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A C°-NONCONFORMING QUADRILATERAL FINITE ELEMENT
FOR THE FOURTH-ORDER ELLIPTIC SINGULAR PERTURBATION
PROBLEM

YUAN BAo!, ZHAOLIANG MENG!* AND ZHONGXUAN Luo'?

Abstract. In this paper, a C° nonconforming quadrilateral element is proposed to solve the fourth-
order elliptic singular perturbation problem. For each convex quadrilateral ), the shape function space
is the union of S3(Q*) and a bubble space. The degrees of freedom are defined by the values at vertices
and midpoints on the edges, and the mean values of integrals of normal derivatives over edges. The
local basis functions of our element can be expressed explicitly by a new reference quadrilateral rather
than by solving a linear system. It is shown that the method converges uniformly in the perturbation
parameter. Lastly, numerical tests verify the convergence analysis.
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1. INTRODUCTION

Let Q C R? be a bounded polygonal domain. Denote by 02 the boundary of 2. We discuss the following
problem:

2 A2, _ :
{5Au Au=f inQ, (1.1)

— cOu _
u=c¢cgr=0 on 0,

where A is the standard Laplace operator, @/0n denotes the normal derivative along the boundary 952, and
e € [0,1] is a real parameter. Notice that if £ = 0, (1.1) formally degenerates to Poisson’s equation. If € # 0, the
problem is the fourth-order elliptic singular perturbation problem, which we investigate in this work.

Since problem (1.1) is fourth order, standard conforming finite element methods [2, 23] require globally C*
continuity. For the biharmonic problems, conforming elements such as the Argyris element [3] and the 16-dof
Bogner—-Fox—Schmit (BFS) element [5] require high degree polynomials which are rather expensive. Cheaper but
complicate conforming elements for fourth-order problems include the 12-dof Hsieh—Clough—Tocher element and
the singular Zienkiewicz triangular element [4] and so on. In order to overcome the C?! difficulty, nonconforming
finite element methods are often used [6, 14, 27]. The Morley element method is appealing for fourth-order
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FIGURE 1. A quadrilateral’s associated subdivision Q*.

problems with the fewest number of degrees of freedom on each element. However, when the Morley method is
applied to a second-order elliptic problem, as shown in [20], it will diverge. For more detailed properties of the
Morley method we refer to [19, 26].

Concerning rectangular nonconforming elements for fourth-order problems, the incomplete biquadratic ele-
ment [25] has been used as an analogue to the Morley element for rectangular meshes. The classical 12-dof Adini
element [1], which contains all cubic polynomials on rectangles, has been well-known for rectangular meshes.
Powell-Sabin types of macro elements on rectangles in two and three dimensions have been developed by Hu
et al. in [15].

Even though the triangular or rectangular meshes are popular to use, in many cases where the geometry of
the problem has a quadrilateral nature, one wishes to use quadrilateral meshes with proper elements. Fraeijs De
Veubeke [10] presented a new scheme for plate bending element by decomposing the convex quadrilateral into
the union of four triangles as shown in Figure 1. Park and Sheen [21] proposed a Morley-type finite element
for quadrilateral meshes to solve biharmonic problems. For each quadrilateral (), the finite element space was
defined by the span of P»(Q) plus two functions in P3(Q). Many successful plate elements have been constructed,
but not all of them can be used for (1.1) directly.

The fourth-order elliptic singular perturbation problem (1.1) has been studied in [7, 9, 13, 20, 22, 24, 28-30],
and so on. In [20], a triangular element with nine degrees of freedom was presented. Nilssen et al. showed
that the triangular element method converges uniformly in the perturbation parameter. Chen et al. [9] gave a
convergence theorem for non C° nonconforming finite element for the perturbation problem (1.1). Besides, a
nine parameter triangular element and a twelve parameter rectangular element were proposed with double set
parameters [8]. The main trick in [9] is to impose the element to be C° one and the mean values of integrals
of normal derivatives over edges to be continuous. In [28], Wang et al. presented a modified Morley element
for problem (1.1). This method still uses triangle Morley element or rectangle Morley element, but the linear
approximation of finite element functions is used in the part of the bilinear form corresponding to the second
order differential term. Using double set parameter method [8], Xie et al. [30] gave a robust C° triangular
element for problem (1.1). As a subsequent work, Chen et al. constructed an anisotropic nonconforming element
for the fourth-order singular perturbation problem in [7]. Although many finite elements have been constructed
for (1.1), most of them solve the problem on the triangular or rectangular meshes.

In this paper, we present a new quadrilateral element to solve the fourth-order elliptic singular perturbation
problem. Our finite element space is locally S3(Q*) @ Span{¢y, l13¢,l21¢, l13l2a¢}, where I3 and la4 are two
linear polynomials vanishing at the vertices V1, V3 and Vs, V4 and ¢ is defined in Section 2. We define the DOF's
as the eight values at the vertices and midpoints on each edge, and the four mean values of integrals of normal
derivatives over edges. Twelve local basis functions are defined on each quadrilateral element. By introducing a
new reference domain @ and an affine map as in [18], we can express the local basis functions explicitly without
solving linear systems locally. Besides, all the integrations can be done over the reference domain, which is more
efficient since the Jacobian determinant is constant. More precisely, we compute out the local stiffness matrix
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FIGURE 2. An affine map from a reference quadrilateral Q to a quadrilateral Q.

for each quadrilateral element. Our C? finite element method is convergent uniformly with respect to e for the
fourth-order singular perturbation problem.

