. doi : 10.1051/m2an/2018045. http://www.numdam.org/articles/10.1051/m2an/2018045/

[1] G. Akrivis and M. Crouzeix, Linearly implicit methods for nonlinear parabolic equations. Math. Comput. 73 (2004) 613–635. | DOI | MR | Zbl

[2] G. Akrivis and C. Lubich, Fully implicit, linearly implicit and implicit–explicit backward difference formulae for quasi-linear parabolic equations. Numer. Math. 131 (2015) 713–735. | DOI | MR | Zbl

[3] L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2nd edn. (2008). | MR | Zbl

[4] C. Baiocchi and M. Crouzeix, On the equivalence of #-stability and #-stability. Recent theoretical results in numerical ordinary differential equations. Appl. Numer. Math. 5 (1989) 19–22. | MR | Zbl

[5] J.-D. Benamou, G. Carlier, Q. Mérigot and E. Oudet, Discretization of functionals involving the Monge-Ampère operator. Numer. Math. 134 (2016) 611–636. | DOI | MR | Zbl

[6] A. Blanchet, V. Calvez and J.A. Carrillo. Convergence of the mass-transport steepest descent scheme for the subcritical Patlak–Keller–Segel model, SIAM J. Numer. Anal. 46 (2008) 691–721. | DOI | MR | Zbl

[7] A. Blanchet and P. Laurençot, The parabolic-parabolic Keller-Segel system with critical diffusion as a gradient flow in d , R 3 . Comm. Part. Differ. Equ. 38 (2013) 658–686. | DOI | MR | Zbl

[8] J.H. Bramble, J.E. Pasciak, P.H. Sammon and V. Thomée, Incomplete iterations in multistep backward difference methods for parabolic problems with smooth and nonsmooth data. Math. Comput. 52 (1989) 339–367. | DOI | MR | Zbl

[9] J.A. Carrillo, M. Difrancesco, A. Figalli, T. Laurent and D. Slepčev, Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations. Duke Math. J. 156 (2011) 229–271. | DOI | MR | Zbl

[10] P.E. Crouch and R. Grossman, Numerical integration of ordinary differential equations on manifolds. J. Nonlinear Sci. 3 (1993) 1–33. | DOI | MR | Zbl

[11] G. Dahlquist, Convergence and stability in the numerical integration of ordinary differential equations. Math. Scand. 4 (1956) 33–53. | DOI | MR | Zbl

[12] G.G. Dahlquist, A special stability problem for linear multistep methods. BIT Numer. Math. 3 (1963) 27–43. | DOI | MR | Zbl

[13] S. Daneri and G. Savaré, Eulerian calculus for the displacement convexity in the Wasserstein distance. SIAM J. Math. Anal. 40 (2008) 1104–1122. | DOI | MR | Zbl

[14] E. De Giorgi, New problems on minimizing movements. Ennio de Giorgi: Sel. Pap. 29 (1993) 699–713. | MR | Zbl

[15] P. Deuflhard and F. Bornemann, Scientific Computing with Ordinary Differential Equations. Springer Science & Business Media, Berlin, Heidelberg (2012). | MR | Zbl

[16] E. Emmrich. Stability and error of the variable two-step BDF for semilinear parabolic problems, J. Appl. Math. Comput. 19 (2005) 33–55. | DOI | MR | Zbl

[17] E. Emmrich, Convergence of the variable two-step BDF time discretisation of nonlinear evolution problems governed by a monotone potential operator. BIT Numer. Math. 49 (2009) 297–323. | DOI | MR | Zbl

[18] E. Emmrich, Two-step BDF time discretisation of nonlinear evolution problems governed by monotone operators with strongly continuous perturbations. Comput. Methods Appl. Math. 9 (2009) 37–62. | DOI | MR | Zbl

[19] L.C. Ferreira and J.C. Valencia-Guevara, Gradient flows of time-dependent functionals in metric spaces and applications to pdes. Monatsh. Math. 185 (2018) 231–268. | DOI | MR | Zbl

[20] C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations. Prentice Hall PTR, Upper Saddle River, NJ, USA (1971). | Zbl

[21] C.W. Gear and L.R. Petzold, ODE methods for the solution of differential/algebraic systems. SIAM J. Numer. Anal. 21 (1984) 716–728. | DOI | MR | Zbl

[22] L. Giacomelli and F. Otto, Variatonal formulation for the lubrication approximation of the Hele-Shaw flow. Calc. Var. Part. Differ. Equ. 13 (2001) 377–403. | DOI | MR | Zbl

[23] U. Gianazza, G. Savaré and G. Toscani, The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation. Arch. Ration. Mech. Anal. 194 (2009) 133–220. | DOI | MR | Zbl

[24] A. Glitzky and A. Mielke, A gradient structure for systems coupling reaction–diffusion effects in bulk and interfaces. Z. Angew. Math. Phys. 64 (2013) 29–52. | DOI | MR | Zbl

[25] E. Hairer and C. Lubich, Energy-diminishing integration of gradient systems. IMA J. Numer. Anal. 34 (2014) 452–461. | DOI | MR | Zbl

[26] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II – Stiff and Differential - Algebraic Problems. Springer Science & Business Media, Berlin, Heidelberg (2013). | MR | Zbl

