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A C0-NONCONFORMING QUADRILATERAL FINITE ELEMENT

FOR THE FOURTH-ORDER ELLIPTIC SINGULAR PERTURBATION

PROBLEM

Yuan Bao1, Zhaoliang Meng1,* and Zhongxuan Luo1,2

Abstract. In this paper, a C0 nonconforming quadrilateral element is proposed to solve the fourth-
order elliptic singular perturbation problem. For each convex quadrilateral Q, the shape function space
is the union of S1

2(Q∗) and a bubble space. The degrees of freedom are defined by the values at vertices
and midpoints on the edges, and the mean values of integrals of normal derivatives over edges. The
local basis functions of our element can be expressed explicitly by a new reference quadrilateral rather
than by solving a linear system. It is shown that the method converges uniformly in the perturbation
parameter. Lastly, numerical tests verify the convergence analysis.
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1. Introduction

Let Ω ⊂ R2 be a bounded polygonal domain. Denote by ∂Ω the boundary of Ω. We discuss the following
problem: {

ε2∆2u−∆u = f in Ω,

u = ε ∂u∂n = 0 on ∂Ω,
(1.1)

where ∆ is the standard Laplace operator, ∂/∂n denotes the normal derivative along the boundary ∂Ω, and
ε ∈ [0, 1] is a real parameter. Notice that if ε = 0, (1.1) formally degenerates to Poisson’s equation. If ε 6= 0, the
problem is the fourth-order elliptic singular perturbation problem, which we investigate in this work.

Since problem (1.1) is fourth order, standard conforming finite element methods [2, 23] require globally C1

continuity. For the biharmonic problems, conforming elements such as the Argyris element [3] and the 16-dof
Bogner–Fox–Schmit (BFS) element [5] require high degree polynomials which are rather expensive. Cheaper but
complicate conforming elements for fourth-order problems include the 12-dof Hsieh–Clough–Tocher element and
the singular Zienkiewicz triangular element [4] and so on. In order to overcome the C1 difficulty, nonconforming
finite element methods are often used [6, 14, 27]. The Morley element method is appealing for fourth-order
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Figure 1. A quadrilateral’s associated subdivision Q∗.

problems with the fewest number of degrees of freedom on each element. However, when the Morley method is
applied to a second-order elliptic problem, as shown in [20], it will diverge. For more detailed properties of the
Morley method we refer to [19, 26].

Concerning rectangular nonconforming elements for fourth-order problems, the incomplete biquadratic ele-
ment [25] has been used as an analogue to the Morley element for rectangular meshes. The classical 12-dof Adini
element [1], which contains all cubic polynomials on rectangles, has been well-known for rectangular meshes.
Powell-Sabin types of macro elements on rectangles in two and three dimensions have been developed by Hu
et al. in [15].

Even though the triangular or rectangular meshes are popular to use, in many cases where the geometry of
the problem has a quadrilateral nature, one wishes to use quadrilateral meshes with proper elements. Fraeijs De
Veubeke [10] presented a new scheme for plate bending element by decomposing the convex quadrilateral into
the union of four triangles as shown in Figure 1. Park and Sheen [21] proposed a Morley-type finite element
for quadrilateral meshes to solve biharmonic problems. For each quadrilateral Q, the finite element space was
defined by the span of P2(Q) plus two functions in P3(Q). Many successful plate elements have been constructed,
but not all of them can be used for (1.1) directly.

The fourth-order elliptic singular perturbation problem (1.1) has been studied in [7, 9, 13, 20, 22, 24, 28–30],
and so on. In [20], a triangular element with nine degrees of freedom was presented. Nilssen et al. showed
that the triangular element method converges uniformly in the perturbation parameter. Chen et al. [9] gave a
convergence theorem for non C0 nonconforming finite element for the perturbation problem (1.1). Besides, a
nine parameter triangular element and a twelve parameter rectangular element were proposed with double set
parameters [8]. The main trick in [9] is to impose the element to be C0 one and the mean values of integrals
of normal derivatives over edges to be continuous. In [28], Wang et al. presented a modified Morley element
for problem (1.1). This method still uses triangle Morley element or rectangle Morley element, but the linear
approximation of finite element functions is used in the part of the bilinear form corresponding to the second
order differential term. Using double set parameter method [8], Xie et al. [30] gave a robust C0 triangular
element for problem (1.1). As a subsequent work, Chen et al. constructed an anisotropic nonconforming element
for the fourth-order singular perturbation problem in [7]. Although many finite elements have been constructed
for (1.1), most of them solve the problem on the triangular or rectangular meshes.

In this paper, we present a new quadrilateral element to solve the fourth-order elliptic singular perturbation
problem. Our finite element space is locally S1

2(Q∗)
⊕

Span{ϕ, l13ϕ, l24ϕ, l13l24ϕ}, where l13 and l24 are two
linear polynomials vanishing at the vertices V1, V3 and V2, V4 and ϕ is defined in Section 2. We define the DOFs
as the eight values at the vertices and midpoints on each edge, and the four mean values of integrals of normal
derivatives over edges. Twelve local basis functions are defined on each quadrilateral element. By introducing a
new reference domain Q̃ and an affine map as in [18], we can express the local basis functions explicitly without
solving linear systems locally. Besides, all the integrations can be done over the reference domain, which is more
efficient since the Jacobian determinant is constant. More precisely, we compute out the local stiffness matrix
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Figure 2. An affine map from a reference quadrilateral Q̃ to a quadrilateral Q.

for each quadrilateral element. Our C0 finite element method is convergent uniformly with respect to ε for the
fourth-order singular perturbation problem.

This paper is arranged as follows. In the next section, we present our quadrilateral element and prove the
unisolvency through an affine quadrilateral. Then in Section 3, we define twelve local basis functions for our
quadrilateral element and develop a set of formulae to compute the stiffness matrix. Section 4 is devoted to the
convergence analysis. Numerical experiments are shown in Section 5. Lastly, we give the conclusion.

2. A new nonconforming quadrilateral element

In this section, we introduce the new quadrilateral nonconforming element and prove the unisolvency.

2.1. The reference element

Let Q be a convex quadrilateral shown as in Figure 1, where V1, V2, V3, V4 denote the vertices with coun-
terclockwise indices, Ej designates the edge between Vj to Vj+1 modulo 4, and Mj is the midpoint of Ej ,
j = 1, . . . , 4. Denote by Q∗ the subdivision of Q by connecting its diagonals such that Q∗ is decomposed into
four non-overlapping triangles Tj , j = 1, . . . , 4, and designate by O the intersection point of two diagonals. Let
l13 and l24 be the linear polynomials satisfying

l13(V1) = l13(V3) = l24(V2) = l24(V4) = 0, l13(V4) = l24(V1) = 1.

