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ERROR ANALYSIS OF A FVEM FOR FRACTIONAL ORDER

EVOLUTION EQUATIONS WITH NONSMOOTH INITIAL DATAI

Samir Karaa1 and Amiya K. Pani2,*

Abstract. In this paper, a finite volume element (FVE) method is considered for spatial approx-
imations of time fractional diffusion equations involving a Riemann-Liouville fractional derivative of
order α ∈ (0, 1) in time. Improving upon earlier results [Karaa et al., IMA J. Numer. Anal. 37 (2017)
945–964], error estimates in L2(Ω)- and H1(Ω)-norms for the semidiscrete problem with smooth and
mildly smooth initial data, i.e., v ∈ H2(Ω) ∩H1

0 (Ω) and v ∈ H1
0 (Ω) are established. For nonsmooth

data, that is, v ∈ L2(Ω), the optimal L2(Ω)-error estimate is shown to hold only under an additional
assumption on the triangulation, which is known to be satisfied for symmetric triangulations. Super-
convergence result is also proved and as a consequence, a quasi-optimal error estimate is established in
the L∞(Ω)-norm. Further, two fully discrete schemes using convolution quadrature in time generated
by the backward Euler and the second-order backward difference methods are analyzed, and error esti-
mates are derived for both smooth and nonsmooth initial data. Based on a comparison of the standard
Galerkin finite element solution with the FVE solution and exploiting tools for Laplace transforms
with semigroup type properties of the FVE solution operator, our analysis is then extended in a uni-
fied manner to several time fractional order evolution problems. Finally, several numerical experiments
are conducted to confirm our theoretical findings.
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1. Introduction

Let Ω be a bounded, convex polygonal domain in R2 with a boundary ∂Ω, T > 0, and let v be a given
function (initial data) defined on Ω. We now consider the following time fractional diffusion problem: find u in
Ω × (0, T ] such that

u′(x, t) + ∂1−α
t Au(x, t) = 0, in Ω × (0, T ], (1.1a)

u(x, t) = 0, on ∂Ω × (0, T ], (1.1b)

u(x, 0) = v(x), in Ω, (1.1c)
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where Au = −∆u, u′ is the partial derivative of u with respect to time, and ∂1−α
t := RD1−α is the Riemann-

Liouville fractional derivative in time defined for 0 < α < 1 by:

∂1−α
t ϕ(t) :=

d

dt
Iαϕ(t) :=

d

dt

∫ t

0

ωα(t− s)ϕ(s) ds, with ωα(t) :=
tα−1

Γ (α)
. (1.2)

Here, Iα denotes the temporal Riemann-Liouville fractional integral operator of order α. This class of problems
describes the model of an anomalous subdiffusion, see [9, 10, 27].

Over the last two decades, considerable attention from both practical and theoretical points of view has
been given to fractional diffusion models due to their various applications. Several numerical techniques for the
problem (1.1) have been proposed with different types of spatial discretizations. Although the numerical study
of (1.1) has been discussed in a large number of papers, optimal error estimates with respect to the smoothness
of the solution expressed through the initial data have been established only in few papers recently. This is
mainly due to the limited smoothing properties of the problem, and hence, obtaining sharp error bounds under
reasonable regularity assumptions on the exact solution has become a challenging task. In the literature, the
finite element method (FEM) has, in particular, been given a special attention in approximating the solution of
(1.1), see [2, 11–13, 16, 24–26, 28] and references, therein. Most recently, a FVE method was analyzed in [14]
and a priori error estimates with respect to data regularity have been derived.

In the context of FEM, we begin by recalling some facts on the spatially semidiscrete standard Galerkin FE
method for the problem (1.1) in the piecewise FE element space

Vh = {χ ∈ C0(Ω) : χ|K is linear for all K ∈ Th and χ|∂Ω = 0},

where {Th}0<h<1 is a family of regular triangulations Th of the domain Ω into triangles K and h is the maximum
diameter of the triangles K ∈ Th. With a(·, ·) denoting the bilinear form associated with the operator A, and
(·, ·) the inner product in L2(Ω), the semidiscrete Galerkin FE method is to seek uh(t) ∈ Vh satisfying

(u′h, χ) + a(∂1−α
t uh, χ) = 0, ∀χ ∈ Vh, t ∈ (0, T ], uh(0) = vh, (1.3)

where a(v, w) := (∇v,∇w) and vh ∈ Vh is an approximation of the initial data v. In [24], McLean and Thomée
have established the following estimate for the Galerkin FE approximation to (1.1) using Laplace transformation
technique: with vh = Phv, there holds for t > 0

‖uh(t)− u(t)‖ ≤ Ch2t−α(2−q)/2|v|q, 0 ≤ q ≤ 2, (1.4)

where ‖v‖ is the L2(Ω)-norm of v, |v|q = ‖Aq/2v‖ is a weighted norm defined on the space Ḣq(Ω) to be
described in Section 2 and Ph : L2(Ω) → Vh is the L2-projection given by : (Phv − v, χ) = 0 for all χ ∈ Vh.
The estimate (1.4) extends results obtained for the standard parabolic problem, i.e., α = 1, which has been
thoroughly studied, see [29]. In the recent work [2], an approach based on Laplace transform and semigroup
type theory has been exploited to derive a priori error estimate of the type (1.4), and most recently, a delicate
energy analysis has been developed in [15] to obtain similar estimate for the FE solution.

Regarding the optimal estimate in the gradient norm, the following result

‖∇(uh(t)− u(t))‖ ≤ Cht−α(2−q)/2|v|q, 0 ≤ q ≤ 2, (1.5)

holds with vh = Phv on quasi-uniform meshes. For the cases q = 1, 2, one can also choose vh = Rhv, where
Rh : H1

0 (Ω)→ Vh is the standard Ritz projection defined by the relation:

a(Rhv − v, χ) = 0, ∀χ ∈ Vh. (1.6)
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Figure 1. Control volume for interior node.

However, without the quasi-uniformity assumption on the mesh, the estimate (1.5) remains valid only for 0 ≤
q ≤ 1, see [15]. Subsequently, optimal convergence rate up to a logarithmic factor in the stronger L∞(Ω)-norm
has been derived in [15, 25]. In [15], the following L∞(Ω)-error estimate

‖u(t)− uh(t)‖L∞(Ω) ≤ C| lnh|
5
2h2t−α(3−q)/2(|v|q + ‖v‖L∞(Ω)), 1 ≤ q ≤ 2. (1.7)

is established for v ∈ Ḣq(Ω) ∩ L∞(Ω) and vh = Phv on quasi-uniform meshes.
The main contribution of this work is to establish optimal (with respect to data regularity) error estimates

for the FVE discretization of problem (1.1), and thus, provide improvements of the results derived in [14].
The FVM is very popular in engineering literature due its local conservation property, its flexibility in tackling
domains with complex boundaries, and more importantly due to its easy implementation on both structured
and unstructured meshes. For a review article, see, Lin et al. [18]. In this paper, the choice of the FV method
for the problem under consideration is as used in Chatzipantelidis et al. [3], Ewing et al. [8], and Chou and Li
[6] for linear parabolic problems. To describe the finite volume element formulation, we first introduce the dual
mesh on the domain Ω. Let Nh be the set of nodes or vertices, that is,

Nh :=
{
Pi : Pi is a vertex of the element K ∈ Th and Pi ∈ Ω

}
and let N0

h be the set of interior nodes in Th. Further, let T ∗h be the dual mesh associated with the primary
mesh Th, which is defined as follows. With P0 as an interior node of the triangulation Th, let Pi (i = 1, 2, . . . ,m)
be its adjacent nodes (see, Fig. 1 with m = 6 ). Let Mi, i = 1, 2, . . . ,m denote the midpoints of P0Pi and let
Qi, i = 1, 2, . . . ,m, be the barycenters of the triangle 4P0PiPi+1 with Pm+1 = P1. The control volume K∗P0

is constructed by joining successively M1, Q1, . . . , , Mm, Qm, M1. With Qi (i = 1, 2, . . . ,m) as the nodes of
control volume K∗pi , let N∗h be the set of all dual nodes Qi. For a boundary node P1, the control volume K∗P1

is shown in Figure 1. Note that the union of the control volumes forms a partition T ∗h of Ω.
The dual FVE space V ∗h on the dual mesh T ∗h is defined as

V ∗h = {χ ∈ L2(Ω) : χ|K∗P0
is constant for all K∗P0

∈ T ∗h and χ|∂Ω = 0}.

The semidiscrete FVE formulation for (1.1) is to seek ūh(t) ∈ Vh such that

(ū′h, χ) + ah(∂1−α
t ūh, χ) = 0, ∀χ ∈ V ∗h , t > 0, ūh(0) = vh, (1.8)
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where the bilinear form ah(·, ·) : Vh × V ∗h −→ IR is defined by

ah(ψ, χ) = −
∑
Pi∈N0

h

χ(Pi)

∫
∂K∗Pi

∇ψ · n ds, ∀ψ ∈ Vh, χ ∈ V ∗h (1.9)

with n denoting the outward unit normal to the boundary of the control volume K∗Pi .
The error equations associated with the proposed FV method involves a perturbation term, which is not

easy to handle. In [14], we employed the FV elliptic projection to get rid of this term, but for this choice, high
regularity assumptions on v are imposed. For instance, the following L2(Ω)-error estimate

‖ūh(t)− u(t)‖ ≤ C h2

(
‖v‖H3(Ω) +

∫ t

0

‖u′(s)‖H3(Ω) ds

)
,

has been established requiring that v ∈ Ḣq(Ω) with q ≥ 3. The main objective of this study is then to improve
the results derived in [14] and establish optimal estimates with respect to data regularity for the solution of the
FVE semidiscrete problem (1.8). These improvements are made possible by combining known error estimates
for the standard Galerkin FE solution stated above with new bounds for the difference ξ(t) = ūh(t) − uh(t).
Introduced in [4, 5], this approach is based on phrasing the FVE problem into a self-adjoint one and deriving
an equation for ξ(t). Then, by choosing an appropriate representation of ξ(t), we establish the following error
estimate for 0 < α < 1

‖ūh(t)− u(t)‖+ h‖∇(ūh(t)− u(t))‖ ≤ Ch2t−α(2−q)/2|v|q, 0 ≤ q ≤ 2. (1.10)

We shall derive this estimate for q = 1, 2 in Section 4.1 and for q = 0 in Section 4.2. For the latter case, we are
only able to prove the a priori estimate under an additional hypothesis on Th, which is known to be satisfied for
symmetric triangulations. Without any such condition, only sub-optimal order convergence is obtained, which is
similar to the result proved in [5] for linear parabolic problems. For the stronger L∞(Ω)-norm, a quasi-optimal
error estimate analogous to (1.7) is established for 1 ≤ q ≤ 2.