This paper is arranged as follows. In the next section, we present our quadrilateral element and prove the
unisolvency through an affine quadrilateral. Then in Section 3, we define twelve local basis functions for our
quadrilateral element and develop a set of formulae to compute the stiffness matrix. Section 4 is devoted to the
convergence analysis. Numerical experiments are shown in Section 5. Lastly, we give the conclusion.

2. A NEW NONCONFORMING QUADRILATERAL ELEMENT

In this section, we introduce the new quadrilateral nonconforming element and prove the unisolvency.

2.1. The reference element

Let @ be a convex quadrilateral shown as in Figure 1, where Vi, V5, V3, Vy denote the vertices with coun-
terclockwise indices, F/; designates the edge between V; to V;;; modulo 4, and M; is the midpoint of Ej,
j=1,...,4. Denote by Q* the subdivision of @) by connecting its diagonals such that Q* is decomposed into
four non-overlapping triangles 7,5 = 1,...,4, and designate by O the intersection point of two diagonals. Let
l13 and lo4 be the linear polynomials satisfying

Lis(Vi) = lig(V3) = loa (Vo) = l24(V4) = 0, li3(Vy) = loa(V1) = 1.

Furthermore, let 113(V3) :~h1,l24(V3) = hs. Note that @ is convex if and only if h; < 0 and hy < 0.
In this paper, we take @ (see Fig. 2) as a reference quadrilateral with four vertices

‘71 = (07 1)’ ‘72 = (hlao)v ‘73 = (Oah/2)a ‘Zl = (170)7

which is firstly introduced in [18]. As shown there, there exists a unique affine transformation Fo.0 ¢ Q —
Q@ such that ]:Q,Q(Vi) =Vi,i=1,...,4. Note the inverse of F5 5 can be written as: (§,n) = féb(m,y) =
Sllg(x, Y), 124(3:,34)) where (z,y) € Q and (£,71) € Q. Furthermore l?t li3 = lizoFg o and log = log 0 Fo.q- then
li3(&,m) = &, 124(&, n) = n. Similarly, we denote the four edges of Q by E;,j =1,...,4. The following integrals
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on the four edges and the quadrilateral hold:

. ilj! s i
S= ——F—, § = . )

P Gt+i+00 Jg5°" G+j+1) " o)
. ilj! o . ilj! A :
inids = — I pipd, inids = — I I,

Ef” R CEY I ngn Tl
» i1 , :
ipidedn = —2 (1 — hit1)(1 — BitY). 2.2

[ gmaen = (0 R ) (22)

Here and in what follows, we denote fD = ﬁ / p by the integral mean on domain D.

2.2. A new finite element
Let I;(x,y) be the linear polynomial which vanishes on the edge E; and ;(O) =1, j =1,...,4. Then define

piecewise polynomial

B, =L, j=1,...,4

Thus ¢ is continuous at four vertices and the intersection point O, which implies that ¢ belongs to C°(Q).
Further define ¢ = l13l24¢. Obviously, ¢ € C1(Q).

The space of multivariate spline functions S3(Q*) is defined by a set of functions which are piecewise
polynomials of degree 2 possessing 1st order continuous partial derivatives in @, that is

SHQ") == {v e CHQ): vlr, € Po(Ty),j = 1,...,4}.

Here, and in what follows, P,,(7T") denotes the polynomial space of degree less than or equal to m on T.
Furthermore, S3(Q*) can be expressed explicitly as follows:

$3(Q") = Span{l,z,y, zy, 2*, y*, [lf3(z, y)]*, 24 (2, y)]*}, (2.3)

where [} and I3, are two ramp functions defined as follows:

lf},(x, y) = max(ll?)(xv y)’ O) and l;_4 (JJ, y) = max(l24(m, y)7 O)

About the space S3(Q*), we have

Lemma 2.1 ([16]). The dimension of S3(Q*) is eight. Furthermore, for any given real numbers a;,a’;,j =
1,...,4, there exists a unique f € S3(Q*) such that

JV) = ay, J(M) = dj j=1,....4. (2.4)

Lemma 2.1 implies that a function in the space Si(Q*) can be determined by values at four vertices and
four midpoints. Furthermore, the corresponding nodal basis functions can be obtained by the B-net method
[11]. However, the B-net method is not easy for those unfamiliar with the theory of multivariate spline. Now we
present the explicit representations of the nodal basis functions by the reference element proposed in Section 2.1.