Furthermore, let l13(V2) = h1, l24(V3) = h2. Note that Q is convex if and only if h1 < 0 and h2 < 0.
In this paper, we take Q̃ (see Fig. 2) as a reference quadrilateral with four vertices

Ṽ1 = (0, 1), Ṽ2 = (h1, 0), Ṽ3 = (0, h2), Ṽ4 = (1, 0),

which is firstly introduced in [18]. As shown there, there exists a unique affine transformation FQ̃,Q : Q̃ −→
Q such that FQ̃,Q(Ṽi) = Vi, i = 1, . . . , 4. Note the inverse of FQ̃,Q can be written as: (ξ, η) = F−1

Q̃,Q
(x, y) =

(l13(x, y), l24(x, y)) where (x, y) ∈ Q and (ξ, η) ∈ Q̃. Furthermore let l̃13 = l13 ◦ FQ̃,Q and l̃24 = l24 ◦ FQ̃,Q, then

l̃13(ξ, η) = ξ, l̃24(ξ, η) = η. Similarly, we denote the four edges of Q̃ by Ẽj , j = 1, . . . , 4. The following integrals
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on the four edges and the quadrilateral hold:

 
Ẽ4

ξiηjds̃ =
i!j!

(i+ j + 1)!
,

 
Ẽ1

ξiηjds̃ =
i!j!

(i+ j + 1)!
hi1,

 
Ẽ2

ξiηjds̃ =
i!j!

(i+ j + 1)!
hi1h

j
2,

 
Ẽ3

ξiηjds̃ =
i!j!

(i+ j + 1)!
hj2,

(2.1)

ˆ
Q̃

ξiηjdξdη =
i!j!

(2 + i+ j)!
(1− hi+1

1 )(1− hj+1
2 ). (2.2)

Here and in what follows, we denote
ffl
D

= 1
|D|

´
D

by the integral mean on domain D.

2.2. A new finite element

Let lj(x, y) be the linear polynomial which vanishes on the edge Ej and lj(O) = 1, j = 1, . . . , 4. Then define
piecewise polynomial

φ|Tj
= lj , j = 1, . . . , 4.

Thus φ is continuous at four vertices and the intersection point O, which implies that φ belongs to C0(Q).
Further define ϕ = l13l24φ. Obviously, ϕ ∈ C1(Q).

The space of multivariate spline functions S1
2(Q∗) is defined by a set of functions which are piecewise

polynomials of degree 2 possessing 1st order continuous partial derivatives in Q, that is

S1
2(Q∗) := {v ∈ C1(Q) : v|Tj

∈ P2(Tj), j = 1, . . . , 4}.

Here, and in what follows, Pm(T ) denotes the polynomial space of degree less than or equal to m on T .
Furthermore, S1

2(Q∗) can be expressed explicitly as follows:

S1
2(Q∗) = Span{1, x, y, xy, x2, y2, [l+13(x, y)]2, [l+24(x, y)]2}, (2.3)

where l+13 and l+24 are two ramp functions defined as follows:

l+13(x, y) = max(l13(x, y), 0) and l+24(x, y) = max(l24(x, y), 0).

About the space S1
2(Q∗), we have

Lemma 2.1 ([16]). The dimension of S1
2(Q∗) is eight. Furthermore, for any given real numbers aj , a

′
j , j =

1, . . . , 4, there exists a unique f ∈ S1
2(Q∗) such that

f(Vj) = aj , f(Mj) = a′j , j = 1, . . . , 4. (2.4)

Lemma 2.1 implies that a function in the space S1
2(Q∗) can be determined by values at four vertices and

four midpoints. Furthermore, the corresponding nodal basis functions can be obtained by the B-net method
[11]. However, the B-net method is not easy for those unfamiliar with the theory of multivariate spline. Now we
present the explicit representations of the nodal basis functions by the reference element proposed in Section 2.1.

Suppose that FQ̃,Q is the affine transformation above from Q̃ to Q, then set Q̃∗ = F−1

Q̃,Q
(Q∗). Now let us

consider the space S1
2(Q̃∗) first. It is obvious that

S1
2(Q̃∗) = Span{φ̃bj , j = 1, . . . , 8} = Span{1, ξ, η, ξη, ξ2, η2, (ξ+)2, (η+)2}.
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Define Φ(ξ, η) = [1, ξ, η, ξη, ξ2, η2, (ξ+)2, (η+)2] and then we have

B̃ =



Φ(Ṽ1)

Φ(Ṽ2)

Φ(Ṽ3)

Φ(Ṽ4)

Φ(M̃1)

Φ(M̃2)

Φ(M̃3)

Φ(M̃4)


=



1 0 1 0 0 1 0 1
1 h1 0 0 h2

1 0 0 0
1 0 h2 0 0 h2

2 0 0
1 1 0 0 1 0 1 0

1 h1

2
1
2

h1

4
h2
1

4
1
4 0 1

4

1 h1

2
h2

2
h1h2

4
h2
1

4
h2
2

4 0 0

1 1
2

h2

2
h2

4
1
4

h2
2

4
1
4 0

1 1
2

1
2

1
4

1
4

1
4

1
4

1
4


.

By solving the corresponding linear systems, we can obtain the interpolation basis functions for S1
2(Q̃∗) as

follows:

f̃1(ξ, η) =
1

2(h2 − 1)

(
−1 + 2η +

h2

h2
1

ξ2 − 1

h2
η2

)
+

h2(h2
1 − 1)

2h2
1(h2 − 1)

(ξ+)2 +
3h2 − 1

2h2
(η+)2,

f̃2(ξ, η) =
1

2(h1 − 1)

(
1− 2ξ +

4h1 − 3

h2
1

ξ2 − 1

h2
2

η2

)
+
h1 − 3

2h2
1

(ξ+)2 − h2
2 − 1

2h2
2(h1 − 1)

(η+)2,

f̃3(ξ, η) =
1

2(h2 − 1)

(
1− 2η − 1

h2
1

ξ2 +
4h2 − 3

h2
2

η2

)
− h2

1 − 1

2h2
1(h2 − 1)

(ξ+)2 +
h2 − 3

2h2
2

(η+)2,

f̃4(ξ, η) =
1

2(h1 − 1)

(
−h1 + 2ξ − 1

h1
ξ2 +

h1

h2
2

η2

)
+

3h1 − 1

2h1
(ξ+)2 +

h1(h2
2 − 1)

2h2
2(h1 − 1)

(η+)2,

f̃5(ξ, η) =
2

(1− h1)(1− h2)

(
−h2 + 2h2ξ + 2η − 2ξη − h2(2h1 − 1)

h2
1

ξ2 − 1

h2
η2

)
− 2h2(h1 − 1)

h2
1(h2 − 1)