Our second objective is to analyze two fully discrete schemes for the semidiscrete problem (1.8) based on
convolution quadrature in time generated by the backward Euler and the second-order backward difference
methods. Error estimates with respect to the data regularity are provided in Theorems 5.4 and 5.7. For instance,
it is shown that the discrete solution Unh obtained by the backward Euler method with a time step size τ satisfies
the following a priori error estimate

‖Unh − ūh(tn)‖ ≤ C(τt−1+αq/2
n + h2t−α(1−q/2)

n )|v|q, q = 0, 1, 2, 0 < α < 1.

When q = 0, an additional restriction on the triangulation is imposed. A similar type of error bound is shown
to hold for the second-order backward difference scheme in Section 5.2.

Our third objective is to generalize our results on FVE method for both smooth and nonsmooth initial data
to other classes of fractional order evolution equations in Section 6. Say for example, we can extend our FVE
analysis to the following class of time fractional problems:

u′(x, t) + J αAu(x, t) = 0, in Ω × (0, T ], (1.11)

with homogeneous Dirichlet boundary conditions and initial condition u(x, 0) = v(x) for x ∈ Ω. When J α = Iα,
this class of problems is known as fractional diffusion-wave equation or evolution equation with positive memory,
see [22, 24], and references, therein. The case J α = I+Iα corresponds to the partial integro-differential equation
with singular kernel, refer to [23]. Now if J α = I + ∂1−α

t , then this class of problems is known as the Rayleigh-
Stokes problems for generalized second grade fluid, see [2]. Even our FVE analysis can be directly applied to
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the following time fractional order diffusion problem:

C∂αt u(x, t) +Au(x, t) = 0, (1.12)

where C∂αt v(t) := I1−αv′(t) is the fractional Caputo derivative of order 0 < α < 1. For the semidiscrete FE
analysis of (1.12), we refer to Jin et al. [12]. The unifying analysis of all these classes of evolution problems is
based on comparing the FVE solution with the corresponding FE solution and exploiting the Laplace transform
technique along with semigroup type properties of the FVE solution operator. To the best of our knowledge,
the FV error analysis of either problem (1.11) or (1.12) is discussed for the first time in this article.

The rest of the paper is organized as follows. In the next section, we introduce notation, recall the solution
representation for the continuous problem (1.1) and some smoothing properties of the solution operator, which
play an important role in our subsequent error analysis. Section 3 deals with a brief description of the spatially
semidiscrete FVE scheme and their properties. In Section 4, we derive error estimates for the semidiscrete FVE
scheme for smooth and nonsmooth initial data v ∈ Ḣq, q = 0, 1, 2 in Sections 4.1 and 4.2. For q = 0, i.e., v ∈
L2(Ω), we show an optimal error bound under an additional assumption on the triangulation. Superconvergence
result is proved in Section 4.3 and as a consequence, a quasi-optimal error estimate is established in the L∞(Ω)-
norm. In Section 5, two fully discrete schemes based on convolution quadrature approximation of the fractional
derivative are presented and error estimates are established. Section 6 focuses on possible generalization of the
present FVE error analysis to various types of time fractional evolution problems. Finally, in Section 7, we
present numerical results to confirm our theoretical findings.

Throughout the paper, C denotes a generic positive constant that may depend on α and T , but is independent
of the spatial mesh element size h and the time step τ.

2. Representation of exact solution and properties

We first introduce some notations. Let {(λj , φj)}∞j=1 be the Dirichlet eigenpairs of the selfadjoint and positive

definite operator A, with {φj}∞j=1 being an orthonormal basis in L2(Ω). For r ≥ 0, we denote by Ḣr(Ω) ⊂ L2(Ω)
the Hilbert space induced by the norm

|v|2r = ‖Ar/2v‖2 =

∞∑
j=1

λrj(v, φj)
2,

with (·, ·) being the inner product on L2(Ω). Then, it follows that Ḣr(Ω) = {χ ∈ Hr(Ω); Ajχ =
0 on ∂Ω, for j < r/2}, see Lemma 3.1 of [29]. In particular, |v|0 = ‖v‖ is the norm on L2(Ω), |v|1 = ‖∇v‖
is also the norm on H1

0 (Ω) and |v|2 = ‖Av‖ is the equivalent norm in H2(Ω) ∩H1
0 (Ω). Note that {Ḣr(Ω)},

r ≥ 0, form a Hilbert scale of interpolation spaces. Motivated by this, we denote by ‖ · ‖Hr0 (Ω) the norm on the

interpolation scale between H2(Ω)∩H1
0 (Ω) and L2(Ω) for r in the interval [0, 2]. Then, the Ḣr(Ω) and Hr

0 (Ω)
norms are equivalent for any r ∈ (1/2, 2] and for r ∈ [0, 1/2], Ḣr(Ω) = Hr(Ω) by interpolation.

For δ > 0 and θ ∈ (π/2, π), we introduce the contour Γθ,δ ⊂ C defined by

Γθ,δ = {ρe±iθ : ρ ≥ δ} ∪ {δeiψ : |ψ| ≤ θ},

oriented with an increasing imaginary part. Further, we denote by Σθ the sector

Σθ = {z ∈ C, z 6= 0, | arg z| < θ}.
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For z ∈ Σθ, it is clear that zα ∈ Σθ as α ∈ (0, 1). Since the operator A is selfadjoint and positive definite, its
resolvent (zαI +A)−1 : L2(Ω)→ L2(Ω) satisfies the bound

‖(zαI +A)−1‖ ≤Mθ|z|−α, ∀z ∈ Σθ, (2.1)

where Mθ = 1/ sin(π − θ). We now make use of the Laplace transform û := L(u) of the solution u defined by

û(x, z) =

∫ ∞
0

e−ztu(x, t) dt.

The boundary condition u(x, t) = 0 on ∂Ω transforms into û(x, z) = 0 on ∂Ω. Taking Laplace transforms in
(1.1a), we, then, arrive at

(zI + z1−αA)û(z) = v, (2.2)

and hence,

û(z) = Ê(z)v, Ê(z) := zα−1(zαI +A)−1. (2.3)

In view of (2.1) and (2.3), Ê(z) satisfies the following bound

‖Ê(z)‖ ≤Mθ|z|−1, ∀z ∈ Σθ. (2.4)

From (2.3), the Laplace inversion formula yields an integral representation for the solution of (1.1) as

u(t) =
1

2πi

∫
C
eztÊ(z)v dz, t > 0, (2.5)

where the contour of integration C, known as Bromwich contour, is any line in the right-half plane parallel to
the imaginary axis and with Imz increasing. Since Ê(z) is analytic in Σθ and satisfies the bound (2.4), the path
of integration may, therefore, be deformed into the curve Γθ,δ so that the integrand has an exponential decay
property.

In the next lemma, we present some smoothing properties of the operator Ê(z) which play a key role in our
error analysis. The estimates are proved for instance in [7], Lemma 2.2. Note that the first estimate (2.6) given
below is obtained by interpolation technique.

Lemma 2.1. The following estimates hold:

‖AÊ(z)χ‖ ≤ Cθ|z|α(1−p/2)−1|χ|p, ∀z ∈ Σθ, 0 ≤ p ≤ 2, (2.6)

‖∇Ê(z)χ‖ ≤ Cθ|z|α/2−1‖χ‖, ∀z ∈ Σθ, (2.7)

where Cθ depends only on θ.

In the next section, we introduce the semidiscrete finite volume element scheme.

3. Semidiscrete FVE scheme and its properties

In this section, we first recall the semidiscrete FVE scheme (1.8) and discuss some associated properties.
Now, a use of Green’s formula applied to (1.9) yields for w ∈ H2(Ω) and χ ∈ V ∗h

(Aw,χ) = ah(w,χ).
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To rewrite the Petrov-Galerkin method (1.8) as a Galerkin method in Vh, we introduce the interpolation
operator Π∗h : C0(Ω̄) −→ V ∗h by

Π∗hχ =
∑
Pi∈N0

h

χ(Pi)ηi(x),

where ηi is the characteristic function of the control volume K∗Pi . The operator Π∗h is selfadjoint and positive
definite, see [6], and hence, the following relation

(ψ, χ)h = (ψ,Π∗hχ), ∀ψ, χ ∈ Vh

defines an inner product on Vh. Also, the corresponding norm (χ, χ)
1/2
h is equivalent to the L2(Ω)-norm on Vh,

uniformly in h, see [17]. Furthermore, from the following identity [1, 8]

ah(χ,Π∗hv) = (∇χ,∇v), ∀χ, v ∈ Vh,

the bilinear form ah(., .) is symmetric and ah(χ,Π∗hχ) = ‖∇χ‖2 for χ ∈ Vh.
With this notation, the Petrov-Galerkin method (1.8) can be rewritten in the Galerkin form as

(ū′h, χ)h + a(∂1−α
t ūh, χ) = 0, ∀χ ∈ Vh, t > 0, ūh(0) = vh. (3.1)

We now introduce the discrete operator Āh : Vh → Vh corresponding to the inner product (·, ·)h by

(Āhψ, χ)h = (∇ψ,∇χ), ∀ψ, χ ∈ Vh.