Suppose that Fo.q is the affine transformation above from Q to Q, then set Q* = F=* (Q*). Now let us

N Q.Q
consider the space S3(Q*) first. It is obvious that

S3(Q*) = Span{ay;,j = 1,...,8} = Span{1,&,n,&n, €2, 0%, (£7)% (n)?}.
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Define @(5, 77) = [17 ga , 577’ €2a 7’27 (§+)27 (77+)2] and then we have

[®(7;)] [10 1 0 0 1017
B(Vy) 1hy 0 0 A} 000
B(V3) 10hy 0 0hK300
. % 110 0 1010
B |2V 1hi 1 b ho1og1|
@(Ml) 2 2 4 4242 4
H(M. 11 he haho hi s g g
Eﬂ% 22 A
@Mg 11@@ lQlO
y tt t 11t
(PMa)] 15 5 5 1 311l

By solving the corresponding linear systems, we can obtain the interpolation basis functions for S3 (Q*) as
follows:

fi(&m) h 5 ( 1+277+h2€ —% 2>+;ffz((h}j_))(£+) 3h§h;1(n+)27
e =g (1- 2+ TS ) ey - LB Ly
e =g (1-21- e+ ‘”L;; 772> - %5312‘_1)@*)2 s
fuen) =ﬁ (-t +26— e+ o) + Za=Lierye o S e
f5(&m) :Wil—hz) <h2 + 2ha€ + 2 — 26 — W&Z - ;2772>
- e+ B
e = (12— 2o+ 2 Z ey Bl )
e R e T
f2(&m) :WM (—h1 + 26 + 217 — 2y &) — }%52 - ]”(222%_1)772)
e IR e (U
Fen) === <h1h2 — 2ot — 2hin+ 26+ 126 + Z;%)
Ohy(h - 1) by (hy — 1)

i =D & el — 1) )

which satisfy the following interpolation property

fi(Vi) =8, fi(M;) =0, fiya(V;) =0, fiya(M;) =655, i,j=1,....4
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F1GURE 3. The degrees of freedom of the quadrilateral element.

Thus

fz(xay):flofé_?}Qa i=1,...,8 (25)

are the nodal basis functions for S3(Q*).
Now we are ready to define our C° quadrilateral element.

Definition 2.2. The quadrilateral finite element (Q, Pg,®q) is defined as follows:

e () is a convex quadrilateral,

o Py = S3(Q*) + Span{p, lizp, laap, lizlaa},

e The degrees of freedom are given by $g = {u(VJ),u(M]), £, C,,a—#jds cj=1,... ,4} (see Fig. 3), where n;
denotes the unit outward normal to Ej.

We first show our new quadrilateral element is well defined. For this, we need the following lemma.

Lemma 2.3. The following matrix

fEl lizloads fEl [3l24ds J[E1 l1313,ds fEl 11313,ds
fr, lialoads fy i3l2ads fy Lial3,ds fy 13505,ds
ng l13l24d5 fEs l%3124d8 fEs l13lg4d8 fEs l%3l%4d8
fE4 113124(15 fE4 l%3lg4d5 fE4 llgl§4d8 fE4 1%3154(15

M =

18 nonsingular.

Proof. Take Q as the reference element as introduced in Section 2.1 and introduce a new matrix M as

£, lisloads f, Baloads fp, Dol3yds fp BI3,d57] T f5 €0d3 f5 €nd3 £z, En2d5 £, €Pds
it | oot f, Bl fo. s Fy Tafhas | _ | i nas g, € f onts fy. eas | o
7, l13l2ad3 f 135l24d3 fp 11313,d5 f 19505,d3 fa, Ends fz &0d3 f5 En7d5 f5 En°ds

fE‘4 513[24(15 fE4 l~%3l~24d§ fE‘4 [13[%4(15 fE4 l?3i§4d.§ ]CE4 €nd§ JCE~4 5277(15 fE4 5772(15 fE4 52772(15
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Since Fo.q Is an affine map, we have M = M through variable substitution. Thus, it only needs to prove that

M is nonsingular. According to formulas (2.1), we have

[ thi 5h Hh g5hd
~ 151 hy ﬁlli h1h§ s h2h2
M 6 12 30,

%?2 %hg 11h2 1 h2
L 6 12 12 30
1 1hy 1 h ] [t

| hahe 1 hy hy hihy =
hy | (11 hy by Lo 27)

i 1[t11 1 =

. Y hih3(h1—1)%(ha—1)* . o .
with det(M) = == —5=2 # 0, since h; < 0 and hg < 0. So M is nonsingular. Thus we complete the

proof. O

Next we proceed to show the following unisolvency result.
Theorem 2.4. The set D is Pg-unisolvent.

Proof. Suppose that w € Py satisfies

Due to the definition of Py we have

w(z,y) =P1 + Box + Bsy + Baxy + Bsz® + Bey® + Brllfz(z, y)]* + Bslldy (2, v))?

+ Bop + Brolizp + Brilaap + Pialislaaep, 29)
for some constants 8; € R,i =1,...,12 to be determined. According to the definition of ¢, one has
e(Vj) = (M) =0, j=1,....4
Hence if we set
s(x,y) = B1 + Box + Bsy + Bawy + Bsx® + Bey® + Br[lfs (. v)]* + Bsllzy (x, )],
then substituting (2.9) into (2.8) will lead to
s(V;)=s(M;)=0, j=1,...,4. (2.10)

and

w(z,y) = Bop + Brolise + Prilaap + Bralislaaep. (2.11)
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Next we will show that all constants in (2.11) are also zeros. Substituting w(x,y) into

ow

—ds=0, j=1,...,4

anj S .] ) b

will derive
Bo
Bro| _
N =0, (2.12)

