In this paper, a finite volume element (FVE) method is considered for spatial approximations of time fractional diffusion equations involving a Riemann-Liouville fractional derivative of order in time. Improving upon earlier results [Karaa et al., IMA J. Numer. Anal. 37 (2017) 945–964], error estimates in - and -norms for the semidiscrete problem with smooth and mildly smooth initial data, i.e., and are established. For nonsmooth data, that is, , the optimal -error estimate is shown to hold only under an additional assumption on the triangulation, which is known to be satisfied for symmetric triangulations. Superconvergence result is also proved and as a consequence, a quasi-optimal error estimate is established in the -norm. Further, two fully discrete schemes using convolution quadrature in time generated by the backward Euler and the second-order backward difference methods are analyzed, and error estimates are derived for both smooth and nonsmooth initial data. Based on a comparison of the standard Galerkin finite element solution with the FVE solution and exploiting tools for Laplace transforms with semigroup type properties of the FVE solution operator, our analysis is then extended in a unified manner to several time fractional order evolution problems. Finally, several numerical experiments are conducted to confirm our theoretical findings.
Mots-clés : Fractional order evolution equation, subdiffusion, finite volume element method, Laplace transform, backward Euler and second-order backward difference methods, convolution quadrature, optimal error estimate, smooth and nonsmooth data
@article{M2AN_2018__52_2_773_0, author = {Karaa, Samir and Pani, Amiya K.}, title = {Error analysis of a {FVEM} for fractional order evolution equations with nonsmooth initial data}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {773--801}, publisher = {EDP-Sciences}, volume = {52}, number = {2}, year = {2018}, doi = {10.1051/m2an/2018029}, mrnumber = {3834443}, zbl = {1404.65114}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2018029/} }
TY - JOUR AU - Karaa, Samir AU - Pani, Amiya K. TI - Error analysis of a FVEM for fractional order evolution equations with nonsmooth initial data JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2018 SP - 773 EP - 801 VL - 52 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2018029/ DO - 10.1051/m2an/2018029 LA - en ID - M2AN_2018__52_2_773_0 ER -
%0 Journal Article %A Karaa, Samir %A Pani, Amiya K. %T Error analysis of a FVEM for fractional order evolution equations with nonsmooth initial data %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2018 %P 773-801 %V 52 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2018029/ %R 10.1051/m2an/2018029 %G en %F M2AN_2018__52_2_773_0
Karaa, Samir; Pani, Amiya K. Error analysis of a FVEM for fractional order evolution equations with nonsmooth initial data. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 2, pp. 773-801. doi : 10.1051/m2an/2018029. http://www.numdam.org/articles/10.1051/m2an/2018029/
[1] Some error estimates for the box method. SIAM J. Numer. Anal. 24 (1987) 777–787. | DOI | MR | Zbl
and ,[2] An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid. Numer. Math. 131 (2016) 1–31. | DOI | MR | Zbl
, , and ,[3] Error estimates for a finite volume element method for parabolic equations in convex polygonal domains. Numer. Methods Part. Differ. Equ. 20 (2004) 650–674. | DOI | MR | Zbl
, and ,[4] Some error estimates for the lumped mass finite element method for a parabolic problem. Math. Comput. 81 (2012) 1–20. | DOI | MR | Zbl
, and ,[5] Some error estimates for the finite volume element method for a parabolic problem. Comput. Methods Appl. Math. 13 (2013) 251–279. | DOI | MR | Zbl
, and ,[6] Error estimates in L2, H1 and L∞ in covolume methods for elliptic and parabolic problems: a unified approach. Math. Comput. 69 (2000) 103–120. | DOI | MR | Zbl
and ,[7] Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comput. 75 (2006) 673–696. | DOI | MR | Zbl
, and ,[8] Finite volume element approximations of nonlocal reactive flows in porous media. Numer. Methods Part. Differ. Equ. 16 (2000) 285–311. | DOI | MR | Zbl
, and ,[9] Time fractional diffusion: a discrete random walk approach. Nonlinear Dyn. 29 (2002) 129–143. | DOI | MR | Zbl
, , and ,[10] Fractional reaction-diffusion. Physica A 276 (2000) 448–455. | DOI | MR
and ,[11] Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38 (2016) 146–170. | DOI | MR
, and ,[12] Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51 (2013) 445–466. | DOI | MR | Zbl
, and ,[13] Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J. Numer. Anal. 35 (2015) 561–582. | DOI | MR | Zbl
, , and ,[14] Finite volume element method for two-dimensional fractional subdiffusion problems. IMA J. Numer. Anal. 37 (2017) 945–964. | MR | Zbl
, and ,[15] Optimal error analysis of a FEM for fractional diffusion problems by energy arguments. J. Sci. Comput. 74 (2018) 519–535. | DOI | MR | Zbl
, and ,[16] FEM for time-fractional diffusion equations, novel optimal error analyses. Math. Comput. 87 (2018) 2259–2272. | DOI | MR | Zbl
,[17] Generalized Difference Methods for Differential Equations. Marcel Dekker, New York (2000). | DOI | MR | Zbl
, and ,[18] Finite volume element methods: an overview on recent developments. IJNAM Int. J. Numer. Anal. Modeling Ser. B 4 (2013) 14–34. | MR | Zbl
and ,[19] Discretized fractional calculus. SIAM J. Math. Anal. 17 (1986) 704–719. | DOI | MR | Zbl
,[20] Convolution quadrature and discretized operational calculus-I. Numer. Math. 52 (1988) 129–145. | DOI | MR | Zbl
,[21] Convolution quadrature revisited. BIT Numer. Math. 44 (2004) 503–514. | DOI | MR | Zbl
,[22] Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comput. 65 (1996) 1–17. | DOI | MR | Zbl
, and ,[23] Time discretization via Laplace transformation of an integro-differential equation of parabolic type. Numer. Math. 102 (2006) 497–522. | DOI | MR | Zbl
, and ,[24] Numerical solution via Laplace transforms of a fractional order evolution equation. J. Integr. Equ. Appl. 22 (2010) 57–94. | DOI | MR | Zbl
and ,[25] Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional order evolution equation. IMA J. Numer. Anal. 30 (2010) 208–230. | DOI | MR | Zbl
and ,[26] Time discretization of an evolution equation via Laplace transforms. IMA J. Numer. Anal. 24 (2004) 439–463. | DOI | MR | Zbl
and ,[27] The random walks guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000) 1–77. | DOI | MR | Zbl
and ,[28] Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation. Numer. Algorithms 56 (2011) 159–184. | DOI | MR | Zbl
and ,[29] Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, Berlin (2006). | MR | Zbl
,Cité par Sources :