Then, the FVE method (3.1) is written in an operator form as

ū′h(t) + ∂1−α
t Āhūh(t) = 0, t > 0, ūh(0) = vh. (3.2)

An appropriate modification of arguments in [5, 12] yields the following discrete analogue of Lemma 2.1 and
therefore, we skip the proof.

Lemma 3.1. Let Êh(z) = zα−1(zαI + Āh)−1. With χ ∈ Vh, the following estimates hold:

‖ĀhÊh(z)χ‖ ≤ Cθ|z|α(1−p/2)−1 ‖Āp/2h χ‖, ∀z ∈ Σθ, 0 ≤ p ≤ 2, (3.3)

|Êh(z)χ|1 ≤ Cθ|z|α/2−1‖χ‖, ∀z ∈ Σθ, (3.4)

where Cθ is independent of the mesh size h.

In the context of FEM, we introduce the discrete operator Ah : Vh → Vh defined by

(Ahψ, χ) = (∇ψ,∇χ), ∀ψ, χ ∈ Vh,

then the semidiscrete FE scheme (1.3) is rewritten in an operator form as

u′h(t) + ∂1−α
t Ahuh(t) = 0, t > 0, uh(0) = vh. (3.5)

The analogue of Lemma 3.1 holds then for F̂h(z) := zα−1(zαI +Ah)−1, when we replace Êh(z) in Lemma 3.1
by F̂h(z).
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4. Error analysis

This section deals with a priori optimal error estimates for the semidiscrete FVE scheme (3.1) with initial
data v ∈ Ḣq(Ω), q = 0, 1, 2. To do so, we first introduce the quadrature error Qh : Vh → Vh defined by

(∇Qhχ,∇ψ) = εh(χ, ψ) := (χ, ψ)h − (χ, ψ), ∀ψ ∈ Vh. (4.1)

The operator Qh, introduced in [4] for the lumped mass FE element, represents the quadrature error in a special
way. It satisfies the following error estimates, see [4, 5].

Lemma 4.1. Let Qh be defined by (4.1). Then, there holds

‖∇Qhχ‖+ h‖ĀhQhχ‖ ≤ Chp+1‖∇pχ‖, ∀χ ∈ Vh, p = 0, 1. (4.2)

Note that, by Lemma 4.1, and without additional assumptions on the mesh, the following estimate holds:

‖Qhχ‖ ≤ C‖∇Qhχ‖ ≤ Ch‖χ‖, ∀χ ∈ Vh.

This estimate cannot be improved in general, see [4, 5] for some counter examples. However, on some special
meshes, one can derive a better approximation. For instance, if the mesh is symmetric (see [4, 5] for the definition
and examples), the operator Qh is shown to satisfy

‖Qhχ‖ ≤ Ch2‖χ‖, ∀χ ∈ Vh. (4.3)

To derive optimal error estimates for the FVE solution ūh, we split the error ē(t) := ūh(t) − u(t) into
ē(t) := (uh(t)− u(t)) + ξ(t), where ξ(t) = ūh(t)− uh(t) and uh being the standard Galerkin FE solution. Then,
from the definitions of uh(t), ūh(t) and Qh, ξ(t) satisfies

ξt(t) + ∂1−α
t Āhξ(t) = −ĀhQhuht(t), t > 0, ξ(0) = 0. (4.4)

4.1. Error estimates for smooth initial data

In the following theorem, optimal error estimates are derived for smooth initial data v ∈ Ḣq(Ω) with q ∈ [1, 2].

Theorem 4.2. Let u and ūh be the solutions of (1.1) and (3.1), respectively, with v ∈ Ḣq(Ω) for q ∈ [1, 2] and
vh = Rhv, where Rhv is defined by (1.6). Then, there is a positive constant C, independent of h, such that

‖ūh(t)− u(t)‖+ h‖∇(ūh(t)− u(t))‖ ≤ C t−α(2−q)/2 h2|v|q, t > 0. (4.5)

Proof. Since the estimates for uh − u are given in (1.4) and (1.5), it is sufficient to show

‖ξ(t)‖+ h‖∇ξ(t)‖ ≤ C t−α(2−q)/2 h2|v|q, q ∈ [1, 2]. (4.6)

By taking Laplace transforms in (4.4) and following the analysis in Section 2, we represent ξ(t) by

ξ(t) = − 1

2πi

∫
Γ

eztÊh(z)ĀhQhûht(z) dz. (4.7)

Here and also throughout this article, Γ is the particular contour chosen as Γ = Γθ,δ with δ = 1/t. From (4.7),
it follows that

‖ξ(t)‖+ h‖∇ξ(t)‖ ≤ 1

2π

∫
Γ

|ezt|
(
‖Êh(z)ĀhQhûht(z)‖+ h‖∇Êh(z)ĀhQhûht(z)‖

)
|dz|. (4.8)
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To complete the proof of the estimate, we need to bound the terms under the integral sign on the right of side
of (4.8). Now, we discuss two cases for q = 2 and q = 1 separately.

When q = 2, that is, v ∈ Ḣ2(Ω), apply (3.3) with p = 1 and (3.4) in Lemma 3.1 to obtain

‖Êh(z)ĀhQhûht(z)‖ ≤ C|z|α/2−1‖∇Qhûht(z)‖, (4.9)

and

‖∇Êh(z)ĀhQhûht(z)‖ ≤ C|z|α/2−1‖ĀhQhûht(z)‖. (4.10)

Then, by (4.2), it follows that

‖Êh(z)ĀhQhûht(z)‖+ h‖∇Êh(z)ĀhQhûht(z)‖ ≤ Ch2|z|α/2−1‖∇ûht(z)‖. (4.11)

Since

ûht(z) = −z1−αAhûh(z) = −z1−αAhF̂h(z)vh,

an estimate analogous to (3.4) yields

‖∇ûht(z)‖ = |z|1−α‖∇F̂h(z)Ahvh‖ ≤ C|z|1−α |z|α/2−1‖Ahvh‖ ≤ C|z|−α/2‖Ahvh‖. (4.12)

On substitution of (4.11) and (4.12) in (4.8), we use (4.7) to obtain

‖ξ(t)‖+ h‖∇ξ(t)‖ ≤ Ch2

(∫
Γ

|ezt| |z|−1 |dz|
)
‖Ahvh‖

≤ Ch2

(∫ ∞
1/t

eρt cos θρ−1dρ+

∫ θ

−θ
ecosψdψ

)
‖Ahvh‖

≤ Ch2‖Ahvh‖. (4.13)

Now, by the identity AhRh = PhA, we have

‖AhRhv‖ = ‖PhAv‖ ≤ ‖Av‖ = |v|2,

which shows the estimate (4.6) for q = 2.
For the case q = 1, that is, v ∈ Ḣ1(Ω), consider (4.11) and the identity

ûht(z) = zûh(z)− vh

to obtain using (2.4)

‖∇ûht(z)‖ = ‖∇(zF̂h(z)vh − vh)‖ ≤ (M + 1)‖∇vh‖. (4.14)
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From the estimate (4.8), using (4.11) and (4.14) with ‖∇vh‖ = ‖∇Rhv‖ ≤ ‖∇v‖, we deduce that

‖ξ(t)‖+ h‖∇ξ(t)‖ ≤ Ch2

(∫
Γ

|ezt|z|α/2−1 |dz|
)
|v|1

≤ Ch2

(∫ ∞
1/t

eρt cos θρα/2−1dρ+

∫ θ

−θ
ecosψt−α/2dψ

)
|v|1

≤ Ct−α/2h2|v|1.

This completes the proof for the case q = 1.
Since estimates for q = 1 and q = 2 are known, then interpolation technique provides result for q ∈ [1, 2].

This concludes the rest of the proof.

Remark 4.3. Note that the estimate (4.5) in Theorem 4.2 remains valid when vh = Phv. Indeed, for q = 2, let
ũh denote the solution of (3.1) with vh = Phv. Then ζ := ũh − ūh satisfies

ζt + ∂1−α
t Āhζ = 0, t > 0, ζ(0) = Phv −Rhv.

Since

ζ(t) = − 1

2πi

∫
Γ

eztÊh(z)(Phv −Rhv) dz,

we deduce

‖ζ(t)‖ ≤ C ‖Phv −Rhv‖
∫
Γ

|ezt| |z|−1|d z| ≤ Ch2|v|2.

Thus, the estimate (4.5) with q = 2 follows by the triangle inequality. If the inverse inequality ‖∇χ‖ ≤ Ch−1‖χ‖
holds, which is the case if the mesh is quasi-uniform, then the estimate in the gradient norm follows directly for
vh = Phv.

If the L2(Ω)-projection operator Ph is stable in Ḣ1(Ω), i.e., ‖∇Phw‖ ≤ C|w|1, then the estimate (4.5) holds
for the case q = 1 and the choice vh = Phv. A sufficient condition for such stability of Ph is the quasi-uniformity
of the mesh. Now, by interpolation the estimate (4.5) holds for q ∈ [1, 2] and vh = Phv.

4.2. Error estimates for nonsmooth initial data

In this subsection, we establish optimal error estimates for the semidiscrete FVE scheme (3.1) for nonsmooth
initial data v ∈ L2(Ω).

