In this paper, a nonconforming quadrilateral element is proposed to solve the fourth-order elliptic singular perturbation problem. For each convex quadrilateral , the shape function space is the union of and a bubble space. The degrees of freedom are defined by the values at vertices and midpoints on the edges, and the mean values of integrals of normal derivatives over edges. The local basis functions of our element can be expressed explicitly by a new reference quadrilateral rather than by solving a linear system. It is shown that the method converges uniformly in the perturbation parameter. Lastly, numerical tests verify the convergence analysis.
Mots-clés : Singular perturbation problem, quadrilateral element, uniformly convergent
@article{M2AN_2018__52_5_1981_0, author = {Bao, Yuan and Meng, Zhaoliang and Luo, Zhongxuan}, title = {A {C\protect\textsuperscript{0}-nonconforming} quadrilateral finite element for the fourth-order elliptic singular perturbation problem}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1981--2001}, publisher = {EDP-Sciences}, volume = {52}, number = {5}, year = {2018}, doi = {10.1051/m2an/2018033}, zbl = {1426.65169}, mrnumber = {3885703}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2018033/} }
TY - JOUR AU - Bao, Yuan AU - Meng, Zhaoliang AU - Luo, Zhongxuan TI - A C0-nonconforming quadrilateral finite element for the fourth-order elliptic singular perturbation problem JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2018 SP - 1981 EP - 2001 VL - 52 IS - 5 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2018033/ DO - 10.1051/m2an/2018033 LA - en ID - M2AN_2018__52_5_1981_0 ER -
%0 Journal Article %A Bao, Yuan %A Meng, Zhaoliang %A Luo, Zhongxuan %T A C0-nonconforming quadrilateral finite element for the fourth-order elliptic singular perturbation problem %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2018 %P 1981-2001 %V 52 %N 5 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2018033/ %R 10.1051/m2an/2018033 %G en %F M2AN_2018__52_5_1981_0
Bao, Yuan; Meng, Zhaoliang; Luo, Zhongxuan. A C0-nonconforming quadrilateral finite element for the fourth-order elliptic singular perturbation problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 5, pp. 1981-2001. doi : 10.1051/m2an/2018033. http://www.numdam.org/articles/10.1051/m2an/2018033/
[1] Analysis of plate bending by the finite element method, Technical report, NSF Report for Grant G. 7337 (1960).
and ,[2] Robustness of a spline element method with constraints. J. Sci. Comput. 36 (2008) 421–432. | DOI | MR | Zbl
,[3] The finite element method for elliptic equations with discontinuous coefficients. Computing 5 (1970) 207–213. | DOI | MR | Zbl
,[4] Triangular elements in plate bending-conforming and nonconforming solutions, in Proc. Conf. Matrix Methods in Struct. Mech., AirForce Inst. of Tech., Wright Patterson AF Base, Ohio (1965).
, , and ,[5] The generation of interelement compatible stiffness and mass matrices by the use of interpolation formulae, in Proc. Conf. Matrix Methods in Struct. Mech., AirForce Inst. of Tech., Wright Patterson AF Base, Ohio (1965).
,[6] A C0 interior penalty method for a fourth order elliptic singular perturbation problem. SIAM J. Numer. Anal. 49 (2011) 869–892. | DOI | MR | Zbl
and ,[7] An anisotropic nonconforming element for fourth order elliptic singular perturbation problem. Int. J. Numer. Anal. Model. 7 (2010) 766–784. | MR | Zbl
, and ,[8] Double set parameter method of constructing stiffness matrices. Numer. Math. Sinica 13 (1991) 286–296. | MR | Zbl
and ,[9] Non C0 nonconforming elements for elliptic fourth order singular perturbation problem. J. Comput. Math. 23 (2005) 185–198. | MR | Zbl
, and ,[10] A conforming finite element for plate bending. Int. J. Solids Struct. 4 (1968) 95–108 | DOI | Zbl
,[11] Triangular Bernstein-Bézier patches. Comput. Aided Geom. Design 3 (1986) 83–127. | DOI | MR
,[12] Elliptic Problems in Nonsmooth Domains. Pitman Publishing, Inc., Boston (1985). | MR | Zbl
,[13] Superconvergence of conforming finite element for fourth-order singularly perturbed problems of reaction diffusion type in 1D. Numer. Methods Part. Differ. Equ. 30 (2014) 550–566. | DOI | MR | Zbl
, and ,[14] A family of non-conforming elements and the analysis of Nitsche’s method for a singularly perturbed fourth order problem. Calcolo 49 (2012) 95–125. | DOI | MR | Zbl
, and ,[15] The lowest order differentiable finite element on rectangular grids. SIAM J. Numer. Anal. 49 (2011) 1350–1368. | DOI | MR | Zbl
, and ,[16] A piecewise P2-nonconforming quadrilateral finite element. ESAIM: M2AN 47 (2013) 689–715. | DOI | Numdam | MR | Zbl
, , , , and ,[17] A new 8-node quadrilateral spline finite element. J. Comput. Appl. Math. 195 (2006) 54–65. | DOI | MR | Zbl
and ,[18] A new rotated nonconforming quadrilateral element. J. Sci. Comput. 74 (2018) 324–335. | DOI | MR | Zbl
, and ,[19] The triangular equilibrium element in the solution of plate bending problems. Aero. Quart. 19 (1968) 149–169. | DOI
,[20] A robust nonconforming H2-element. Math. Comput. 70 (2001) 489–505. | DOI | MR | Zbl
, and ,[21] A quadrilateral Morley element for biharmonic equations. Numer. Math. 124 (2013) 395–413. | DOI | MR | Zbl
and ,[22] A uniformly convergent discretization method for a fourth order singular perturbation problem. Bonn. Math. Schr. 228 (1991) 30–40. | MR | Zbl
and ,[23] Conforming finite element approximations for a fourth-order singular perturbation problem. SIAM J. Numer. Anal. 29 (1992) 1043–1058. | DOI | MR | Zbl
,[24] A robust double set parameter nonconforming rectangular element for fourth order elliptic singular perturbation problems. Proc. Environ. Sci. 10 (2011) 854–868. | DOI
and ,[25] On the convergence of the incomplete biquadratic nonconforming plate element. Math. Numer. Sinica 8 (1986) 53–62. | MR | Zbl
,[26] On the error estimates of Morley element. Numer. Math. 12 (1990) 113–118. | MR | Zbl
,[27] Uniformly stable rectangular elements for fourth order elliptic singular perturbation problems. Numer. Method. Part. Differ. Equ. 29 (2013) 721–737. | DOI | MR | Zbl
, and ,[28] Modified Morley element method for a fourth order elliptic singular perturbation problem. J. Comput. Math. 24 (2006) 113–120. | MR | Zbl
, and ,[29] Convergence analysis of incomplete biquadratic rectangular element for fourth-order singular perturbation problem on anisotropic meshes. Abstr. Appl. Anal. 2014 (2014) 1–11. | DOI | MR | Zbl
and ,[30] A new robust C0-type nonconforming triangular element for singular perturbation problems. Appl. Math. Comput. 217 (2010) 3832–3843. | DOI | MR | Zbl
, and ,Cité par Sources :