(ξ+)2 +
2(h2 − 1)

h2(h1 − 1)
(η+)2,

f̃6(ξ, η) =
2

(1− h1)(1− h2)

(
1− 2ξ − 2η + 2ξη +

(2h1 − 1)

h2
1

ξ2 +
(2h2 − 1)

h2
2

η2

)
+

2(h1 − 1)

h2
1(h2 − 1)

(ξ+)2 +
2(h2 − 1)

h2
2(h1 − 1)

(η+)2,

f̃7(ξ, η) =
2

(1− h1)(1− h2)

(
−h1 + 2ξ + 2h1η − 2h1ξη −

1

h1
ξ2 − h1(2h2 − 1)

h2
2

η2

)
+

2(h1 − 1)

h1(h2 − 1)
(ξ+)2 − 2h1(h2 − 1)

h2
2(h1 − 1)

(η+)2,

f̃8(ξ, η) =
2

(1− h1)(1− h2)

(
h1h2 − 2h2ξ − 2h1η + 2ξη +

h2

h1
ξ2 +

h1

h2
η2

)
− 2h2(h1 − 1)

h1(h2 − 1)
(ξ+)2 − 2h1(h2 − 1)

h2(h1 − 1)
(η+)2,

which satisfy the following interpolation property

f̃i(Ṽj) = δij , f̃i(M̃j) = 0, f̃i+4(Ṽj) = 0, f̃i+4(M̃j) = δij , i, j = 1, . . . , 4.
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Figure 3. The degrees of freedom of the quadrilateral element.

Thus

fi(x, y) = f̃i ◦ F−1

Q̃,Q
, i = 1, . . . , 8 (2.5)

are the nodal basis functions for S1
2(Q∗).

Now we are ready to define our C0 quadrilateral element.

Definition 2.2. The quadrilateral finite element (Q,PQ, ΦQ) is defined as follows:

• Q is a convex quadrilateral,
• PQ = S1

2(Q∗) + Span{ϕ, l13ϕ, l24ϕ, l13l24ϕ},
• The degrees of freedom are given by ΦQ =

{
u(Vj), u(Mj),

ffl
Ej

∂u
∂nj

ds : j = 1, . . . , 4
}

(see Fig. 3), where nj

denotes the unit outward normal to Ej .

We first show our new quadrilateral element is well defined. For this, we need the following lemma.

Lemma 2.3. The following matrix

M =


ffl
E1
l13l24ds

ffl
E1
l213l24ds

ffl
E1
l13l

2
24ds

ffl
E1
l213l

2
24dsffl

E2
l13l24ds

ffl
E2
l213l24ds

ffl
E2
l13l

2
24ds

ffl
E2
l213l

2
24dsffl

E3
l13l24ds

ffl
E3
l213l24ds

ffl
E3
l13l

2
24ds

ffl
E3
l213l

2
24dsffl

E4
l13l24ds

ffl
E4
l213l24ds

ffl
E4
l13l

2
24ds

ffl
E4
l213l

2
24ds


is nonsingular.

Proof. Take Q̃ as the reference element as introduced in Section 2.1 and introduce a new matrix M̃ as

M̃ =


ffl
Ẽ1
l̃13 l̃24ds̃

ffl
Ẽ1
l̃213 l̃24ds̃

ffl
Ẽ1
l̃13 l̃

2
24ds̃

ffl
Ẽ1
l̃213 l̃

2
24ds̃ffl

Ẽ2
l̃13 l̃24ds̃

ffl
Ẽ2
l̃213 l̃24ds̃

ffl
Ẽ2
l̃13 l̃

2
24ds̃

ffl
Ẽ2
l̃213 l̃

2
24ds̃ffl

Ẽ3
l̃13 l̃24ds̃

ffl
Ẽ3
l̃213 l̃24ds̃

ffl
Ẽ3
l̃13 l̃

2
24ds̃

ffl
Ẽ3
l̃213 l̃

2
24ds̃ffl

Ẽ4
l̃13 l̃24ds̃

ffl
Ẽ4
l̃213 l̃24ds̃

ffl
Ẽ4
l̃13 l̃

2
24ds̃

ffl
Ẽ4
l̃213 l̃

2
24ds̃

 =


ffl
Ẽ1
ξηds̃

ffl
Ẽ1
ξ2ηds̃

ffl
Ẽ1
ξη2ds̃

ffl
Ẽ1
ξ2η2ds̃ffl

Ẽ2
ξηds̃

ffl
Ẽ2
ξ2ηds̃

ffl
Ẽ2
ξη2ds̃

ffl
Ẽ2
ξ2η2ds̃ffl

Ẽ3
ξηds̃

ffl
Ẽ3
ξ2ηds̃

ffl
Ẽ3
ξη2ds̃

ffl
Ẽ3
ξ2η2ds̃ffl

Ẽ4
ξηds̃

ffl
Ẽ4
ξ2ηds̃

ffl
Ẽ4
ξη2ds̃

ffl
Ẽ4
ξ2η2ds̃

. (2.6)
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Since FQ̃,Q is an affine map, we have M = M̃ through variable substitution. Thus, it only needs to prove that

M̃ is nonsingular. According to formulas (2.1), we have

M̃ =


1
6h1

1
12h

2
1

1
12h1

1
30h

2
1

1
6h1h2

1
12h

2
1h2

1
12h1h

2
2

1
30h

2
1h

2
2

1
6h2

1
12h2

1
12h

2
2

1
30h

2
2

1
6

1
12

1
12

1
30



=


h1

h1h2

h2

1




1 h1 1 h1

1 h1 h2 h1h2

1 1 h2 h2

1 1 1 1




1
6

1
12

1
12

1
30

, (2.7)

with det(M̃) =
h2
1h

2
2(h1−1)2(h2−1)2

25920 6= 0, since h1 < 0 and h2 < 0. So M̃ is nonsingular. Thus we complete the
proof.

Next we proceed to show the following unisolvency result.

Theorem 2.4. The set ΦQ is PQ-unisolvent.

Proof. Suppose that w ∈ PQ satisfies

w(Vj) = w(Mj) =

 
Ej

∂w

∂nj
ds = 0, j = 1, . . . , 4. (2.8)

Due to the definition of PQ we have

w(x, y) =β1 + β2x+ β3y + β4xy + β5x
2 + β6y

2 + β7[l+13(x, y)]2 + β8[l+24(x, y)]2

+ β9ϕ+ β10l13ϕ+ β11l24ϕ+ β12l13l24ϕ,
(2.9)

for some constants βi ∈ R, i = 1, . . . , 12 to be determined. According to the definition of ϕ, one has

ϕ(Vj) = ϕ(Mj) = 0, j = 1, . . . , 4.