B11
Bi2

where

) (lizp) A(l2ap) A(lislaaep)
JCE'l an1d5 fEl ong ds fEl 8n1 ds fE‘ on, ds

)
a( U 9113l
N = JCEg an2 JCEZ,(alT‘“’f;dsf& 24<P)d fu, %ds
)

(2.13)

2
A(lizp (12490) A(lizl2aep)

JCE3 an ng 8(Bln3 ds JCEg, z )ds JCE a(lal )d
Oy 13 244,0 13024¥

fE4 6n4 dS JCE4 6n4 dS fE4 8714 dS fE4 8”4 dS

According to the definition of ¢, we have

/ A(py )d 7/ 3(Pll3lz4lj)d5:/ 6(pl13l24)ljds+/ 0l; (p113124)d5fa—l (plislas)ds,
E E; E E; on;

. On; on; . On; on; Jg,

where p = 1,113,124 or l13lo4. Thus N can be rewritten as

. 0ly 0Ola 0lz 0l
N = _— Y —,— | - M. 2.14
dia 28 (8 T 8n2 8n3 8n4> ( )

According to Lemma 2.1, M is nonsingular which implies that N is nonsingular. This leads to

Bo = Bio = P11 = B12 =0,

and hence w = 0, which completes the proof. O

3. BASIS FUNCTIONS AND STIFFNESS MATRIX FOR THE ELEMENT ()

3.1. Basis functions for the shape function space Pg

In this section, we will derive the explicit expression of the nodal basis functions. For convenience, define
twelve linear functionals ¥;,7 = 1,...,12 on Py by

af
8nl

Ui(f) = f(Va), Yira(f) = f(M;), Yirs(f) = i=1,...,4.

Next define twelve local basis functions P; € Pg satisfying

W(P;) =65, i,j=1,...,12. (3.1)



A C°-NONCONFORMING QUADRILATERAL FINITE ELEMENT 1989

Firstly, let us give the explicit expressions of P;,j =9,...,12. Take Py as an example. It follows from the
proof of Theorem 2.4 that Py € Span{p, l13p, laap, l13l24¢}, which means that Py can be written as

Py = c1o+ calisp + cslaap + calisloap,

where ¢;,i = 1,...,4 are coefficients to be determined. Thus according to the interpolation conditions (3.1), we
can get linear equations

N-c=e; with ¢=[c;,c,¢c3,¢4]7 and e =[1,0,0,0]T.

Here N is given by (2.13) or (2.14). Notice in equation (2.14), M = M where M is given by equation (2.6) or
in another form equation (2.7). Collecting above discussion, we have

51!
e 3 .[81] [~ha, 2hs,2, —5]7
hy-|Q L0
and hence
Py = 3 {811]1 (—ho + 2haly3 + 2lag — 5ly3lag)l13l24¢ := ki P
9 h1\6~2| on, 2 2013 24 13024 )013l249 1= K1 b,
where

Q] = area(Q) = (1 — hy)(1 — ha)/2, ki = 3 [(%1} -1
’ m|Q| Loni]

and P, is the remaining part. Similarly, we can get

3 ol 17! _
Py = Il O] [87122} (1 = 2l13 — 24 + 5liglaa)li3loag == kaPig
3 ol _

Py = = | - (—h1 + 2lig + 2hqlay — Bligloa)ligload == ks P11

ho|Q| LOns

3 (o, ]17" _
Prp = — sl (hihg — 2halyz — 2h1lag + 5l13las)li3l2a¢ := kaPia,

|Q[ Lo

where kg, k3, k4 and Pjg, Pyq, P15 take the similar meaning with those k; and Py.
Let us turn to the computation of k;,i = 1,...,4. Assume that D; is the foot point of O on E;. Since I;(x,y)
is a linear polynomial and [;(O) = 1, then

o _ L(D)—LO) 1
om;  |OD]  |oDy|
Thus we have
_ A <1 —5mlQIE| _ |T1|QIE| _ |QIIE:|
3k =m|Q| - 5— = —m|Q] - = 2 = = 7
1 1‘Q| 8n1 1|Q‘ |OD1| %‘OD1|‘E1| |Tl‘ det(J)2
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that is k1 = 3det(J)2/(|Q||E1]). Other k;’s can be obtained by the same way. Explicitly, we have k; =
3det(J)2/(|Q||E;]) for i =1,...,4.

It is left to give the expressions of P;,i = 1,...,8. Recall that the basis functions of Si(Q*) are given by
equation (2.5). Immediately, P; can be expressed by

ofi ofi .
Pi:fi_Z(]i 8fjd8> j+8 = =fi— Z(a,”{j(Mj)>Pj+g,Z=17...,8.

j=1 \"Ei j=1

Here we use the fact that f; is piecewise quadratic and hence Jf;/0n; is linear on E;. Now it only needs to
compute 37’: (M;). Set unit tangential vector 7; = V;V;41/|E;|,7 = 1,...,4 modulo 4. Since f; is a quadratic
polynomial which can be determined by the values at two vertices and midpoint on the edge F;, the derivative
fi along T; can be obtained. By certain computation, one has

-3, 1=45=k,

3, 1=k, g =k—1,
of; IR
|Ej|.87‘4(vk): —-1, i=j+1=k+1,
! 4, di=j+4=Fk+4,

—4, i=j+4=k-3,
0, otherwise.