Theorem 4.4. Let u and ūh be the solution of (1.1) and (3.1), respectively, with v ∈ L2(Ω) and vh = Phv.
Then, there exists a positive constant C, independent of h, such that

‖ūh(t)− u(t)‖+ ‖∇(ūh(t)− u(t))‖ ≤ Cht−α‖v‖, t > 0. (4.15)

Furthermore, if the quadrature error operator Qh satisfies (4.3), then the following optimal error estimate holds:

‖ūh(t)− u(t)‖ ≤ Ch2t−α‖v‖, t > 0. (4.16)

Proof. As before, it is sufficient to prove estimates for ξ. We first apply (3.3) with p = 0 to arrive at

‖Êh(z)ĀhQhûht‖ ≤ C|z|α−1‖Qhûht‖.
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Then, the following bound follows from the integral representation (4.7):

‖ξ(t)‖ ≤ C
∫
Γ

|ezt||z|α−1‖Qhûht(z)‖ |dz|. (4.17)

To estimate the gradient of ξ, we note that

‖∇Êh(z)ĀhQhûht‖ ≤ C|z|α−1‖∇Qhûht‖,

and hence,

‖∇ξ(t)‖ ≤ C
∫
Γ

|ezt||z|α−1‖∇Qhûht(z)‖ |dz|. (4.18)

Note that ‖Qhûht‖ ≤ Ch‖ûht‖ holds on a general mesh, and ‖∇Qhûht‖ ≤ Ch‖ûht‖ by (4.2). Since ‖ûht(z)‖ =
‖zF̂h(z)vh − vh‖ ≤ C‖vh‖ by (2.4), a substitution into (4.17) and (4.18) yields the first estimate (4.15). Finally,
if (4.3) holds, then (4.16) follows immediately from (4.17), which completes the proof.

4.3. L∞(Ω)-error estimates

In the following, we obtain a superconvergence result for the gradient of ξ in the L2(Ω)-norm. As a con-
sequence, assuming v ∈ L∞(Ω) and the quasi-uniformity on the mesh, a quasi-optimal error estimate in the
stronger L∞(Ω)-norm is derived for the semidiscrete FVE solution ūh. We first prove the following lemma by
refining some of the estimates derived in the proof of Theorem 4.2.

Lemma 4.5. For 1 ≤ q ≤ 2, and with vh = Rhv, where Rhv is defined by (1.6), there is a positive constant C,
independent of h, such that

‖∇ξ(t)‖ ≤ Ch2t−α(3−q)/2|v|q, t > 0.

The estimate is still valid for vh = Phv on quasi-uniform meshes.

Proof. By using bounds (3.3) and (4.2), we obtain instead of (4.10) the following estimate

‖∇Êh(z)ĀhQhûht(z)‖ ≤ C|z|α−1‖∇Qhûht(z)‖ ≤ Ch2|z|α−1‖∇ûht(z)‖.

Since ‖∇ûht(z)‖ ≤ c|z|−α/2‖Ahvh‖ by (4.12), we note from the representation (4.7) that

‖∇ξ(t)‖ ≤ Ch2|v|2
∫
Γ

|ezt|z|α/2−1 |dz| ≤ Ct−α/2h2|v|2.

Similarly, taking into account (4.14), we obtain

‖∇ξ(t)‖ ≤ Ch2|v|1
∫
Γ

|ezt|z|α−1 |dz| ≤ Ct−αh2|v|1.

Now, the desired estimate (4.5) for q ∈ [1, 2] follows by interpolation which completes the proof.

Note that for 2D-problems, the Sobolev inequality

‖χ‖L∞(Ω) ≤ C | lnh| ‖∇χ‖, ∀χ ∈ Vh,
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and Lemma 4.2 imply for q ∈ [1, 2] that

‖ξ(t)‖L∞(Ω) ≤ C | lnh| ‖∇ξ(t)‖ ≤ C| lnh|h2t−α(3−q)/2|v|q. (4.19)

As a consequence, we obtain the following quasi-optimal L∞(Ω)-error estimate by combining the results in
(4.19) and (1.7).

Theorem 4.6. Let u and ūh be the solution of (1.1) and (3.1), respectively, with vh = Phv. Assume that
v ∈ Ḣq(Ω) ∩ L∞(Ω) for 1 ≤ q ≤ 2. Then, under the quasi-uniformity condition on the mesh, there holds

‖ūh(t)− u(t)‖L∞(Ω) ≤ C| lnh|
5
2h2t−α(3−q)/2

(
|v|q + ‖v‖L∞(Ω)

)
, 1 ≤ q ≤ 2.

5. Fully discrete schemes

In this section, we analyze two fully discrete schemes for the semidiscrete problem (3.1) using the framework
of convolution quadrature developed in [7, 22], which has been initiated in [19, 20]. To describe this framework,
we first divide the time interval [0, T ] into N equal subintervals with a time step size τ = T/N , and let tj = jτ .
Then, the convolution quadrature [19] refers to an approximation of any function of the form k ∗ ϕ as

(k ∗ ϕ)(tn) :=

∫ tn

0

k(tn − s)ϕ(s) ds ≈
n∑
j=0

βn−j(τ)ϕ(tj),

where the convolution weights βj = βj(τ) are computed from the Laplace transform k̂(z) of k rather than the
kernel k(t). This method provides, in particular, an interesting tool for approximating the Riemann-Liouville

fractional integral of order α, ∂−αt ϕ := ωα ∗ ϕ, where ωα(t) = tα−1/Γ (α). Here, k̂(z) = ω̂α(z) = z−α.

With ∂t being time differentiation, we define k̂(∂t) as the operator of (distributional) convolution with the

kernel k: k̂(∂t)ϕ = k ∗ ϕ for a function ϕ(t) with suitable smoothness. A convolution quadrature approximates

k̂(∂t)ϕ by a discrete convolution k̂(∂̄τ )ϕ at t = tn as

k̂(∂̄τ )ϕ(tn) =

n∑
j=0

βn−j(τ)ϕ(tj),

where the quadrature weights {βj(τ)}∞j=0 are determined by the generating power series

∞∑
j=0

βj(τ)ξj = k̂(δ(ξ)/τ)

with δ(ξ) being a rational function, chosen as the quotient of the generating polynomials of a stable and
consistent linear multistep method. In this paper, we consider the backward Euler (BE) and the second-order
backward difference (SBD) methods, for which δ(ξ) = 1 − ξ and δ(ξ) = (1 − ξ) + (1 − ξ)2/2, respectively. For
the BE method, the convolution quadrature formula for approximating the fractional integral ∂−αt ϕ is given by

∂̄−ατ ϕ(tn) =

n∑
j=0

βn−jϕ(tj), where

∞∑
j=0

βjξ
j = [(1− ξ)/τ ]−α, βj = τα(−1)j

(
−α
j

)
,
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while for the SBD method, the quadrature weights are provided by the formula [19]:

βj = τα(−1)j
(

2

3

)α j∑
l=0

3−l
(
−α
j − l

)(
−α
l

)
.

An important property of the convolution quadrature is that it maintains some relations of the continuous
convolution. For instance, the associativity of convolution is valid for the convolution quadrature [21] such as

k̂1(∂̄τ )k̂2(∂̄τ ) = k̂1k̂2(∂̄τ ) and k̂1(∂̄τ )(k ∗ ϕ) = (k̂1(∂̄τ )k) ∗ ϕ. (5.1)

In the following lemma, we state an interesting result on the error of the convolution quadrature, see [20],
Theorem 4.1 and [21], Theorem 2.2.

Lemma 5.1. Let G(z) be analytic in the sector Σθ and such that

‖G(z)‖ ≤M |z|−µ, ∀z ∈ Σθ,

for some real µ and M . Assume that the linear multistep method is strongly A-stable and of order p ≥ 1. Then,
for ϕ(t) = ctν−1, the convolution quadrature satisfies

‖G(∂t)ϕ(t)−G(∂̄τ )ϕ(t)‖ ≤
{
Ctµ−1+ν−pτp, ν ≥ p,
Ctµ−1τν , 0 < ν ≤ p. (5.2)

5.1. Error analysis for the BE method

In this subsection, we specify the construction of a fully discrete scheme based on the BE method for the
semidiscrete problem (3.1). Then, we derive L2(Ω)-error estimates for smooth and nonsmooth initial data.

After integrating in time from 0 to t, the semidiscrete scheme (3.2) takes the form

ūh + ∂−αt Āhūh = vh. (5.3)

The second term on the left-hand side is a convolution, and then, it can be approximated at tn = nτ with Unh
by

Unh + ∂̄−ατ ĀhU
n
h = vh. (5.4)

The symbol ∂̄−ατ refers to the relevant convolution quadrature generated by the BE method.
Thus, with U0

h = vh, the fully discrete solution can be represented by

Unh =
(
I + β0Āh

)−1

U0
h −

n−1∑
j=0

βn−jĀhU
j

 , for n ≥ 1. (5.5)

We notice that the term corresponding to j = 0 in the formula can be omitted without affecting the convergence
rate of the scheme [22].

In view of (5.3) and (5.4), we can write the error Unh − ūh(tn) at t = tn as

Unh − ūh(tn) =
(
G(∂̄τ )−G(∂t)

)
vh,
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where G(z) = (I + z−αĀh)−1. Using the identity

(I + z−αĀh)−1 = I − (zαI + Āh)−1Āh,

and denoting Ḡ(z) = −(zαI + Āh)−1, the error can be represented as

Unh − ūh(tn) =
(
Ḡ(∂̄τ )− Ḡ(∂t)

)
Āhvh. (5.6)

Using Lemma 5.1, we now derive the following error estimates.