Hence if we set

s(x, y) = β1 + β2x+ β3y + β4xy + β5x
2 + β6y

2 + β7[l+13(x, y)]2 + β8[l+24(x, y)]2,

then substituting (2.9) into (2.8) will lead to

s(Vj) = s(Mj) = 0, j = 1, . . . , 4. (2.10)

Noticing that s(x, y) ∈ S1
2(Q∗) and using Lemma 2.1, we have

βi = 0, i = 1, . . . , 8,

and

w(x, y) = β9ϕ+ β10l13ϕ+ β11l24ϕ+ β12l13l24ϕ. (2.11)
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Next we will show that all constants in (2.11) are also zeros. Substituting w(x, y) into

 
Ej

∂ω

∂nj
ds = 0, j = 1, . . . , 4

will derive

N


β9

β10

β11

β12

 = 0, (2.12)

where

N =


ffl
E1

∂ϕ
∂n1

ds
ffl
E1

∂(l13ϕ)
∂n1

ds
ffl
E1

∂(l24ϕ)
∂n1

ds
ffl
E1

∂(l13l24ϕ)
∂n1

dsffl
E2

∂ϕ
∂n2

ds
ffl
E2

∂(l13ϕ)
∂n2

ds
ffl
E2

∂(l24ϕ)
∂n2

ds
ffl
E2

∂(l13l24ϕ)
∂n2

dsffl
E3

∂ϕ
∂n3

ds
ffl
E3

∂(l13ϕ)
∂n3

ds
ffl
E3

∂(l24ϕ)
∂n3

ds
ffl
E3

∂(l13l24ϕ)
∂n3

dsffl
E4

∂ϕ
∂n4

ds
ffl
E4

∂(l13ϕ)
∂n4

ds
ffl
E4

∂(l24ϕ)
∂n4

ds
ffl
E4

∂(l13l24ϕ)
∂n4

ds

. (2.13)

According to the definition of ϕ, we have

ˆ
Ej

∂(pϕ)

∂nj
ds =

ˆ
Ej

∂(pl13l24lj)

∂nj
ds =

ˆ
Ej

∂(pl13l24)

∂nj
ljds+

ˆ
Ej

∂lj
∂nj

(pl13l24)ds =
∂lj
∂nj

ˆ
Ej

(pl13l24)ds,

where p = 1, l13, l24 or l13l24. Thus N can be rewritten as

N = diag

(
∂l1
∂n1

,
∂l2
∂n2

,
∂l3
∂n3

,
∂l4
∂n4

)
·M. (2.14)

According to Lemma 2.1, M is nonsingular which implies that N is nonsingular. This leads to

β9 = β10 = β11 = β12 = 0,

and hence w = 0, which completes the proof.

3. Basis functions and stiffness matrix for the element Q

3.1. Basis functions for the shape function space PQ

In this section, we will derive the explicit expression of the nodal basis functions. For convenience, define
twelve linear functionals Ψi, i = 1, . . . , 12 on PQ by

Ψi(f) = f(Vi), Ψi+4(f) = f(Mi), Ψi+8(f) =

 
Ei

∂f

∂ni
ds, i = 1, . . . , 4.

Next define twelve local basis functions Pj ∈ PQ satisfying

Ψi(Pj) = δij , i, j = 1, . . . , 12. (3.1)
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Firstly, let us give the explicit expressions of Pj , j = 9, . . . , 12. Take P9 as an example. It follows from the
proof of Theorem 2.4 that P9 ∈ Span{ϕ, l13ϕ, l24ϕ, l13l24ϕ}, which means that P9 can be written as

P9 = c1ϕ+ c2l13ϕ+ c3l24ϕ+ c4l13l24ϕ,

where ci, i = 1, . . . , 4 are coefficients to be determined. Thus according to the interpolation conditions (3.1), we
can get linear equations

N · c = e1 with c = [c1, c2, c3, c4]T and e1 = [1, 0, 0, 0]T .

Here N is given by (2.13) or (2.14). Notice in equation (2.14), M = M̃ where M̃ is given by equation (2.6) or
in another form equation (2.7). Collecting above discussion, we have

c =
3

h1 · |Q̃|
·
[
∂l1
∂n1

]−1

· [−h2, 2h2, 2,−5]T ,

and hence

P9 =
3

h1|Q̃|

[
∂l1
∂n1

]−1

· (−h2 + 2h2l13 + 2l24 − 5l13l24)l13l24φ := k1P̄9,

where

|Q̃| = area(Q̃) = (1− h1)(1− h2)/2, k1 =
3

h1|Q̃|
·
[
∂l1
∂n1

]−1

,

and P̄9 is the remaining part. Similarly, we can get

P10 =
3

h1h2|Q̃|

[
∂l2
∂n2

]−1

· (1− 2l13 − 2l24 + 5l13l24)l13l24φ := k2P̄10

P11 =
3

h2|Q̃|

[
∂l3
∂n3

]−1

· (−h1 + 2l13 + 2h1l24 − 5l13l24)l13l24φ := k3P̄11

P12 =
3

|Q̃|

[
∂l4
∂n4

]−1

· (h1h2 − 2h2l13 − 2h1l24 + 5l13l24)l13l24φ := k4P̄12,

where k2, k3, k4 and P̄10, P̄11, P̄12 take the similar meaning with those k1 and P̄9.
Let us turn to the computation of ki, i = 1, . . . , 4. Assume that Di is the foot point of O on Ei. Since li(x, y)

is a linear polynomial and li(O) = 1, then

∂li
∂ni

=
li(Di)− li(O)

|ODi|
= − 1

|ODi|
.

Thus we have

3k−1
1 = h1|Q̃| ·

∂l1
∂n1

= −h1|Q̃| ·
1

|OD1|
=
− 1

2h1|Q̃||E1|
1
2 |OD1||E1|

=
|T̃1||Q̃||E1|
|T1|

=
|Q||E1|
det(J)2

,
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that is k1 = 3 det(J)2/(|Q||E1|). Other ki’s can be obtained by the same way. Explicitly, we have ki =
3 det(J)2/(|Q||Ei|) for i = 1, . . . , 4.

It is left to give the expressions of Pi, i = 1, . . . , 8. Recall that the basis functions of S1
2(Q∗) are given by

equation (2.5). Immediately, Pi can be expressed by

Pi = fi −
4∑
j=1

( 
Ej

∂fi
∂nj

ds

)
Pj+8 = fi −

4∑
j=1

(
∂fi
∂nj

(Mj)

)
Pj+8, i = 1, . . . , 8.