According to the definition of directional derivative, one has

af; 1 Ofi (Tj—1,Tj) Of;

A Vo) — V),
8”1( ) <Tj—1’"j>67'j—1( i) <Tj—1anj>5"'j( i)
ofi 1 ofi o, A1t Ofi
on; By Vi) = (Tjr1,m5) OTj 41 Vi) (Tj1,m5) 37';‘( )

where (-, ) denotes the inner product of two vectors. Then

ot (M5) = 5 (G V) o (V) ) = 5 (B i),

on; on; on;
where
Bj:< ! - {Tj-1, 7)) 7 ! — (Tj> Tj1) )7
|Ej—a|(mj—1,my) " B (-1, my) " [Ejal (Tj41,m5) " |Ejma] (141, my)
and

Py = (1Bl g VLB G Vi Bl g (V) B L V) ).

]—1
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More precisely, let Fj be a matrix whose ith row is Fj;, then we can write

3 -3 0 1]1 o o o|lo o -1 0]0 -1 =3 3]
o -1 -3 3/3 -3 0 1|1 0 O O]0 0O -1 0
o o -1 0/]0 -1 -3 3|3 -3 0 1|1 0 0 O
1 o 0o o|/0O O -1 0|0 -1 -3 3|3 -3 0 1
PRI Fl = 0y 0 404 0 0 o]0 0 0 0|0 0 4 0
o 0 4 0|0 4 0 —-4/-4 0 0O O0O]0 O 0 O
o o o 0|0 O 4 0|0 4 0 —-4|—-4 0 0 O
| -4 0 0 O0Of|O 0O O O]O0O O 4 0[O0 4 0 -—4]

3.2. Stiffness matrix for the element Q

Now we turn to consider the computational aspect. Set A = [a;;]12x12 and B = [b;;]12x12 are the local stiffness
matrices corresponding to the bilinear form a(-,-) and b(-, ), respectively, that is

aij:/DQPi:DZPj, bZJZ/DPZDPj,
Q Q

where D?u = (8328””‘1]_ )l K we may also use (z,y) = (z1, z2) for brevity.

Generally, the computation of quadrilateral element can be realized on the reference domain [—1,1]? and the
bilinear transformation is required. Next, we will show that all the computation can be finished efficiently on
our reference quadrilateral Q

Let l13(x,y) = arz + Bry + 1 and lay(z,y) = asx + B2y + Yo. F4.o is the linear transformation given in
Section 2.1. Thus the derivatives of the function f defined on @ can be derived as follows:

of _of f af om of of ;
%_Ff.ax 877.5'7:5 5‘754_042 o =aDe¢yf,
of

> (3.2)
O _OF 0 01 0n_ 0y gy
s

oy o ay o 7_/31 o€

where f = fo Fo.q-@ = [a1,a0], B = [B1, B2] and Dg’nf denotes the gradient of f with respect to & and 7. The
Jacobian matrix will be calculated as

B B2 (3:3)

with its determinant

det(J) = 1/(a1B2 — azfh).
In what follows, for convenience, let R; = f; fori =1,...,8 and R; = P; fori =9,...,12. Taking R, = R; o]:Q)Q

and using formulas (2.2), the matrix G = [éijhgxlg can be exactly calculated, where éij’s are sub-matrices of
2 x 2 and given by

G = /Q[DMRHDMR} dédn, i j=1,...,12.
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Thus for 7,7 =1,...,12, we have

onoma- |

I

Then we have b;; = b;; fori,j =9, ...,

(

(aéijaT + 5éij,5'T) det(J) :=

Y. BAO ET AL.

) dxd

((@Deyfti) (@D ;) + (BDe i) (BDey ) ) det(J)dgdn

or; or;
Oox Oz

Oy Oy

bij-

12, and

bi; = (DP;, DP})g = (D (fl =S (62% 8 (Mts)> Pt> ,DPj>
t=9 - Q
12 of: B 12 of:
(Dfi,DPj)q — Z (é)n zS(Mt 8)) (DP;, DP;j)q = bij — <8n zS(Mt 8)) by,
t=9 t= =9 t
and bj; =b;; fori=1,...,8,7=9,...,12, and
12 af,
bij = (DPi,DPj)Q = (D <fz — Z (an ZS(Mt_8)> Pt) ,DPj)
t=9 t—
12 o, ¢
= (Df27DP_])Q— (8nt18(Mt 8)) (DPt7DP)
t=9 -
12 af; 12 o,
- (Dfi,D (fj 93 i) a))@ > (k)
12 af, 12 af,
— (05 Dfo - Y (52 (Mems)) (DF.DPIe = 3 (b (is) ) by
5=9 5= t=9 -
B 12 af; ) 12 of.
= bij — 2;9 ( o (Msg)> bis — ; ( T, (M- 8)) by
LN of; . ofi
T Py {<3ntj—8 (Mtg)) bt (3"%—8 (M:- 8)> bm} ’

fori,j=1,...,8.