Lemma 5.2. Let ūh and Unh be the solutions of problems (3.1) and (5.4), respectively, with U0
h = vh. Then, the

following estimates hold:
(a) If v ∈ Ḣ2(Ω) and vh = Rhv, then

‖Unh − ūh(tn)‖ ≤ Cτtα−1
n |v|2. (5.7)

(b) If v ∈ L2(Ω) and vh = Phv, then

‖Unh − ūh(tn)‖ ≤ Cτt−1
n ‖v‖. (5.8)

Proof. For the estimate (5.7), we recall that, by (2.1), ‖Ḡ(z)‖ ≤Mθ|z|−α ∀z ∈ Σθ. An application of Lemma 5.1
(with µ = α, ν = 1 and p = 1) to (5.6) yields

‖Unh − ūh(tn)‖ ≤ Cτtα−1
n ‖Āhvh‖.

Now, we introduce a projection operator P̄h : L2(Ω)→ Vh defined by

(P̄hw,χ)h = (w,χ), ∀χ ∈ Vh.

Then, P̄h is stable in L2(Ω) and the identity ĀhRh = P̄hA holds, since

(ĀhRhw,χ)h = (∇Rhw,∇χ) = (∇w,∇χ) = (Aw,χ) = (P̄hAw,χ)h, ∀χ ∈ Vh.

As vh = Rhv, it follows that

‖Āhvh‖ = ‖ĀhRhv‖ = ‖P̄hAv‖ ≤ C‖Av‖ = C|v|2,

which shows (5.7).
For the estimate (5.8), we notice that ‖G(z)‖ = |z|α‖(zαI + Āh)−1‖ ≤ Mθ ∀z ∈ Σθ. Then, by applying

Lemma 5.1 (with µ = 0, ν = 1 and p = 1) to (5.1), we obtain

‖Unh − ūh(tn)‖ ≤ Cτt−1
n ‖vh‖.

Now, the estimate follows from the L2(Ω)-stability of Ph. This completes the rest of the proof.

Remark 5.3. For v ∈ Ḣ2(Ω), we can choose vh = Phv. Let Ũnh be the solution of the fully discrete scheme (5.4)

with vh = Phv. Then, by the stability of the scheme, a direct consequence of Lemma 5.2, we have ‖Unh − Ũnh ‖ ≤
‖Rhv − Phv‖ ≤ Ch2|v|2, showing that

‖Unh − ūh(tn)‖ ≤ C(τtα−1
n + h2)|v|2. (5.9)
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Hence, by interpolating (5.8) and (5.9) it follows that for vh = Phv,

‖Unh − ūh(tn)‖ ≤ C(τt−1
n )1/2(τtα−1

n + h2)1/2|v|1. (5.10)

As a consequence of Lemma 5.2, we obtain error estimates for the fully discrete scheme (5.5) with smooth
and nonsmooth initial data.

Theorem 5.4. Let u and Unh be the solutions of problems (1.1) and (5.4), respectively, with U0
h = vh. Then,

the following error estimates hold:
(a) If v ∈ Ḣ2(Ω) and vh = Rhv, then

‖Unh − u(tn)‖ ≤ C(h2 + τtα−1
n )|v|2. (5.11)

(b) If v ∈ Ḣ1(Ω), vh = Phv and the mesh is quasi-uniform, then

‖Unh − u(tn)‖ ≤ C(h2t−α/2n + τt−1+α/2
n )|v|1. (5.12)

(c) If v ∈ L2(Ω), vh = Phv and Qh satisfies (4.3), then

‖Unh − u(tn)‖ ≤ C(h2t−αn + τt−1
n )‖v‖. (5.13)

Proof. The first estimate (5.11) follows from (4.5), (5.7) and the triangle inequality, while the third estimate
(5.13) follows from (4.16) and (5.8). By combining (4.5) (with q = 1) which holds for vh = Phv and (5.10), we
deduce

‖Unh − u(tn)‖ ≤ C(h2t−α/2n + τt−1+α/2
n + τ1/2t−1/2

n h)|v|1.

An inspection of the three terms between brackets shows that the square of the third term equals the product
of the first two terms, which proves the estimate (5.12). This concludes the proof.

5.2. Error analysis for the SBD method

Now we consider the time discretization of (3.1) constructed with the convolution quadrature based on the
second-order backward difference formula. From Lemma 5.1, it is obvious that one can get only a first-order
error bound if, for instance, ϕ is constant (i.e., ν = 1). In order to overcome this difficulty, a correction of
the scheme is needed. Below, we present modifications of the convolution quadrature based on the strategy in
[7, 22]. By noting the identity

(I + ∂−αt Āh)−1 = I − (I + ∂−αt Āh)−1∂−αt Āh,

it turns out from (5.3) that the semidiscrete solution ūh can be rewritten as

ūh = vh − (I + ∂−αt Āh)−1∂−αt Āhvh.

This leads to the modified convolution quadrature [7]

Unh = vh − (I + ∂̄−ατ Āh)−1∂−αt Āhvh, (5.14)

where the exact contribution ∂−αt Āhvh = ωα+1(t)Āhvh is kept in the new formula (5.14) in order to improve
the time accuracy. The symbol ∂̄−ατ refers to the convolution quadrature generated by the SBD method. Unfor-
tunately, this correction would not yield optimal time accuracy. A second choice for the modified convolution
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quadrature which will be considered here is based on the approximation [22]

Unh = vh − (I + ∂̄−ατ Āh)−1∂̄1−α
τ ∂−1

t Āhvh, (5.15)

where the term ∂−1
t is kept to achieve second-order time accuracy. The advantages of both numerical methods

(5.14) and (5.15) are described in [7].
For the numerical implementation, it is essential to write (5.15) as a time stepping algorithm. Let 1τ =

(0, 3/2, 1, . . .) so that 1τ = ∂̄τ∂
−1
t 1 at grid point tn. Then by applying the operator (I + ∂̄−ατ Āh) to both sides

of (5.15) and using the associativity of convolution in (5.1), we arrive at the equivalent form

(I + ∂̄−ατ Āh)(Unh − vh) = −∂̄−ατ Āh1τvh.

By applying again the operator ∂̄τ , we obtain

∂̄τ (Unh − vh) + ∂̄1−α
τ Āh(Unh − vh) = −∂̄1−α

τ Āh1τvh. (5.16)

By noting that 1vh − 1τvh = (vh,−1/2vh, 0, . . .), we thus define the time stepping scheme as: with U0
h = vh,

find Unh such that

3

2
τ−1(U1

h − U0
h) + ∂̃1−α

τ ĀhU
1
h = 0,

and for n ≥ 2

∂̄τU
n
h + ∂̃1−α

τ ĀhU
n
h = 0,

where the modified convolution quadrature ∂̃1−α
τ is given by [22]

∂̃1−α
τ ϕn =

 n∑
j=1

β
(1−α)
n−j ϕj +

1

2
β

(1−α)
n−1 ϕ0

 ,

with the weights {β(1−α)
j } being generated by the SBD method.

Now using Lemma 5.1, we derive the following error bounds for smooth and nonsmooth initial data.

Lemma 5.5. Let ūh and Unh be the solutions of problems (3.1) and (5.16), respectively, and set U0
h = vh. Then,

the following estimates hold:

(a) If v ∈ Ḣ2(Ω) and vh = Rhv, then

‖Unh − ūh(tn)‖ ≤ Cτ2tα−2
n |v|2. (5.17)

(b) If v ∈ L2(Ω) and vh = Phv, then

‖Unh − ūh(tn)‖ ≤ Cτ2t−2
n ‖v‖. (5.18)

Proof. For the estimate (5.17), we set

Ḡ(z) = z1−α(I + z−αĀh)−1
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and write the error as

Unh − ūh(tn) =
(
Ḡ(∂̄τ )− Ḡ(∂t)

)
∂−1
t Āhvh. (5.19)

Since ‖Ḡ(z)‖ ≤Mθ|z|1−α ∀z ∈ Σθ by (2.1), (5.19) and Lemma 5.1 (with µ = α− 1, ν = 2 and p = 2) imply

‖Unh − ūh(tn)‖ ≤ cτ2tα−2
n ‖Āhvh‖.

Then, the desired estimate (5.17) follows from the identity ĀhRh = P̄hA.
For the estimate (5.18), we note with

Ḡ(z) = z1−α(I + z−αĀh)−1Āh

and using (5.15) that

Unh − ūh(tn) =
(
Ḡ(∂̄τ )− Ḡ(∂t)

)
∂−1
t vh. (5.20)

Since ‖Ḡ(z)‖ ≤ Mθ|z| ∀z ∈ Σθ, a use of (5.20), Lemma 5.1 (with µ = −1, ν = 2 and p = 2) and the
L2(Ω)-stability of Ph yield the estimate (5.18). This completes the rest of the proof.

Remark 5.6. By the stability of the scheme, a direct consequence of Lemma 5.5, and the arguments in
Remark 5.3, the following error estimate holds for vh = Phv

‖Unh − ūh(tn)‖ ≤ C(τ2tα−2
n + h2)|v|2. (5.21)

Then, by interpolation of (5.18) and (5.21) we get for vh = Phv

‖Unh − ūh(tn)‖ ≤ C(τ2t−2
n )1/2(τtα−2

n + h2)1/2|v|1.

Using the estimates derived in Sections 4.1 and 4.2 for the semidiscrete problem, and following the arguments
in the proof of Theorem 5.4, we can now state the error estimates for the fully discrete scheme (5.16) with smooth
and nonsmooth initial data.

Theorem 5.7. Let u and Unh be the solutions of problems (1.1) and (5.16), respectively, with U0
h = vh. Then

the following error estimates hold:

(a) If v ∈ Ḣ2(Ω) and vh = Rhv, then

‖Unh − u(tn)‖ ≤ C(h2 + τ2tα−2
n )|v|2.