Here we use the fact that fi is piecewise quadratic and hence ∂fi/∂nj is linear on Ej . Now it only needs to

compute ∂fi
∂nj

(Mj). Set unit tangential vector τj =
−−−−→
VjVj+1/|Ej |, j = 1, . . . , 4 modulo 4. Since fi is a quadratic

polynomial which can be determined by the values at two vertices and midpoint on the edge Ej , the derivative
fi along τj can be obtained. By certain computation, one has

|Ej | ·
∂fi
∂τj

(Vk) =



−3, i = j = k,

3, i = k, j = k − 1,

1, i = j = k − 1,

−1, i = j + 1 = k + 1,

4, i = j + 4 = k + 4,

−4, i = j + 4 = k − 3,

0, otherwise.

According to the definition of directional derivative, one has

∂fi
∂nj

(Vj) =
1

〈τj−1,nj〉
∂fi
∂τj−1

(Vj)−
〈τj−1, τj〉
〈τj−1,nj〉

∂fi
∂τj

(Vj),

∂fi
∂nj

(Vj+1) =
1

〈τj+1,nj〉
∂fi
∂τj+1

(Vj+1)− 〈τj , τj+1〉
〈τj+1,nj〉

∂fi
∂τj

(Vj+1),

where 〈·, ·〉 denotes the inner product of two vectors. Then

∂fi
∂nj

(Mj) =
1

2

(
∂fi
∂nj

(Vj) +
∂fi
∂nj

(Vj+1)

)
:=

1

2
〈Bj , Fij〉,

where

Bj =

(
1

|Ej−1| 〈τj−1,nj〉
,− 〈τj−1, τj〉
|Ej | 〈τj−1,nj〉

,
1

|Ej+1| 〈τj+1,nj〉
,− 〈τj , τj+1〉
|Ej−1| 〈τj+1,nj〉

)
,

and

Fij =

(
|Ej−1|

∂fi
∂τj−1

(Vj), |Ej |
∂fi
∂τj

(Vj), |Ej+1|
∂fi
∂τj+1

(Vj+1), |Ej |
∂fi
∂τj

(Vj+1)

)
.



A C0-NONCONFORMING QUADRILATERAL FINITE ELEMENT 1991

More precisely, let Fk be a matrix whose ith row is Fik, then we can write

[F1|F2|F3|F4] =



3 −3 0 1 1 0 0 0 0 0 −1 0 0 −1 −3 3
0 −1 −3 3 3 −3 0 1 1 0 0 0 0 0 −1 0
0 0 −1 0 0 −1 −3 3 3 −3 0 1 1 0 0 0
1 0 0 0 0 0 −1 0 0 −1 −3 3 3 −3 0 1
0 4 0 −4 −4 0 0 0 0 0 0 0 0 0 4 0
0 0 4 0 0 4 0 −4 −4 0 0 0 0 0 0 0
0 0 0 0 0 0 4 0 0 4 0 −4 −4 0 0 0
−4 0 0 0 0 0 0 0 0 0 4 0 0 4 0 −4


.

3.2. Stiffness matrix for the element Q

Now we turn to consider the computational aspect. Set A = [aij ]12×12 and B = [bij ]12×12 are the local stiffness
matrices corresponding to the bilinear form a(·, ·) and b(·, ·), respectively, that is

aij =

ˆ
Q

D2Pi : D2Pj , bij =

ˆ
Q

DPi ·DPj ,

where D2u =
(

∂2u
∂xi∂xj

)
i,j

, we may also use (x, y) = (x1, x2) for brevity.

Generally, the computation of quadrilateral element can be realized on the reference domain [−1, 1]2 and the
bilinear transformation is required. Next, we will show that all the computation can be finished efficiently on
our reference quadrilateral Q̃.

Let l13(x, y) = α1x + β1y + γ1 and l24(x, y) = α2x + β2y + γ2. FQ̃,Q is the linear transformation given in
Section 2.1. Thus the derivatives of the function f defined on Q can be derived as follows:

∂f

∂x
=
∂f̃

∂ξ
· ∂ξ
∂x

+
∂f̃

∂η
· ∂η
∂x

= α1
∂f̃

∂ξ
+ α2

∂f̃

∂η
= αDξ,η f̃ ,

∂f

∂y
=
∂f̃

∂ξ
· ∂ξ
∂y

+
∂f̃

∂η
· ∂η
∂y

= β1
∂f̃

∂ξ
+ β2

∂f̃

∂η
= βDξ,η f̃ ,

(3.2)

where f̃ = f ◦ FQ̃,Q,α = [α1, α2],β = [β1, β2] and Dξ,η f̃ denotes the gradient of f̃ with respect to ξ and η. The
Jacobian matrix will be calculated as

J =
∂(x, y)

∂(ξ, η)
=

[
α1 α2

β1 β2

]−1

, (3.3)

with its determinant

det(J) = 1/(α1β2 − α2β1).

In what follows, for convenience, let Ri = fi for i = 1, . . . , 8 and Ri = Pi for i = 9, . . . , 12. Taking R̃i = Ri ◦FQ̃,Q
and using formulas (2.2), the matrix G̃ = [G̃ij ]12×12 can be exactly calculated, where G̃ij ’s are sub-matrices of
2× 2 and given by

G̃ij =

ˆ
Q̃

[
Dξ,ηR̃i

] [
Dξ,ηR̃j

]T
dξdη, i, j = 1, . . . , 12.
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Thus for i, j = 1, . . . , 12, we have

(DRi, DRj)Q =

ˆ
Q

(
∂Ri
∂x

∂Rj
∂x

+
∂Ri
∂y

∂Rj
∂y

)
dxdy

=

ˆ
Q̃

(
(αDξ,ηR̃i)(αDξ,ηR̃j) + (βDξ,ηR̃i)(βDξ,ηR̃j)

)
det(J)dξdη

=
(
αG̃ijα

T + βG̃ijβ
T
)

det(J) := b̄ij .

Then we have bij = b̄ij for i, j = 9, . . . , 12, and

bij = (DPi, DPj)Q =

(
D

(
fi −

12∑
t=9

(
∂fi
∂nt−8

(Mt−8)

)
Pt

)
, DPj

)
Q

= (Dfi, DPj)Q −
12∑
t=9

(
∂fi
∂nt−8

(Mt−8)

)
(DPt, DPj)Q = b̄ij −

12∑
t=9

(
∂fi
∂nt−8

(Mt−8)

)
btj ,

and bji = bij for i = 1, . . . , 8, j = 9, . . . , 12, and

bij = (DPi, DPj)Q =

(
D

(
fi −

12∑
t=9

(
∂fi
∂nt−8

(Mt−8)

)
Pt

)
, DPj

)
Q

= (Dfi, DPj)Q −
12∑
t=9

(
∂fi
∂nt−8

(Mt−8)

)
(DPt, DPj)Q

=

(
Dfi, D

(
fj −

12∑
s=9

(
∂fj
∂ns−8

(Ms−8)

)
Ps

))
Q

−
12∑
t=9

(
∂fi
∂nt−8

(Mt−8)