Let us turn to the computation of the first part of the stiffness matrix. The second order partial derivatives

of the function f can be obtained as follows:

O*f _ Lf o*f o*f 262f _
@_0‘1872“‘10‘285877“‘2 15 8§+a 91H5nf7
82 f 82f f z
920y P45 €2 04152 e 251a O a25278772 = 0:HZ, f,
an o*f 7 I, 2 ;

_ ﬁl 962 + B1Bo = 2€0m + B251 oo + ﬁ% o = 03H527nfa
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~ a2 ¢ 27 27
where 8; = [a3, 2010, 03], 05 = 01 81, 01 B2 + a1, a2 fa], 03 = [BF,261 2, B3] and HE, [ = [Gek, 5eb, 5517

Similarly, the matrix H = [ﬁij]lgxlg can be calculated exactly, where INJU’S are sub-matrices of 3 x 3 and
given by

Hij = /Q[HMR][HM Tdedn, ij=1,...,12.

Hence for 7,5 =1,...,12, we have

/DQRi : DQRjdxdy
Q

_/ (82Ri O°R; | ,0°R; O°R;  0°Ri0°R

022 02 | “onoyoxdy | og7 0 )dwdy

/Q [(Ong nR )(01H§ nR )+ 2(02H§ nR )(BQHE nR )+ (03H£ 77R )(03H§ nR )| det(J)d&dn
- (olﬁijaf + 20,167 + egﬁijeg) det(J) := aj,.
Following similar argument above, we have

Qijy 1,7 =9,...,12,

_ 12 . .
= ay - (s (M, 8))%, aji = aij, i=1,...,8,j=09,...,12,

Gij — iig (ant 8(Mt 8)) a;t + (8nt 8(Mt s)) atj}, i,j=1,...,8.

Collecting above discussion, the components of the stiffness matrix e2a;; + b;; can be calculated exactly.

4. CONVERGENCE ANALYSIS
In this section, the convergence analysis of the element proposed in the previous section will be considered.
We introduce some notations first. The inner product on L2(£2) will be denoted by (-,-). For m > 0, we use
H™ = H™(Q) to denote the Sobolev space, denote the corresponding norm and seminorm by || - ||, and | - |,
respectively. The space HJ" is the closure in H™ of C§°(€2).
The weak form of (1.1) is to find u € HZ(£2) such that
e2a(u,v) +b(u,v) = (f,v), Yo € HZ(Q), (4.1)

where

a(u,v) = /QD2u : D*v,  b(u,v) = /QDu - Du. (4.2)

Owing to the density of C§°(2) in HE(Q) [26], one sees that if the solution u € HZ({2) of (4.1) has an additional
regularity H?(Q), it fulfills

/ (—2D(Au) + Du) - Dv = (f,0) Yo € HL(Q). (4.3)
Q
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Let u® be the solution of the reduced problem, namely, taking e = 0 in (1.1):

(4.4)

—Au=f inQ,
u=0 on 0f.

Then Lemma 5.1 in [20] also holds when u is the weak solution of (1.1) due to a density argument.

Lemma 4.1 ([20]). Assume Q is conver. Let u € H3(Q) N H3(Y) be the solution of problem (4.1), while u® €
HE () N H?(Q) denotes the solution for the reduced problem (4.4). Then there exists a constant c, independent
of € and f, such that

exfuly +e3fuls <cllfllo and |u—u’ly < ce?||fllo

for all f € L?(2).

Let {7} be a regular family of decompositions of € into convex quadrilaterals. Denote by &, the set of edges.
For each edge E € &, set a unit vector ng perpendicular to E. Let

Ven={v: Q=R |v|lg€P.gforallQ €Ty,

v is continuous at all interior vertices and midpoints in 7y,

ov . . L .
€ ][ ds is continuous over all interior edges F in Ty},
E ong

Ve.no = {v € V1, | v vanishes at all boundary vertices and midpoints

0
and & ][ Y_ds vanishes over all boundary edges},
g Ong

where P. o = Pg ife # 0, and P- g = S3(Q*) otherwise. Notice that when € = 0 we use the 8-node quadrilateral
spline finite element [17]. The local basis functions have been expressed explicitly in equation (2.5). Since we
focus on the case ¢ # 0, we rewrite V}, := V, p, Vo := V po-

Then the nonconforming finite element approximation of (4.1) is: find uj, € Vo such that

e2an(un, vn) + bp(un,vn) = (f,vn), Von € Vo, (4.5)
where
ah(uh,vh) = Z / D2uh : D2Uh, bh(uh,vh) = Z / Duy, - Duy,. (4.6)
QeTy "9 Q€T 7@
Define a seminorm [[[-[||, , by
llewll2,, = £2an (w, w) + b (w, w) = wl3 5 + [wl 4,
where | - |fh =2 ger | |127Q7i =1,2. It is easy to verify that |||-[|[. ,, is a norm on Vjo. Therefore the problem

(4.5) has a unique solution by the Lax-Milgram lemma.