(b) If v ∈ Ḣ1(Ω), vh = Phv and the mesh is quasi-uniform, then

‖Unh − u(tn)‖ ≤ C(h2t−α/2n + τ2tα/2−2
n )|v|1.

(c) If v ∈ L2(Ω), vh = Phv and Qh satisfies (4.3), then

‖Unh − u(tn)‖ ≤ C(h2t−αn + τ2t−2
n )‖v‖.
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6. On extensions

In this section, we discuss the extension of our analysis to other type of problems including those with more
general linear elliptic operator and other time fractional evolution problems. We only concentrate on the error
analysis of the semidiscrete FVE method. Completely discrete schemes can be discussed in a similar way by
choosing appropriate convolution quadratures and following the analysis in Section 5.

6.1. Problems with more general elliptic operators

More precisely, we consider problem (1.3) with

Au = −∇ · (κ(x)∇u) + c(x)u,

where κ(x) is a symmetric, positive definite 2× 2 matrix function on Ω̄ with smooth entries and c(x) ∈ L∞(Ω)
and c(x) ≥ c0 > 0. The corresponding bilinear form a(·, ·) : H1

0 (Ω)×H1
0 (Ω)→ R becomes

a(w,χ) = (κ(x)∇w,∇χ) + (c(x)w,χ), ∀χ ∈ H1
0 (Ω).

The natural generalization of the finite volume element method (1.8) yields

ah(w,χ) =
∑
Pi∈N0

h

χ(Pi)

(
−
∫
∂K∗Pi

(κ∇w) · n ds+

∫
K∗Pi

c(x)w dxds

)
, ∀w ∈ Vh, χ ∈ V ∗h .

In general, the bilinear form ah(w,Π∗hχ), χ ∈ Vh, is not symmetric on Vh. However, if κ and c are constant over
each element of the triangulation Th, then the bilinear form takes the form, see [1],

ah(w,Π∗hχ) = (κ(x)∇w,∇χ) + (c(x)w,Π∗hχ), ∀w,χ ∈ Vh,

which is symmetric since (c(x)w,Π∗hχ) = (c(x)χ,Π∗hw). As symmetry is important in our analysis, we shall
consider the modified bilinear form, see [5],

ãh(w,χ) =
∑
Pi∈N0

h

χ(Pi)

(
−
∫
∂K∗Pi

(κ̃(x)∇w) · n ds+

∫
K∗Pi

c̃(x)w dxds

)
, ∀w ∈ Vh, χ ∈ V ∗h ,

where, for each x ∈ K, K ∈ Th, κ̃(x) = κ(xK) and c̃(x) = c(xK), with xK being the barycenter of the element
K. Now, the FVE method reads: find ũh(t) ∈ Vh such that

(ũ′h, χ)h + ãh(∂1−α
t ũh, Π

∗
hχ) = 0, ∀χ ∈ Vh, t ∈ (0, T ], ũh(0) = vh. (6.1)

Introducing the discrete operator Ãh : Vh → Vh by

(Ãhw,χ)h = ãh(w,Π∗hχ), ∀w,χ ∈ Vh, (6.2)

we rewrite (6.1) as

ũ′h(t) + ∂1−α
t Ãhũh(t) = 0, t > 0, ũh(0) = vh. (6.3)

Following our analysis in Section 4, with ξ(t) = ũh(t) − uh(t), we split the error ũh(t) − u(t) = (uh(t) −
u(t)) + ξ(t), where it is well known that uh(t) − u(t) and ∇(uh(t) − u(t)) are estimated by the analogues of
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(1.4)–(1.5). It is, therefore, sufficient to derive estimates for ξ, which satisfies for t ≥ 0

(ξ′, χ)h + ã(∂1−α
t ξ,Π∗hχ) = −εh(uht, χ)− ε̃h(uh, χ), ∀χ ∈ Vh, ũh(0) = vh, (6.4)

where εh(·, ·) is defined in (4.1) and ε̃h(·, ·) is given by

ε̃h(w,χ) = ãh(w,Π∗hχ)− a(w,χ), ∀w,χ ∈ Vh. (6.5)

Upon introducing the quadrature error operators Qh : Vh → Vh and Q̃h : Vh → Vh defined by

ãh(Qhw,Π
∗
hχ) = εh(χ, ψ) and ãh(Q̃hw,Π

∗
hχ) = ε̃h(χ, ψ), ∀w,χ ∈ Vh, (6.6)

the equation (6.4) can be rewritten in the operator form as

ξt(t) + ∂1−α
t Ãhξ(t) = −ÃhQhuht(t)− ÃhQ̃huh(t), t > 0, ξ(0) = 0. (6.7)

To derive estimates for ξ, we need the following bound, see [5] for a proof.

Lemma 6.1. Let Ãh, Qh and Q̃h be the operators defined in (6.2) and (6.6). Then

‖∇Qhχ‖+ h‖ÃhQhχ‖ ≤ Chp+1‖∇pχ‖, ∀χ ∈ Vh, p = 0, 1, (6.8)

and similar result holds for the operator Q̃h.

Now, we show the following estimates.

Theorem 6.2. For the error ξ defined by (6.7), there is a positive constant C, independent of h, such that for
t > 0,

‖ξ(t)‖+ h‖∇ξ(t))‖ ≤ C max{t1−α/2, t1−α}h2‖Ahvh‖, (6.9)

‖ξ(t)‖+ h‖∇ξ(t))‖ ≤ Ct1−α/2h2‖∇vh‖, (6.10)

and

‖ξ(t)‖+ h‖∇ξ(t))‖ ≤ Ct1−αh‖vh‖. (6.11)

If Q̃h satisfies ‖Q̃hχ‖ ≤ Ch2‖χ‖ ∀χ ∈ Vh, then

‖ξ(t)‖ ≤ Ct1−αh2‖vh‖. (6.12)

Proof. By taking Laplace transforms in (6.7), we represent ξ(t) by

ξ(t) = − 1

2πi

∫
Γ

eztÊh(z)ÃhQhûht(z) dz

− 1

2πi

∫
Γ

eztÊh(z)ÃhQ̃hûh(z) dz =: ξ1 + ξ2, (6.13)

where Êh(z) = zα−1(zαI + Ãh)−1. The first term ξ1 is bounded as in the proofs of Theorems 4.2 and 4.4 using
Lemma 6.1 instead of Lemma 4.1. To bound the second term ξ2, we notice that, similar to (4.11), we arrive at

‖Êh(z)ÃhQ̃hûh(z)‖+ h‖∇Êh(z)ÃhQ̃hûh(z)‖ ≤ Ch2|z|α/2−1‖∇ûh(z)‖. (6.14)
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Using the identity

Êh(z) = z−1[I − Êh(z)Ãh]

and (2.7), it follows that

‖∇Êh(z)vh‖ ≤ |z|−1[‖∇vh‖+ ‖∇Êh(z)Ãhvh‖]
≤ C|z|−1[‖Ãhvh‖+ |z|α/2−1‖Ãhvh‖]. (6.15)

Substituting (6.15) in (6.14) and using the integral representation of ξ2 in (6.13), we obtain the estimate (6.9).
To derive (6.10), a use of (2.4) yields

‖∇Êh(z)vh‖ ≤ C|z|−1‖∇vh‖.

Then, the bound follows immediately. For the last cases (6.11) and (6.12), we apply (2.6) to get

‖Êh(z)ĀhQ̃hûh‖p ≤ C|z|α−1‖Q̃hûh‖p, p = 0, 1.

Then, the left-hand side in (6.14) is bounded by

C|z|α−1(‖Q̃hûh(z)‖+ h‖∇Q̃hûh(z)‖).

Using Lemma 6.1 and the fact that ‖ûh(z)‖ ≤ |z|−1‖vh‖, we obtain the desired results by following the arguments
in the proof of Theorem 4.4. This completes the proof of the theorem.

6.2. Other time fractional evolution problems

Our analysis can be applied to obtain optimal FVE error estimates for other type of time fractional evolution
problems. This may include, for instance, evolution equations with memory terms of convolution type:

u′(x, t) + IαAu(x, t) = 0, α ∈ (0, 1), (6.16)

see [22], which is also called fractional diffusion-wave equation, the following parabolic integro-differential
equation with singular kernel of the type

u′(x, t) + (I + Iα)Au(x, t) = 0, α ∈ (0, 1), (6.17)

see, [23], and the Rayleigh-Stokes problem described by the time fractional differential equation

u′(x, t) + (I + γ∂αt )Au(x, t) = 0, α ∈ (0, 1), (6.18)

which has been considered in [2]. Here γ is a positive constant. In order to unify problems (6.16)–(6.18), we
define J α denoting a time integral/differential operator and consider the unified problem by

u′(x, t) + J αAu(x, t) = 0. (6.19)

Now an application of Laplace transforms in (6.19) yields

zû+ h(z)Aû = v,
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with some function h(z) depending on α. Hence, we formally have, û = (z + h(z)A)−1v =: Êh(z)v.
Let Āh and Qh be the operators defined in Sections 3 and 4, respectively. Then, the FVE method reads: find

ūh(t) ∈ Vh such that

ū′h + J αĀhūh = 0, t ∈ (0, T ], ūh(0) = vh. (6.20)

Again using the corresponding FE solution uh, we split ūh − u := (uh − u) + (ūh − uh) =: (uh − u) + ξ, where
ξ satisfies the similar representation formula

ξ(t) = − 1

2πi

∫
Γ̄θ

eztÊh(z)ĀhQhûht(z) dz. (6.21)

Note that in this case the operator Êh(z) is given by

Êh(z) = β(z)(zβ(z)I + Āh)−1, (6.22)

and β(z) = h(z)−1. For the problem (6.16), we observe that β(z) = zα, for the problem (6.17), β(z) = zα/(1 +
zα), and for the problem (6.18), β(z) = 1/(1 + γzα). We assume that one can properly choose θ in (π/2, π)
such that zβ(z) ∈ Σθ′ for all z ∈ Σθ where the angle θ′ ∈ (π/2, π). This is indeed possible in all given examples.
With this, the resolvent estimate yields

‖(zβ(z)I + Āh)−1‖ ≤ Mθ′

|zβ(z)|
, ∀z ∈ Σθ, (6.23)

where Mθ′ = 1/ sin(π − θ′). Therefore, from (6.22),

‖Êh(z)‖ ≤Mθ′ |z|−1, ∀z ∈ Σθ. (6.24)

Following arguments from [22], we deduce that

‖ĀhÊh(z)‖ ≤ Cθ′ |β(z)| ∀z ∈ Σθ. (6.25)

Now, we can prove the analogue of Lemma 2.1.