)
btj

= (Dfi, Dfj)Q −
12∑
s=9

(
∂fj
∂ns−8

(Ms−8)

)
(Dfi, DPs)Q −

12∑
t=9

(
∂fi
∂nt−8

(Mt−8)

)
btj

= b̄ij −
12∑
s=9

(
∂fj
∂ns−8

(Ms−8)

)
b̄is −

12∑
t=9

(
∂fi
∂nt−8

(Mt−8)

)
btj

= b̄ij −
12∑
t=9

{(
∂fj
∂nt−8

(Mt−8)

)
b̄it +

(
∂fi
∂nt−8

(Mt−8)

)
btj

}
,

for i, j = 1, . . . , 8.
Let us turn to the computation of the first part of the stiffness matrix. The second order partial derivatives

of the function f can be obtained as follows:

∂2f

∂x2
= α2

1

∂2f̃

∂ξ2
+ α1α2

∂2f̃

∂ξ∂η
+ α2α1

∂2f̃

∂η∂ξ
+ α2

2

∂2f̃

∂η2
:= θ1H

2
ξ,η f̃ , (3.4)

∂2f

∂x∂y
= α1β1

∂2f̃

∂ξ2
+ α1β2

∂2f̃

∂ξ∂η
+ α2β1

∂2f̃

∂η∂ξ
+ α2β2

∂2f̃

∂η2
:= θ2H

2
ξ,η f̃ , (3.5)

∂2f

∂y2
= β2

1

∂2f̃

∂ξ2
+ β1β2

∂2f̃

∂ξ∂η
+ β2β1

∂2f̃

∂η∂ξ
+ β2

2

∂2f̃

∂η2
:= θ3H

2
ξ,η f̃ , (3.6)
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where θ1 = [α2
1, 2α1α2, α

2
2],θ2 = [α1β1, α1β2 + α2β1, α2β2],θ3 = [β2

1 , 2β1β2, β
2
2 ] and H2

ξ,η f̃ = [∂
2f̃
∂ξ2 ,

∂2f̃
∂ξ∂η ,

∂2f̃
∂η2 ]T .

Similarly, the matrix H̃ = [H̃ij ]12×12 can be calculated exactly, where H̃ij ’s are sub-matrices of 3 × 3 and
given by

H̃ij =

ˆ
Q̃

[H2
ξ,ηR̃i][H

2
ξ,ηR̃j ]

Tdξdη, i, j = 1, . . . , 12.

Hence for i, j = 1, . . . , 12, we have

ˆ
Q

D2Ri : D2Rjdxdy

=

ˆ
Q

(
∂2Ri
∂x2

∂2Rj
∂x2

+ 2
∂2Ri
∂x∂y

∂2Rj
∂x∂y

+
∂2Ri
∂y2

∂2Rj
∂y2

)
dxdy

=

ˆ
Q̃

[
(θ1H

2
ξ,ηR̃i)(θ1H

2
ξ,ηR̃j) + 2(θ2H

2
ξ,ηR̃i)(θ2H

2
ξ,ηR̃j) + (θ3H

2
ξ,ηR̃i)(θ3H

2
ξ,ηR̃j)

]
det(J)dξdη

=
(
θ1H̃ijθ

T
1 + 2θ2H̃ijθ

T
2 + θ3H̃ijθ

T
3

)
det(J) := āij .

Following similar argument above, we have

aij =


āij , i, j = 9, . . . , 12,

āij −
∑12
t=9

(
∂fi

∂nt−8
(Mt−8)

)
atj , aji = aij , i = 1, . . . , 8, j = 9, . . . , 12,

āij −
∑12
t=9

{(
∂fj
∂nt−8

(Mt−8)
)
āit +

(
∂fi

∂nt−8
(Mt−8)

)
atj

}
, i, j = 1, . . . , 8.

Collecting above discussion, the components of the stiffness matrix ε2aij + bij can be calculated exactly.

4. Convergence analysis

In this section, the convergence analysis of the element proposed in the previous section will be considered.
We introduce some notations first. The inner product on L2(Ω) will be denoted by (·, ·). For m ≥ 0, we use

Hm = Hm(Ω) to denote the Sobolev space, denote the corresponding norm and seminorm by ‖ · ‖m and | · |m,
respectively. The space Hm

0 is the closure in Hm of C∞0 (Ω).
The weak form of (1.1) is to find u ∈ H2

0 (Ω) such that

ε2a(u, v) + b(u, v) = (f, v), ∀v ∈ H2
0 (Ω), (4.1)

where

a(u, v) =

ˆ
Ω

D2u : D2v, b(u, v) =

ˆ
Ω

Du ·Dv. (4.2)

Owing to the density of C∞0 (Ω) in H1
0 (Ω) [26], one sees that if the solution u ∈ H2

0 (Ω) of (4.1) has an additional
regularity H3(Ω), it fulfills

ˆ
Ω

(−ε2D(∆u) +Du) ·Dv = (f, v) ∀v ∈ H1
0 (Ω). (4.3)
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Let u0 be the solution of the reduced problem, namely, taking ε = 0 in (1.1):{
−∆u = f in Ω,

u = 0 on ∂Ω.
(4.4)

Then Lemma 5.1 in [20] also holds when u is the weak solution of (1.1) due to a density argument.

Lemma 4.1 ([20]). Assume Ω is convex. Let u ∈ H2
0 (Ω) ∩H3(Ω) be the solution of problem (4.1), while u0 ∈

H1
0 (Ω) ∩H2(Ω) denotes the solution for the reduced problem (4.4). Then there exists a constant c, independent

of ε and f , such that

ε
1
2 |u|2 + ε

3
2 |u|3 ≤ c ||f ||0 and |u− u0|1 ≤ cε

1
2 ||f ||0

for all f ∈ L2(Ω).

Let {Th} be a regular family of decompositions of Ω into convex quadrilaterals. Denote by Eh the set of edges.
For each edge E ∈ Eh, set a unit vector nE perpendicular to E. Let

Vε,h = {v : Ω→ R | v|Q ∈ Pε,Q for all Q ∈ Th,
v is continuous at all interior vertices and midpoints in Th,

ε

 
E

∂v

∂nE
ds is continuous over all interior edges E in Th},

Vε,h0 = {v ∈ Vε,h | v vanishes at all boundary vertices and midpoints

and ε

 
E

∂v

∂nE
ds vanishes over all boundary edges},

where Pε,Q = PQ if ε 6= 0, and Pε,Q = S1
2(Q∗) otherwise. Notice that when ε = 0 we use the 8-node quadrilateral

spline finite element [17]. The local basis functions have been expressed explicitly in equation (2.5). Since we
focus on the case ε 6= 0, we rewrite Vh := Vε,h, Vh0 := Vε,h0.

