In this paper, a finite volume element (FVE) method is considered for spatial approximations of time fractional diffusion equations involving a Riemann-Liouville fractional derivative of order
Mots-clés : Fractional order evolution equation, subdiffusion, finite volume element method, Laplace transform, backward Euler and second-order backward difference methods, convolution quadrature, optimal error estimate, smooth and nonsmooth data
@article{M2AN_2018__52_2_773_0, author = {Karaa, Samir and Pani, Amiya K.}, title = {Error analysis of a {FVEM} for fractional order evolution equations with nonsmooth initial data}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {773--801}, publisher = {EDP-Sciences}, volume = {52}, number = {2}, year = {2018}, doi = {10.1051/m2an/2018029}, mrnumber = {3834443}, zbl = {1404.65114}, language = {en}, url = {https://www.numdam.org/articles/10.1051/m2an/2018029/} }
TY - JOUR AU - Karaa, Samir AU - Pani, Amiya K. TI - Error analysis of a FVEM for fractional order evolution equations with nonsmooth initial data JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2018 SP - 773 EP - 801 VL - 52 IS - 2 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2018029/ DO - 10.1051/m2an/2018029 LA - en ID - M2AN_2018__52_2_773_0 ER -
%0 Journal Article %A Karaa, Samir %A Pani, Amiya K. %T Error analysis of a FVEM for fractional order evolution equations with nonsmooth initial data %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2018 %P 773-801 %V 52 %N 2 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2018029/ %R 10.1051/m2an/2018029 %G en %F M2AN_2018__52_2_773_0
Karaa, Samir; Pani, Amiya K. Error analysis of a FVEM for fractional order evolution equations with nonsmooth initial data. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 2, pp. 773-801. doi : 10.1051/m2an/2018029. https://www.numdam.org/articles/10.1051/m2an/2018029/
[1] Some error estimates for the box method. SIAM J. Numer. Anal. 24 (1987) 777–787. | DOI | MR | Zbl
and ,[2] An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid. Numer. Math. 131 (2016) 1–31. | DOI | MR | Zbl
, , and ,[3] Error estimates for a finite volume element method for parabolic equations in convex polygonal domains. Numer. Methods Part. Differ. Equ. 20 (2004) 650–674. | DOI | MR | Zbl
, and ,[4] Some error estimates for the lumped mass finite element method for a parabolic problem. Math. Comput. 81 (2012) 1–20. | DOI | MR | Zbl
, and ,[5] Some error estimates for the finite volume element method for a parabolic problem. Comput. Methods Appl. Math. 13 (2013) 251–279. | DOI | MR | Zbl
, and ,[6] Error estimates in L2, H1 and L∞ in covolume methods for elliptic and parabolic problems: a unified approach. Math. Comput. 69 (2000) 103–120. | DOI | MR | Zbl
and ,[7] Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comput. 75 (2006) 673–696. | DOI | MR | Zbl
, and ,[8] Finite volume element approximations of nonlocal reactive flows in porous media. Numer. Methods Part. Differ. Equ. 16 (2000) 285–311. | DOI | MR | Zbl
, and ,[9] Time fractional diffusion: a discrete random walk approach. Nonlinear Dyn. 29 (2002) 129–143. | DOI | MR | Zbl
, , and ,[10] Fractional reaction-diffusion. Physica A 276 (2000) 448–455. | DOI | MR
and ,[11] Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38 (2016) 146–170. | DOI | MR
, and ,[12] Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51 (2013) 445–466. | DOI | MR | Zbl
, and ,[13] Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J. Numer. Anal. 35 (2015) 561–582. | DOI | MR | Zbl
, , and ,[14] Finite volume element method for two-dimensional fractional subdiffusion problems. IMA J. Numer. Anal. 37 (2017) 945–964. | MR | Zbl
, and ,[15] Optimal error analysis of a FEM for fractional diffusion problems by energy arguments. J. Sci. Comput. 74 (2018) 519–535. | DOI | MR | Zbl
, and ,[16] FEM for time-fractional diffusion equations, novel optimal error analyses. Math. Comput. 87 (2018) 2259–2272. | DOI | MR | Zbl
,[17] Generalized Difference Methods for Differential Equations. Marcel Dekker, New York (2000). | DOI | MR | Zbl
, and ,[18] Finite volume element methods: an overview on recent developments. IJNAM Int. J. Numer. Anal. Modeling Ser. B 4 (2013) 14–34. | MR | Zbl
and ,[19] Discretized fractional calculus. SIAM J. Math. Anal. 17 (1986) 704–719. | DOI | MR | Zbl
,[20] Convolution quadrature and discretized operational calculus-I. Numer. Math. 52 (1988) 129–145. | DOI | MR | Zbl