Define the global interpolation operator ITj, : HZ — Vj,0, where IIg = II}|g for Q € Ty For each E € &, let
[[]e present the jump of a function on E, n and 7 denote the unit outward normal and tangential vectors on
E, respectively.
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Since IIg preserves functions in P5(Q), using the Bramble-Hilbert lemma, there exists a constant ¢
independent of h such that

v—1Ipv|io <c 7'1);6 or veE , .
Myv|j.q < ch*~i f H* 4.7
QETh

where j =0,1,2 and k = 2,3. From [20] and a Bramble-Hilbert argument, one has
11
|v — Mpo)y Sch%|v|f\v|§ for ve Hj. (4.8)

The continuity requirement on Vo implies that

/ [awh] ds =0 for any wp € Vjg. (4.9)
on | g

Using (4.9) and a series of estimates as in [20], we derive

h
> [ av-ervjort) | 52| as<ctitliunll. (1.10
E

Ecéy

for all ¢» € H3,wy, € Vjo. As an alternative, we have the bound

S [ (@av-oujor )[a‘”h] s < S0l ol (4.11)

Eeé&y

for all ¢ € H3,wp, € Vi
The following theorem presents that for any fixed e € (0, 1], the finite element method we proposed converges
linearly with respect to h.

Theorem 4.2. Let u and uy, € Vi be solutions of (4.1) and (4.5), respectively. Assume that u is in H(Q) N
H3(Q) for a given f € L?(Q). Then there exists a constant ¢ independent of € and h such that

(h? + eh)|uls,
llu—=wunlll. ), <c (4.12)
ot h(eluls + |ul2).
Proof. From the second Strang lemma,
E. p(u, wy
flu—unllp S int vl + sup Bertinll), (4.13)
vhEV] wpE€Vho |Hwh|”s,h

where

E. n(u,wy) = e2an (u, wp) + by, (u, wp) — (f, wp). (4.14)



1996 Y. BAO ET AL.

Owing to P»(Q) C Pg, the interpolation theory leads to

. 1
inf |l — vl <l Hyull. ), = (€*u — Dpul3 , + lu — yul? ),)?
v €Vho
(% + eh)luls, (4.15)
h(eluls + |ul2).

It remains to estimate E; p(u, wp).
Invoking the definition of ap (u, wy), one has

an (u, wy) = —(DAu, Dwp) + E:A ( &»2$®. (4.16)

QETh

Since u € H3(Q) it follows from (4.16) and the identify (4.3) that

Eep(u,wy) =22 ) / ( aﬂ) [%]Eds. (4.17)

Ee€é&y
It therefore follows from (4.10) that
Eep(u,wn) < cehluls [[[walll. , - (4.18)

Collecting the estimates (4.15) and (4.18), we complete the proof. O

Remark 4.3. If u € H3(Q), note the fact that in the limit when ¢ tends to 0, the first bound in Theorem 4.1
gives the estimate

lu — up|y < ch?|uls.

Lemma 4.1 leads to the subsequent uniform convergence property for our nonconforming finite element
method.

Theorem 4.4. Assume that Q is convez, f € L?(Q) and u € HZ(Q) N H3(Q) be the solution of (4.1) and
up, € Vio be the solution of (4.5), respectively. Then there exists a constant c, independent of €, h and f, such
that

llu = wunll. s, < ch |If]lo-
Proof. The second Strang lemma (4.13) is still valid. From (4.7) and Lemma 4.1, we have
1 1 111 1
elu = yuly = elu = Myul3 lu — Myuls < ceh?|ul3ul3 < ch? |[f]o-

We proceed to estimate the H'-part of |||ju — ITpul||. . Let u® denote the solution for the reduced problem (4.4)
as Lemma 4.1. Using a triangle inequality we obtain

lu — Myl < |u—u® — I, (u — u®)|y + [u® — IT,u°;.
From [12] we get the fact that

[u°]] 2 < ellfllo-
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From (4.8) and Lemma 4.1, one has

1 1
lu —u® — Iy, (u — u®)|; < ch%|u—u0|f\u—uo22

< ch? fllo,
while
u® — [pu®]y < chlu®]z < ch||f]lo-
Hence, we have showed that

inf [lu—wnlll., < ch? [[fllo- (4.19)

vh €Vho

Furthermore, the consistency error E. j(u,wp) have been expressed as (4.17). From (4.11) we obtain

1 1 1
Ee n(u,wp) < ceh?[ul3 |ul3 [[lwnlll. , -

It therefore follows from Lemma 4.1 that

Ben(u,wh) < ch? ||fllollwnlll.., - (4.20)

Collecting the estimates (4.19) and (4.20), we obtain

1
llw = unlll. ,, < ch> ||f]lo-

We complete the proof. O

5. NUMERICAL EXPERIMENTS

In this section, we provide numerical results with the proposed element. The domain Q is first divided into
n? squares of size h x h with h = 1/n. Then three types of quadrilateral meshes are employed: uniform meshes
shown in Figure 4, the randomly perturbed quadrilateral meshes depicted in Figure 5 and the trapezoid meshes
as shown in Figure 6. Numerical solutions are computed both in these meshes.

Example 5.1. Consider problem (1.1) with Q = [0,1]> € R? and f = &2A%u — Au, where u =
2

(sin(7xq) sin(mzg))?.

The errors measured by the seminorm |[|-|||_ , for different values of e and meshes are shown in Tables 1-3,
respectively. For a comparison we also consider the biharmonic problem A2u = f by using the element space
Pg. From these tables below, we see that these numerical results are consistent with our theoretical analysis.
More precisely, the new quadrilateral element method converges for all € € (0, 1] and behaves very well for the
biharmonic problem.