Lemma 6.3. Let Êh(z) be given by (6.22). With χ ∈ Vh, the following estimates hold:

‖ĀhÊh(z)χ‖ ≤ Cθ′ |β(z)|1−p/2|z|−p/2 ‖Āp/2h χ‖, ∀z ∈ Σθ, 0 ≤ p ≤ 2, (6.26)

|Êh(z)χ|1 ≤ Cθ′ |β(z)|1/2|z|−1/2‖χ‖, ∀z ∈ Σθ, (6.27)

where Cθ′ is independent of the mesh size h.

Proof. We obtain the first estimate (6.26) by interpolating (6.24) and (6.25). The second estimate follows from
the fact that

‖∇(zβ(z)I + Āh)−1χ‖ ≤ C|zβ(z)|−1/2‖χ‖, ∀χ ∈ Vh,

see (2.13) in [7].

In the following theorem, optimal error estimates are obtained for smooth and nonsmooth initial data v ∈
Ḣq(Ω), q = 0, 1, 2.
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Theorem 6.4. For the error ξ defined by (6.21), there is a positive constant C, independent of h, such that for
t > 0,

‖ξ(t)‖+ h‖∇ξ(t))‖ ≤ Ch2‖Āhvh‖. (6.28)

If |β(z)| ≤ C|z|µ ∀z ∈ Σθ for some real µ < 1, then

‖ξ(t)‖+ h‖∇ξ(t))‖ ≤ Ct−(µ+1)/2h2‖∇vh‖. (6.29)

If |β(z)| ≤ C|z|µ ∀z ∈ Σθ and Q̄ satisfies (4.3), then

‖ξ(t)‖+ h‖∇ξ(t))‖ ≤ Ct−(µ+1)h2‖vh‖. (6.30)

Proof. We will only prove the estimate in the L2(Ω)-norm. The estimate in the gradient norm is derived in a
similar way. We shall make use of the estimate (4.8) obtained in the proof of Theorem 4.2.

When q = 2, that is, v ∈ Ḣ2(Ω), apply (6.26) with p = 1 and (6.27) in Lemma 6.3 to get

‖Êh(z)ĀhQhûht(z)‖ ≤ C|β(z)|1/2|z|−1/2‖∇Qhûht(z)‖,

and

‖∇Êh(z)ĀhQhûht(z)‖ ≤ C|β(z)|1/2|z|−1/2‖ĀhQhûht(z)‖.

Then, by (4.2) in Lemma 4.1, we deduce

‖Êh(z)ĀhQhûht(z)‖+ h‖∇Êh(z)ĀhQhûht(z)‖ ≤ Ch2|β(z)|1/2|z|−1/2‖∇ûht(z)‖. (6.31)

Since

ûht(z) = −h(z)Āhûh(z) = −h(z)ĀhF̂h(z)vh,

an estimate analogous to (6.27) yields

‖∇ûht(z)‖ = |h(z)|‖∇F̂h(z)Āhvh‖
≤ C|h(z)| |β(z)|1/2|z|−1/2‖Āhvh‖
≤ C|β(z)|−1/2|z|−1/2‖Āhvh‖.

Thus, the left-hand side in (6.31) is bounded by |z|−1‖Āhvh‖. Now, substitution in (4.8) gives the desired
estimate.

For q = 1, we notice that in view of (6.24), the bound (4.14) holds, and therefore substitution in (6.31) gives
the new upper bound Ch2|z|µ/2−1/2‖∇vh‖ in (6.31). The estimate (6.29) follows then by integration.

Finally, for q = 0, we have by (6.25),

‖Êh(z)ĀhQhûht‖ ≤ C|β(z)| ‖Qhûht‖ ≤ C|z|µ‖Qhûht‖.

In view of (6.24), we have ‖ûht(z)‖ = ‖zF̂h(z)vh − vh‖ ≤ C‖vh‖. Therefore, if (4.3) is satisfied then
‖Êh(z)ĀhQhûht‖ ≤ Ch2|z|µ‖ûht‖ ≤ Ch2|z|µ‖vh‖. Now, (6.30) follows by integration and this concludes the
rest of the proof.
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By interpolating (6.28) and (6.30) we obtain for q ∈ [0, 2]

‖ξ(t)‖+ h‖∇ξ(t))‖ ≤ Ct−(µ+1)(2−q)/2h2‖Āq/2h vh‖, t > 0.

Notice that µ = α for problems (6.16) and (6.17), while µ = −α for the Rayleigh-Stokes problem (6.18). Hence,
for the Rayleigh-Stokes problem the previous estimate reads:

‖ξ(t)‖+ h‖∇ξ(t))‖ ≤ Ct−(1−α)(2−q)/2h2‖Āq/2h vh‖, t > 0,

provided (4.3) is satisfied.
We finally consider the following class of time fractional order diffusion problems:

C∂αt u(x, t) +Au(x, t) = 0, (6.32)

where C∂αt is the fractional Caputo derivative of order α ∈ (0, 1). For this class of equations, optimal error
estimates for the semidiscrete FE method have been established in [12]. The FVE method applied to (6.32) is
to seek ūh ∈ Vh such that

C∂αt ūh + Āhūh = 0, t ∈ (0, T ], ūh(0) = vh.

Again a comparison between the FE solution and FVE solution along with Laplace transformation techniques
and semigroup type properties as has been done in Section 4 yields a priori FVE error estimates for the fractional
order evolution problem (6.32) for both smooth and nonsmooth initial data. Since the proof technique is similar
to the tool used in Section 4, we skip the details.

Remark 6.5. Note that the estimates and their proofs obtained in this section are analogous to those of the
lumped mass FE method as the operators Āh and Qh have similar properties to those of the corresponding
operators for the lumped mass method.

7. Numerical experiments

In this section, we present some numerical tests to validate our theoretical results. We choose Ω = (0, 1)×
(0, 1) and perform the computation on two families of symmetric and nonsymmetric triangular meshes. The
symmetric meshes are uniform with mesh size h =

√
2/M , where M is the number of equally spaced subintervals

in both the x- and y-directions, see Figure 2a. For the nonsymmetric meshes, we choose M subintervals in the
x-direction and 3M/4 equally spaced subintervals in the y-direction with the assumption that M is divisible
by 4. The intervals in the x-direction are of lengths 4/3M and 2/3M and distributed such that they form an
alternating series as shown in Figure 2b. One can notice that the nonsymmetric mesh defines a triangulation
that is not symmetric at any vertex, see Section 5 from [5] for more details.

We consider three numerical examples with smooth and nonsmooth initial data. By separation of variables,
the exact solution of problem (1.1) can represented by a rapidly converging Fourier series

u(x, y, t) =

∞∑
m,n=1

(v, φmn)Eα(−λmntα)φmn(x, y), (7.1)

where Eα(t) :=
∑∞
p=0

tp

Γ (αp+1) is the Mittag-Leffler function and

φmn(x, y) = 2 sin(mπx) sin(nπy) and λmn = (m2 + n2)π2 for m,n = 1, 2, . . .
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Figure 2. Triangular meshes with M = 8, (a) symmetric mesh and (b) nonsymmetric mesh.

are the orthonormal eigenfunctions and corresponding eigenvalues of −∆ subject to homogeneous Dirichlet
boundary conditions. In our computation, we evaluate the exact solution by truncating the Fourier series in
(7.1) after 60 terms.

We consider the following initial data to illustrate the convergence theory.

(a) With v = xy(1− x)(1− y), its Fourier sine coefficients become

(v, φmn) = 8(1− (−1)m)(1− (−1)n)(mnπ2)−3, for m,n = 1, 2, . . . .

This example represents the smooth case as v ∈ Ḣ2(Ω).
(b) For this example, choose v = g(x)g(y) where g(z) = z on [0, 1/2) and g(z) = 1− z on (1/2, 1]. This initial

data is less smooth compared to the previous case. One can verify that its Fourier coefficients are given
by

(v, φmn) = 2(1− (−1)m)(1− (−1)n)(mnπ2)−2(−1)mn, for m,n = 1, 2, . . . .

Note that v ∈ Ḣ1+ε(Ω) for 0 ≤ ε < 1/2.
(c) With v = χ(0,1/2[×(0,1)(x, y), its Fourier sine coefficients become

(v, φmn) = 2(1− cos(mπ/2))(1− (−1)n)(mnπ2)−1, for m,n = 1, 2, . . . .

Here, v ∈ Ḣ1/2−ε(Ω) with ε > 0.

To examine the temporal accuracy of the proposed schemes, we employ a uniform temporal mesh with a
time step τ = T/N , where T = 0.5 is the time of interest in all numerical experiments. We fix the mesh size
h at h = 1/400 so that the error incurred by spatial discretization is negligible, which enable us to examine
the temporal convergence rate. The computation is performed on symmetric meshes. We measure the error
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Table 1. L2-Error for cases (a)–(c) on symmetric meshes, α = 0.75, h = 1/400.