[27] E. Hansen, Convergence of multistep time discretizations of nonlinear dissipative evolution equations. SIAM J. Numer. Anal. 44 (2006) 55–65. | DOI | MR | Zbl

[28] R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29 (1998) 1–17. | DOI | MR | Zbl

[29] O. Junge, D. Matthes and H. Osberger, A fully discrete variational scheme for solving nonlinear Fokker-Planck equations in multiple space dimensions. SIAM J. Numer. Anal. 55 (2017) 419–443. | DOI | MR | Zbl

[30] Y.-H. Kim and R.J. Mccann, Continuity, curvature, and the general covariance of optimal transportation. J. Eur. Math. Soc. (JEMS) 12 (2010) 1009–1040. | DOI | MR | Zbl

[31] Y.-H. Kim and R.J. Mccann, Towards the smoothness of optimal maps on Riemannian submersions and Riemannian products (of round spheres in particular). J. Peine Angew. Math. (Crelles J.) 2012 (2012) 1–27. | DOI | MR | Zbl

[32] D. Kinderlehrer, L. Monsaingeon and X. Xu, A Wasserstein gradient flow approach to Poisson-Nernst-Planck equations. ESAIM: COCV 23 (2017) 137–164. | Numdam | MR | Zbl

[33] H. Kreth, Time-discretisations for nonlinear evolution equations. In: Numerical Treatment of Differential Equations in Applications. In Vol. 679. Springer (1978) 57–63. | DOI | MR | Zbl

[34] L. Laguzet, High order variational numerical schemes with application to Nash-MFG vaccination games. Ricerche Mat. 67 (2018) 247–269. | DOI | MR | Zbl

[35] P. Laurençot and B.-V. Matioc, A gradient flow approach to a thin film approximation of the Muskat problem. Calc. Var. Part. Differ. Equ. 47 (2013) 319–341. | DOI | MR | Zbl

[36] M.-N. Le Roux, Semidiscretization in time for parabolic problems. Math. Comput. 33 (1979) 919–931. | DOI | MR | Zbl

[37] G. Legendre and G. Turinici, Second-order in time schemes for gradient flows in Wasserstein and geodesic metric spaces. C. R. Math. 355 (2017) 345–353. | DOI | MR | Zbl

[38] S. Lisini, D. Matthes and G. Savaré, Cahn-Hilliard and thin film equations with nonlinear mobility as gradient flows in weighted-Wasserstein metrics. J. Differ. Equ. 253 (2012) 814–850. | DOI | MR | Zbl

[39] X.-N. Ma, N.S. Trudinger and X.-J. Wang, Regularity of potential functions of the optimal transportation problem. Arch. Ration. Mech. Anal. 177 (2005) 151–183. | DOI | MR | Zbl

[40] J. Maas, Gradient flows of the entropy for finite Markov chains. J. Funct. Anal. 261 (2011) 2250–2292. | DOI | MR | Zbl

[41] D. Matthes, R.J. Mccann and G. Savaré, A family of nonlinear fourth order equations of gradient flow type. Comm. Part. Differ. Equ. 34 (2009) 1352–1397. | DOI | MR | Zbl

[42] D. Matthes and H. Osberger, Convergence of a variational lagrangian scheme for a nonlinear drift diffusion equation. ESAIM: M2AN 48 (2014) 697–726. | DOI | Numdam | MR | Zbl

[43] R.J. Mccann, A convexity principle for interacting gases. Adv. Math. 128 (1997) 153–179. | DOI | MR | Zbl

[44] A. Mielke, A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems. Nonlinearity 24 (2011) 1329. | DOI | MR | Zbl

[45] A. Mielke, Geodesic convexity of the relative entropy in reversible Markov chains. Calc. Var. Part. Differ. Equ. 48 (2013) 1–31. | DOI | MR | Zbl

[46] F. Otto, The geometry of dissipative evolution equations: the porous medium equation. Comm. Part. Differ. Equ. 26 (2001) 101–174. | DOI | MR | Zbl

[47] G. Peyré, Entropic approximation of Wasserstein gradient flows. SIAM J. Imaging Sci. 8 (2015) 2323–2351. | DOI | MR | Zbl

[48] S. Plazotta and J. Zinsl, High-frequency limit of non-autonomous gradient flows of functionals with time-periodic forcing. J. Differ. Equ. 261 (2016) 6806–6855. | DOI | MR | Zbl

[49] R. Rossi, A. Mielke and G. Savaré, A metric approach to a class of doubly nonlinear evolution equations and applications. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7 (2008) 97–169. | Numdam | MR | Zbl

[50] F. Santambrogio, Optimal Transport for Applied Mathematicians, Birkäuser, NY (2015). | DOI | MR

[51] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin, Heidelberg, 2 edn., Vol. 25 (2006). | MR | Zbl

[52] C. Villani, Topics in optimal transportation. Vol. 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2003). | MR | Zbl

[53] C. Villani, Optimal Transport: Old and New., Vol 338. Springer Science & Business Media, Berlin, Heidelberg (2008). | Zbl

[54] J. Zinsl and D. Matthes, Exponential convergence to equilibrium in a coupled gradient flow system modeling chemotaxis. Anal. Part. Differ. Equ. 8 (2015) 425–466. | MR | Zbl

Cité par Sources :