Example 5.2. Assume Q = [0,1]> € R? and u(x1, z2) = (e~ /% + e~*2/¢) — 2315, a direct computation shows
f =¢e2A%u — Au = 215 whenever ¢ # 0.

Clearly, u does not satisfy the homogeneous boundary condition in (1.1). Nevertheless, the nonhomogeneous
counterpart can be naturally applied in our programming. Indeed, the seminorms |u|y and |u|3 will explode
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FIGURE 4. A uniform quadrilateral mesh.

FIGURE 5. A randomly perturbed quadrilateral mesh.
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FIGURE 6. A trapezoid mesh.
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TABLE 1. The error measured by the energy norm for uniform meshes.

e\h 272 273 2-4 275 276 Rate

20 5.6010 2.7883 1.3913 0.6954 0.3476 1.0005
272 1.4360 0.7014 0.3484 0.1739 0.0869 1.0025
274 0.4246 0.1825 0.0879 0.0436 0.0217 1.0115
26 0.2145 0.0620 0.0242 0.0112 0.0055 1.1115
278 0.1888 0.0438 0.0117 0.0037 0.0015 1.3026
210 0.1868 0.0422 0.0103 0.0026 7.2316e—04 1.8461
Biharmonic  5.5899 2.7869 1.3911 0.6953 0.3476 1.0002

TABLE 2. The error measured by the energy norm for randomly perturbed meshes.

e\h 272 273 274 275 276 Rate

20 6.0561 3.0974 1.5011 0.7621 0.3801 1.0036
272 1.4848 0.7617 0.3797 0.1914 0.0925 1.0491
24 0.4884 0.2027 0.0971 0.0474 0.0238 1.0618
26 0.2309 0.0709 0.0270 0.0123 0.0060 1.1343
278 0.2123 0.0537 0.0138 0.0044 0.0017 1.3720
210 0.2033 0.0508 0.0124 0.0032 8.6860e—04 1.8813
Biharmonic 5.9454 2.9859 1.5104 0.7599 0.3803 0.9987

TABLE 3. The error measured by the energy norm for trapezoid meshes.

e\h 272 273 274 275 276 Rate

20 6.6177 3.4086 1.6871 0.8407 0.4198 1.0019
272 1.7100 0.8604 0.4228 0.2103 0.1050 1.0075
24 0.5218 0.2299 0.1075 0.0528 0.0263 1.0257
26 0.2710 0.0869 0.0316 0.0139 0.0067 1.0529
278 0.2399 0.0645 0.0172 0.0053 0.0020 1.4060
2-10 0.2375 0.0623 0.0154 0.0039 0.0011 1.8260

Biharmonic  6.6003 3.4060 1.6867 0.8407 0.4198 1.0019

TABLE 4. The error measured by the energy norm for uniform meshes.

e\h 272 273 24 25 26 Rate

0 0.1845 0.0918 0.0459 0.0229 0.0115 1.0010
2 0.1329 0.0639 0.0313 0.0156 0.0078 1.0227
402032 0.1198 0.0619 0.0309 0.0154 0.9305

=6 0.1491 0.1265 0.0957 0.0575 0.0304 0.5735
8 0.1521 0.1013 0.0732 0.0618 0.0470 0.4236

1001706 0.1144 0.0758 0.0505 0.0364 0.5571

when ¢ tends to zero. The errors |||u — us|||, ;, for different values of ¢ and meshes are depicted in Tables 4-6.
These numerical results are conformable to the theoretical analysis of Theorem 4.2.
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TABLE 5. The error measured by the energy norm for randomly perturbed meshes.

e\h 272 273 274 275 276 Rate

20 0.1982 0.1001 0.0499 0.0254 0.0127 0.9910
272 0.1320 0.0675 0.0336 0.0167 0.0084 0.9935
274 0.2013 0.1216 0.0632 0.0323 0.0164 0.9044
276 0.1550 0.1282 0.0974 0.0592 0.0314 0.5758
2 8

2

0.1496 0.1037 0.0733 0.0627 0.0474 0.4145
1001730 0.1126  0.0754 0.0498 0.0371 0.5553

TABLE 6. The error measured by the energy norm for trapezoid meshes.

e\h 272 23 24 25 26 Rate

0 0.2222 0.1091 0.05642 0.0270 0.0135 1.0102
2 0.1746  0.0802 0.0377 0.0183 0.0090 1.0695
4 0.2445 0.1480 0.0763 0.0371 0.0181 0.9389

=6 0.1787 0.1479 0.1122 0.0690 0.0366 0.5719
8 0.1773 0.1196 0.0870 0.0719 0.0546 0.4249

1001938 0.1311  0.0876 0.0593 0.0431 0.5422

6. CONCLUSION

In this paper, we propose a new nonconforming finite element method to solve the elliptic fourth-order
singular perturbation equation. Our method is based on quadrilateral mesh, and the constructed finite element
is a CY element. Namely, the element is H'-conforming. The local basis functions of our element can be expressed
explicitly, which is an advantage. Besides, all the integrations can be done through the reference domain. By
using the finite element method constructed in this paper, the fourth-order singular perturbation problem is
convergent uniformly with respect to €.
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