We develop and analyze the first hybridizable discontinuous Galerkin (HDG) method for solving fifth-order Korteweg-de Vries (KdV) type equations. We show that the semi-discrete scheme is stable with proper choices of the stabilization functions in the numerical traces. For the linearized fifth-order equations, we prove that the approximations to the exact solution and its four spatial derivatives as well as its time derivative all have optimal convergence rates. The numerical experiments, demonstrating optimal convergence rates for both the linear and nonlinear equations, validate our theoretical findings.
Mots clés : Hybridizable discontinuous Galerkin method, fifth-order, Korteweg-de Vries equation, DG
@article{M2AN_2018__52_6_2283_0, author = {Chen, Yanlai and Dong, Bo and Jiang, Jiahua}, title = {Optimally convergent hybridizable discontinuous {Galerkin} method for fifth-order {Korteweg-de} {Vries} type equations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {2283--2306}, publisher = {EDP-Sciences}, volume = {52}, number = {6}, year = {2018}, doi = {10.1051/m2an/2018037}, zbl = {1417.65168}, mrnumber = {3905190}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2018037/} }
TY - JOUR AU - Chen, Yanlai AU - Dong, Bo AU - Jiang, Jiahua TI - Optimally convergent hybridizable discontinuous Galerkin method for fifth-order Korteweg-de Vries type equations JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2018 SP - 2283 EP - 2306 VL - 52 IS - 6 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2018037/ DO - 10.1051/m2an/2018037 LA - en ID - M2AN_2018__52_6_2283_0 ER -
%0 Journal Article %A Chen, Yanlai %A Dong, Bo %A Jiang, Jiahua %T Optimally convergent hybridizable discontinuous Galerkin method for fifth-order Korteweg-de Vries type equations %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2018 %P 2283-2306 %V 52 %N 6 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2018037/ %R 10.1051/m2an/2018037 %G en %F M2AN_2018__52_6_2283_0
Chen, Yanlai; Dong, Bo; Jiang, Jiahua. Optimally convergent hybridizable discontinuous Galerkin method for fifth-order Korteweg-de Vries type equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 6, pp. 2283-2306. doi : 10.1051/m2an/2018037. http://www.numdam.org/articles/10.1051/m2an/2018037/
[1] On short-scale oscillatory tails of long-wave disturbances. Stud. Appl. Math. 94 (1995) 1–20. | DOI | MR | Zbl
and ,[2] Exact solitary waves with capillary ripples at infinity. Commun. Pure Appl. Math. 44 (1991) 211–247. | DOI | MR | Zbl
,[3] Weak non-local solitons for capillary-gravity waves: fifth-order Korteweg-de Vries equation. Physica D 48 (1991) 129–146. | DOI | Zbl
,[4] Conservative, discontinuous Galerkin-methods for the generalized Korteweg de Vries equation. Math. Comput. 82 (2013) 1401–1432. | DOI | MR | Zbl
, , and ,[5] A new discontinuous Galerkin method, conserving the discrete H2-norm, for third-order linear equations in one space dimension. IMA J. Numer. Anal. 36 (2016) 1570–1598. | DOI | MR | Zbl
, and ,[6] Superconvergent HDG methods for linear, stationary, third-order equations in one-space dimension. Math. Comput. 85 (2016) 2715–2742. | DOI | MR | Zbl
, and ,[7] A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77 (2008) 699–730. | DOI | MR | Zbl
and ,[8] A projection-based error analysis of HDG methods. Math. Comput. 79 (2010) 1351–1367. | DOI | MR | Zbl
, and ,[9] Optimally convergent HDG method for third-order Korteweg-de Vries type equations. J. Sci. Comput. 73 (2017) 712–735. | DOI | MR | Zbl
,[10] Fast solver for the local discontinuous Galerkin discretization of the KdV type equations. Commun. Comput. Phys. 17 (2015) 424–457. | DOI | MR | Zbl
and ,[11] Superconvergence of the local discontinuous Galerkin method for the linearized Korteweg-de Vries equation. J. Comput. Appl. Math. 255 (2014) 441–455. | DOI | MR | Zbl
and ,[12] Existence of perturbed solitary wave solutions to a model equation for water waves. Phys. D 32 (1988) 253–268. | DOI | MR | Zbl
and ,[13] Weak nonlinear hydromagnetic waves in a cold collision-free plasma. J. Phys. Soc. Jpn. 26 (1969) 1305–1318. | DOI
and ,[14] A posteriori error estimates for conservative local discontinuous Galerkin methods for the Generalized Korteweg-de Vries equation. Commun. Comput. Phys. 20 (2016) 250–278. | DOI | MR | Zbl
and ,[15] Low regularity well-posedness for the periodic Kawahara equation. Differ. Integral Equ. 25 (2012) 1011–1036. | MR | Zbl
,[16] Oscillatory solitary waves in dispersive media. J. Phys. Soc. Jpn. 33 (1972) 260–264. | DOI
,[17] Experiment on solitary waves in the nonlinear transmission line described by the equation . J. Phys. Soc. Jpn. 47 (1979) 1387–1388. | DOI
,[18] An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations. J. Comput. Phys. 228 (2009) 8841–8855. | DOI | MR | Zbl
, and ,[19] Local discontinuous Galerkin methods for three classes of nonlinear wave equations. Special issue dedicated to the 70th birthday of Professor Zhong-Ci Shi. J. Comput. Math. 22 (2004) 250–274. | MR | Zbl
and ,[20] Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection-diffusion and KdV equations. Comput. Methods Appl. Mech. Engrg. 196 (2007) 3805–3822. | DOI | MR | Zbl
and ,[21] Optimal error estimates of the semidiscrete local discontinuous Galerkin methods for high order wave equations. SIAM J. Numer. Anal. 50 (2012) 79–104. | DOI | MR | Zbl
and ,[22] A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40 (2002) 769–791. | DOI | MR | Zbl
and ,Cité par Sources :