Then the nonconforming finite element approximation of (4.1) is: find uh ∈ Vh0 such that

ε2ah(uh, vh) + bh(uh, vh) = (f, vh), ∀vh ∈ Vh0, (4.5)

where

ah(uh, vh) =
∑
Q∈Th

ˆ
Q

D2uh : D2vh, bh(uh, vh) =
∑
Q∈Th

ˆ
Q

Duh ·Dvh. (4.6)

Define a seminorm |||·|||ε,h by

|||w|||2ε,h = ε2ah(w,w) + bh(w,w) = ε2|w|22,h + |w|21,h,

where | · |2i,h =
∑
Q∈Th | · |

2
i,Q, i = 1, 2. It is easy to verify that |||·|||ε,h is a norm on Vh0. Therefore the problem

(4.5) has a unique solution by the Lax-Milgram lemma.
Define the global interpolation operator Πh : H2

0 → Vh0, where ΠQ = Πh|Q for Q ∈ Th. For each E ∈ Eh, let
[·]E present the jump of a function on E, n and τ denote the unit outward normal and tangential vectors on
E, respectively.
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Since ΠQ preserves functions in P2(Q), using the Bramble-Hilbert lemma, there exists a constant c
independent of h such that

∑
Q∈Th

|v −Πhv|j,Q ≤ chk−j |v|k for v ∈ Hk, (4.7)

where j = 0, 1, 2 and k = 2, 3. From [20] and a Bramble-Hilbert argument, one has

|v −Πhv|1 ≤ ch
1
2 |v|

1
2
1 |v|

1
2
2 for v ∈ H2

0 . (4.8)

The continuity requirement on Vh0 implies that

ˆ
E

[
∂wh
∂n

]
E

ds = 0 for any wh ∈ Vh0. (4.9)

Using (4.9) and a series of estimates as in [20], we derive

∑
E∈Eh

ˆ
E

(
∆ψ − ∂2ψ/∂τ 2

) [∂wh
∂n

]
E

ds ≤ ch
ε
|ψ|3 |||wh|||ε,h , (4.10)

for all ψ ∈ H3, wh ∈ Vh0. As an alternative, we have the bound

∑
E∈Eh

ˆ
E

(
∆ψ − ∂2ψ/∂τ 2

) [∂wh
∂n

]
E

ds ≤ ch
1/2

ε
|ψ|1/22 |ψ|

1/2
3 |||wh|||ε,h , (4.11)

for all ψ ∈ H3, wh ∈ Vh0.
The following theorem presents that for any fixed ε ∈ (0, 1], the finite element method we proposed converges

linearly with respect to h.

Theorem 4.2. Let u and uh ∈ Vh0 be solutions of (4.1) and (4.5), respectively. Assume that u is in H2
0 (Ω) ∩

H3(Ω) for a given f ∈ L2(Ω). Then there exists a constant c independent of ε and h such that

|||u− uh|||ε,h ≤ c

{
(h2 + εh)|u|3,
h(ε|u|3 + |u|2).

(4.12)

Proof. From the second Strang lemma,

|||u− uh|||ε,h ≤ c

(
inf

vh∈Vh0

|||u− vh|||ε,h + sup
wh∈Vh0

|Eε,h(u,wh)|
|||wh|||ε,h

)
, (4.13)

where

Eε,h(u,wh) = ε2ah(u,wh) + bh(u,wh)− (f, wh). (4.14)
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Owing to P2(Q) ⊂ PQ, the interpolation theory leads to

inf
vh∈Vh0

|||u− vh|||ε,h ≤ |||u−Πhu|||ε,h = (ε2|u−Πhu|22,h + |u−Πhu|21,h)
1
2

≤ c

{
(h2 + εh)|u|3,
h(ε|u|3 + |u|2).

(4.15)

It remains to estimate Eε,h(u,wh).
Invoking the definition of ah(u,wh), one has

ah(u,wh) = −(D∆u,Dwh) +
∑
Q∈Th

ˆ
∂Q

(
∆u− ∂2u

∂τ 2

)
∂wh
∂n

ds. (4.16)

Since u ∈ H3(Ω) it follows from (4.16) and the identify (4.3) that

Eε,h(u,wh) = ε2
∑
E∈Eh

ˆ
E

(
∆u− ∂2u

∂τ 2

)[
∂wh
∂n

]
E

ds. (4.17)

It therefore follows from (4.10) that

Eε,h(u,wh) ≤ cεh|u|3 |||wh|||ε,h . (4.18)

Collecting the estimates (4.15) and (4.18), we complete the proof.

Remark 4.3. If u ∈ H3(Ω), note the fact that in the limit when ε tends to 0, the first bound in Theorem 4.1
gives the estimate

|u− uh|1 ≤ ch2|u|3.

Lemma 4.1 leads to the subsequent uniform convergence property for our nonconforming finite element
method.

Theorem 4.4. Assume that Ω is convex, f ∈ L2(Ω) and u ∈ H2
0 (Ω) ∩ H3(Ω) be the solution of (4.1) and

uh ∈ Vh0 be the solution of (4.5), respectively. Then there exists a constant c, independent of ε, h and f , such
that

|||u− uh|||ε,h ≤ ch
1
2 ||f ||0.

Proof. The second Strang lemma (4.13) is still valid. From (4.7) and Lemma 4.1, we have

ε|u−Πhu|2 = ε|u−Πhu|
1
2
2 |u−Πhu|

1
2
2 ≤ cεh

1
2 |u|

1
2
2 |u|

1
2
3 ≤ ch

1
2 ||f ||0.

We proceed to estimate the H1-part of |||u−Πhu|||ε,h. Let u0 denote the solution for the reduced problem (4.4)
as Lemma 4.1. Using a triangle inequality we obtain

|u−Πhu|1 ≤ |u− u0 −Πh(u− u0)|1 + |u0 −Πhu
0|1.

From [12] we get the fact that ∣∣∣∣u0
∣∣∣∣

2 ≤ c ||f ||0.
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From (4.8) and Lemma 4.1, one has

|u− u0 −Πh(u− u0)|1 ≤ ch
1
2 |u− u0|

1
2
1 |u− u0|

1
2
2

≤ ch 1
2 ||f ||0,

while

|u0 −Πhu
0|1 ≤ ch|u0|2 ≤ ch ||f ||0.

Hence, we have showed that

inf
vh∈Vh0

|||u− vh|||ε,h ≤ ch
1
2 ||f ||0. (4.19)

Furthermore, the consistency error Eε,h(u,wh) have been expressed as (4.17). From (4.11) we obtain

Eε,h(u,wh) ≤ cεh 1
2 |u|

1
2
2 |u|

1
2
3 |||wh|||ε,h .