,[21] Convolution quadrature revisited. BIT Numer. Math. 44 (2004) 503–514. | DOI | MR | Zbl
,[22] Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comput. 65 (1996) 1–17. | DOI | MR | Zbl
, and ,[23] Time discretization via Laplace transformation of an integro-differential equation of parabolic type. Numer. Math. 102 (2006) 497–522. | DOI | MR | Zbl
, and ,[24] Numerical solution via Laplace transforms of a fractional order evolution equation. J. Integr. Equ. Appl. 22 (2010) 57–94. | DOI | MR | Zbl
and ,[25] Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional order evolution equation. IMA J. Numer. Anal. 30 (2010) 208–230. | DOI | MR | Zbl
and ,[26] Time discretization of an evolution equation via Laplace transforms. IMA J. Numer. Anal. 24 (2004) 439–463. | DOI | MR | Zbl
and ,[27] The random walks guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000) 1–77. | DOI | MR | Zbl
and ,[28] Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation. Numer. Algorithms 56 (2011) 159–184. | DOI | MR | Zbl
and ,[29] Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, Berlin (2006). | MR | Zbl
,- On a non-uniform
-robust IMEX-L1 mixed FEM for time-fractional PIDEs, Advances in Computational Mathematics, Volume 51 (2025) no. 1 | DOI:10.1007/s10444-025-10221-3 - High-order splitting finite element methods for the subdiffusion equation with limited smoothing property, Mathematics of Computation (2024) | DOI:10.1090/mcom/3944
- Finite volume element methods for two-dimensional time fractional reaction–diffusion equations on triangular grids, Applicable Analysis, Volume 102 (2023) no. 8, p. 2248 | DOI:10.1080/00036811.2022.2027374
- Flow of Newtonian Fluids in a Pressurized Pipe, Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems, Volume 433 (2023), p. 13 | DOI:10.1007/978-3-031-40860-1_2
- A fast time two-mesh finite volume element algorithm for the nonlinear time-fractional coupled diffusion model, Numerical Algorithms, Volume 93 (2023) no. 2, p. 863 | DOI:10.1007/s11075-022-01444-2
- Quadratic Finite Volume Element Schemes over Triangular Meshes for a Nonlinear Time-Fractional Rayleigh-Stokes Problem, Computer Modeling in Engineering Sciences, Volume 127 (2021) no. 2, p. 487 | DOI:10.32604/cmes.2021.014950
- Error Estimates of a Continuous Galerkin Time Stepping Method for Subdiffusion Problem, Journal of Scientific Computing, Volume 88 (2021) no. 3 | DOI:10.1007/s10915-021-01587-9
- Finite volume element method with the WSGD formula for nonlinear fractional mobile/immobile transport equations, Advances in Difference Equations, Volume 2020 (2020) no. 1 | DOI:10.1186/s13662-020-02786-8
- Regularity theory for time-fractional advection–diffusion–reaction equations, Computers Mathematics with Applications, Volume 79 (2020) no. 4, p. 947 | DOI:10.1016/j.camwa.2019.08.008
- Higher Order Time Stepping Methods for Subdiffusion Problems Based on Weighted and Shifted Grünwald–Letnikov Formulae with Nonsmooth Data, Journal of Scientific Computing, Volume 83 (2020) no. 3 | DOI:10.1007/s10915-020-01223-y
- Galerkin Type Methods for Semilinear Time-Fractional Diffusion Problems, Journal of Scientific Computing, Volume 83 (2020) no. 3 | DOI:10.1007/s10915-020-01230-z
- Mixed FEM for Time-Fractional Diffusion Problems with Time-Dependent Coefficients, Journal of Scientific Computing, Volume 83 (2020) no. 3 | DOI:10.1007/s10915-020-01236-7
- A Crank–Nicolson Finite Volume Element Method for Time Fractional Sobolev Equations on Triangular Grids, Mathematics, Volume 8 (2020) no. 9, p. 1591 | DOI:10.3390/math8091591
- Numerical methods for time-fractional evolution equations with nonsmooth data: A concise overview, Computer Methods in Applied Mechanics and Engineering, Volume 346 (2019), p. 332 | DOI:10.1016/j.cma.2018.12.011
- Well-Posedness of Time-Fractional Advection-Diffusion-Reaction Equations, Fractional Calculus and Applied Analysis, Volume 22 (2019) no. 4, p. 918 | DOI:10.1515/fca-2019-0050
- A Mixed Finite Volume Element Method for Time-Fractional Reaction-Diffusion Equations on Triangular Grids, Mathematics, Volume 7 (2019) no. 7, p. 600 | DOI:10.3390/math7070600
- Numerical Approximation of Semilinear Subdiffusion Equations with Nonsmooth Initial Data, SIAM Journal on Numerical Analysis, Volume 57 (2019) no. 3, p. 1524 | DOI:10.1137/18m1189750
- The lumped mass FEM for a time-fractional cable equation, Applied Numerical Mathematics, Volume 132 (2018), p. 73 | DOI:10.1016/j.apnum.2018.05.012
Cité par 18 documents. Sources : Crossref