It therefore follows from Lemma 4.1 that

Eε,h(u,wh) ≤ ch 1
2 ||f ||0 |||wh|||ε,h . (4.20)

Collecting the estimates (4.19) and (4.20), we obtain

|||u− uh|||ε,h ≤ ch
1
2 ||f ||0.

We complete the proof.

5. Numerical experiments

In this section, we provide numerical results with the proposed element. The domain Ω is first divided into
n2 squares of size h× h with h = 1/n. Then three types of quadrilateral meshes are employed: uniform meshes
shown in Figure 4, the randomly perturbed quadrilateral meshes depicted in Figure 5 and the trapezoid meshes
as shown in Figure 6. Numerical solutions are computed both in these meshes.

Example 5.1. Consider problem (1.1) with Ω = [0, 1]2 ⊂ R2 and f = ε2∆2u − ∆u, where u =
(sin(πx1) sin(πx2))2.

The errors measured by the seminorm |||·|||ε,h for different values of ε and meshes are shown in Tables 1–3,

respectively. For a comparison we also consider the biharmonic problem ∆2u = f by using the element space
PQ. From these tables below, we see that these numerical results are consistent with our theoretical analysis.
More precisely, the new quadrilateral element method converges for all ε ∈ (0, 1] and behaves very well for the
biharmonic problem.

Example 5.2. Assume Ω = [0, 1]2 ⊂ R2 and u(x1, x2) = ε(e−x1/ε + e−x2/ε)−x2
1x2, a direct computation shows

f = ε2∆2u−∆u = 2x2 whenever ε 6= 0.

Clearly, u does not satisfy the homogeneous boundary condition in (1.1). Nevertheless, the nonhomogeneous
counterpart can be naturally applied in our programming. Indeed, the seminorms |u|2 and |u|3 will explode
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Figure 4. A uniform quadrilateral mesh.

Figure 5. A randomly perturbed quadrilateral mesh.

Figure 6. A trapezoid mesh.
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Table 1. The error measured by the energy norm for uniform meshes.

ε\h 2−2 2−3 2−4 2−5 2−6 Rate

20 5.6010 2.7883 1.3913 0.6954 0.3476 1.0005
2−2 1.4360 0.7014 0.3484 0.1739 0.0869 1.0025
2−4 0.4246 0.1825 0.0879 0.0436 0.0217 1.0115
2−6 0.2145 0.0620 0.0242 0.0112 0.0055 1.1115
2−8 0.1888 0.0438 0.0117 0.0037 0.0015 1.3026
2−10 0.1868 0.0422 0.0103 0.0026 7.2316e−04 1.8461
Biharmonic 5.5899 2.7869 1.3911 0.6953 0.3476 1.0002

Table 2. The error measured by the energy norm for randomly perturbed meshes.

ε\h 2−2 2−3 2−4 2−5 2−6 Rate

20 6.0561 3.0974 1.5011 0.7621 0.3801 1.0036
2−2 1.4848 0.7617 0.3797 0.1914 0.0925 1.0491
2−4 0.4884 0.2027 0.0971 0.0474 0.0238 1.0618
2−6 0.2309 0.0709 0.0270 0.0123 0.0060 1.1343
2−8 0.2123 0.0537 0.0138 0.0044 0.0017 1.3720
2−10 0.2033 0.0508 0.0124 0.0032 8.6860e−04 1.8813
Biharmonic 5.9454 2.9859 1.5104 0.7599 0.3803 0.9987

Table 3. The error measured by the energy norm for trapezoid meshes.

ε\h 2−2 2−3 2−4 2−5 2−6 Rate

20 6.6177 3.4086 1.6871 0.8407 0.4198 1.0019
2−2 1.7100 0.8604 0.4228 0.2103 0.1050 1.0075
2−4 0.5218 0.2299 0.1075 0.0528 0.0263 1.0257
2−6 0.2710 0.0869 0.0316 0.0139 0.0067 1.0529
2−8 0.2399 0.0645 0.0172 0.0053 0.0020 1.4060
2−10 0.2375 0.0623 0.0154 0.0039 0.0011 1.8260
Biharmonic 6.6003 3.4060 1.6867 0.8407 0.4198 1.0019

Table 4. The error measured by the energy norm for uniform meshes.

ε\h 2−2 2−3 2−4 2−5 2−6 Rate

20 0.1845 0.0918 0.0459 0.0229 0.0115 1.0010
2−2 0.1329 0.0639 0.0313 0.0156 0.0078 1.0227
2−4 0.2032 0.1198 0.0619 0.0309 0.0154 0.9305
2−6 0.1491 0.1265 0.0957 0.0575 0.0304 0.5735
2−8 0.1521 0.1013 0.0732 0.0618 0.0470 0.4236
2−10 0.1706 0.1144 0.0758 0.0505 0.0364 0.5571

when ε tends to zero. The errors |||u− uh|||ε,h for different values of ε and meshes are depicted in Tables 4–6.
These numerical results are conformable to the theoretical analysis of Theorem 4.2.
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Table 5. The error measured by the energy norm for randomly perturbed meshes.

ε\h 2−2 2−3 2−4 2−5 2−6 Rate

20 0.1982 0.1001 0.0499 0.0254 0.0127 0.9910
2−2 0.1320 0.0675 0.0336 0.0167 0.0084 0.9935
2−4 0.2013 0.1216 0.0632 0.0323 0.0164 0.9044
2−6 0.1550 0.1282 0.0974 0.0592 0.0314 0.5758
2−8 0.1496 0.1037 0.0733 0.0627 0.0474 0.4145
2−10 0.1730 0.1126 0.0754 0.0498 0.0371 0.5553

Table 6. The error measured by the energy norm for trapezoid meshes.

ε\h 2−2 2−3 2−4 2−5 2−6 Rate

20 0.2222 0.1091 0.0542 0.0270 0.0135 1.0102
2−2 0.1746 0.0802 0.0377 0.0183 0.0090 1.0695
2−4 0.2445 0.1480 0.0763 0.0371 0.0181 0.9389
2−6 0.1787 0.1479 0.1122 0.0690 0.0366 0.5719
2−8 0.1773 0.1196 0.0870 0.0719 0.0546 0.4249
2−10 0.1938 0.1311 0.0876 0.0593 0.0431 0.5422

6. Conclusion

In this paper, we propose a new nonconforming finite element method to solve the elliptic fourth-order
singular perturbation equation. Our method is based on quadrilateral mesh, and the constructed finite element
is a C0 element. Namely, the element is H1-conforming. The local basis functions of our element can be expressed
explicitly, which is an advantage. Besides, all the integrations can be done through the reference domain. By
using the finite element method constructed in this paper, the fourth-order singular perturbation problem is
convergent uniformly with respect to ε.
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