N BE Rate SBD Rate

Case (a)
5 4.89e−3 1.32e−3
10 2.19e−3 1.16 3.16e−4 2.06
20 1.04e−3 1.08 7.26e−5 2.12
40 5.05e−4 1.04 1.69e−5 2.10
80 2.49e−4 1.02 3.69e−6 2.18

Case (b)
5 4.83e−3 1.39e−3
10 2.16e−3 1.16 3.33e−4 2.06
20 1.02e−3 1.07 7.70e−5 2.11
40 5.00e−4 1.03 1.77e−5 2.19
80 2.48e−4 1.02 3.68e−6 2.27

Case (c)
5 2.97e−3 8.24e−4
10 1.33e−3 1.16 2.05e−4 2.01
20 6.32e−4 1.07 4.73e−5 2.11
40 3.09e−4 1.03 1.09e−5 2.11
80 1.53e−4 1.01 2.43e−6 2.17

Table 2. Errors for cases (a)–(c) on symmetric meshes, α = 0.75, τ = 1/500.

M L2-Error Rate L∞-Error Rate

Case (a)
8 1.46e−3 1.06e−4
16 3.74e−4 1.96 2.74e−5 1.95
32 9.33e−5 2.00 6.86e−6 2.00
64 2.25e−5 2.05 1.68e−6 2.03
128 4.82e−6 2.23 3.81e−7 2.14

Case (b)
8 8.93e−4 2.04e−4
16 2.29e−4 1.96 5.54e−5 1.88
32 5.73e−5 2.00 1.43e−5 1.95
64 1.38e−5 2.05 3.56e−6 2.01
128 2.98e−6 2.21 8.04e−7 2.15

Case (c)
8 7.19e−4 2.70e−3
16 1.81e−4 1.99 8.74e−4 1.63
32 4.51e−5 2.01 2.72e−4 1.69
64 1.10e−5 2.03 7.62e−5 1.83
128 2.66e−6 2.05 2.05e−5 1.90

en =: u(tn) − Un by the normalized L2(Ω)-norm ‖en‖L2(Ω)/‖v‖L2(Ω). The numerical results are presented in
Table 1 for the three proposed cases (a)–(c). In the table, BE and SBD denote the convolution quadrature
generated by the backward Euler and the second-order backward difference methods, respectively. The rate

refers to the empirical convergence rate, when the time step size τ halves. From the Table 1, a convergence rate
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Table 3. L2-Error for cases (a)–(c) as t→ 0; α = 0.75, h = 1/64, N = 103.

Method 1e−2 1e−3 1e−4 1e−5 1e−6 Rate

(a) BE 3.03e−4 4.74e−4 5.06e−4 5.14e−4 5.16e−4 −0.00 (0)
SBD 3.83e−4 4.86e−4 5.08e−4 5.14e−4 5.16e−4 −0.00 (0)

(b) BE 1.85e−4 3.13e−4 3.89e−4 5.01e−4 6.66e−4 −0.12 (−α/4)
SBD 2.23e−4 3.19e−4 3.90e−4 5.00e- 4 6.56e−4 −0.11 (−α/4)

(c) BE 1.72e−4 6.55e−4 2.22e−3 7.74e−3 2.44e−2 −0.52 (−3α/4)
SBD 2.34e−4 6.99e−4 2.33e−3 8.69e−3 3.60e−2 −0.59 (−3α/4)

Table 4. Errors for case (c) on nonsymmetric meshes, α = 0.75, τ = 1/500.

M L2-Error Rate L∞-Error Rate

FVEM
8 1.12e−3 4.17e−3
1.6 2.78e−4 2.01 1.37e−3 1.61
32 6.80e−5 2.03 4.20e−4 1.71
64 1.65e−5 2.04 1.11e−4 1.92
128 3.97e−6 2.06 3.04e−5 1.88

Lumped mass FEM
8 1.167e−3 4.15e−3
16 3.125e−4 1.90 1.37e−3 1.60
32 8.228e−5 1.92 4.15e−4 1.72
64 2.14e−5 1.94 1.11e−4 1.90
128 5.80e−6 1.88 3.35e−5 1.73

of order O(τ) and O(τ2) is observed for the BE and SBD schemes, respectively, and clearly both schemes exhibit
a very steady behavior for both smooth and nonsmooth data, which agree well with our convergence theory.
Additional numerical experiments with different values of the fractional order α have shown similar convergence
rates. It was, in particular, observed that the error decreases as the fractional order α increases. More details
on the behavior of errors from BE and SBD methods combined with a Galerkin FE discretization in space can
be found in [11].

To check the spatial discretization error, we fix the time step τ = 1/500 and use the SBD scheme so that the
temporal discretization error is negligible. We carry out the computation on symmetric meshes. In Table 2, we
list the normalized L2(Ω)-norm and L∞(Ω)-norms of the error for the cases (a)–(c). The numerical results show
a convergence rate O(h2) for the L2(Ω)-norm of the error for smooth and nonsmmoth initial data. A similar
convergence rate is obtained in the L∞(Ω)-norm (ignoring a logarithmic factor). The results fully confirm the
predicted rates on symmetric meshes. They also show the validity of the convergence rate in Theorem 4.6 for
case (c) where 0 < q < 1.

To investigate the behavior of the error as t→ 0, we check the (spatial) prefactors in Theorems 5.4 and 5.7.
In Table 3, we present the numerical results obtained as t → 0 with the meshsize h and the number of time
steps N being fixed. The results indicate that the error essentially stays unchanged in the smooth case, whereas
it deteriorates as t→ 0 in the other two cases. From Theorems 5.4 and 5.7, the error is expected to grow like
O(t−α(2−q)/2). We observe that the empirical convergence rate in the table agrees well with the theoretical rate
(given between brackets). In case (c), for instance, the initial data v ∈ Ḣ1/2−ε(Ω) with ε > 0, and the numerical
results show a growth O(t−3α/4) as t→ 0.
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Table 5. Errors for case (d) on nonsymmetric meshes, α = 0.75, τ = 1/500.

M L2-Error Rate L∞-Error Rate

FVEM
8 9.92e−5 3.85e−4
16 2.31e−5 2.10 1.12e−4 1.77
32 1.15e−5 1.01 4.85e−5 1.21
64 5.12e−6 1.17 2.05e−5 1.24
128 2.56e−6 1.00 9.72e−6 1.08

Lumped mass FEM
8 4.49e−4 1.74e−3
16 1.04e−4 2.11 5.07e−4 1.78
32 5.18e−5 1.01 2.18e−4 1.21
64 2.30e−5 1.17 9.25e−5 1.24
128 1.15e−5 1.00 4.37e−5 1.08

For nonsymmetric meshes, we are especially interested in spatial errors for nonsmooth initial data as the
convergence theory suggests. In Table 4, we display the L2(Ω)- and L∞(Ω)-norms of the error for case (c) using
the FVE and the lumped mass FE discretizations on nonsymmetric meshes. The numerical results reveal that
both discretizations exhibit a convergence rate of order O(h2), which may be seen as an unexpected result.
However, as the initial data v ∈ Ḣ1/2−ε(Ω) for any ε > 0, v has some smoothness, and hence, the numerical
results do not contradict our theoretical findings. In addition, we notice that as the convergence rate is O(h2) for
initial data in Ḣ1(Ω), by interpolation in [0, 1], a convergence rate of order O(h3/2) is expected for v ∈ Ḣ1/2(Ω).
In our case, the smoothness of the particular initial data v could then have a positive effect on the convergence
rate.

In [5], the authors considered the nonsymmetric partition shown in Figure 2b and provided an initial data
for which the optimal L2-convergence does not hold. They proved that the best possible error bound in this
case is of order 1, see Proposition 5.1 of [5]. Earlier in [4], the same authors have established a one-dimensional
example for which the O(h2) nonsmooth data error does not hold for the lumped mass FE method. We, then,
carried out our computation based on the example in [5], Proposition 5.1. The numerical results are presented
in Table 5 using the SBD scheme. The error reported in the table represents the quantity ξ(t) which measures
the difference between the Galerkin FE solution and the FVE solution for the first set of numerical results and
between the Galerkin FE solution and the lumped mass FE solution for the second set. As the nonsmooth data
error from the standard Galerkin FE is always O(h2), the error from the considered methods is dominated by
ξ(t). From Table 5, an order O(h) of convergence rate is observed for both methods, which agrees well with the
results in [5] and confirms our theoretical analysis.

For completeness, we extend our numerical study to examine some of the problems presented in Section 6,
namely; the subdiffusion problem (6.32) with a fractional Caputo derivative and the wave-diffusion problem
(6.16). The numerical solution in each case is obtained by using the FVE method in space and a convolution
quadrature in time generated by the second-order backward difference method. We run both examples with the
initial data v given in case (c).

For the first test problem, we employ the second-order time discretization scheme derived in [11], formula
(2.16). The computed errors are presented in Table 6 and are clearly identical to the results in Table 2. Even
though it is known that the two representations (6.32) and (1.1a) are equivalent, the numerical methods obtained
for each representation are in general different. However, in the current case, the fact that the time discrete
schemes are equivalent is due to the feature of the convolution quadrature, in particular, to the properties given
in (5.1).

For the wave-diffusion problem, the numerical results are listed in Table 7 for α = 0.5. We observe a O(h2)
convergence for the L2(Ω)- and L∞(Ω)-norm of the errors which confirms our predictions. It is known that the
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Table 6. Numerical results for problem (6.32), α = 0.75, τ = 1/500.

M L2-Error Rate L∞-Error Rate

8 7.19e−4 2.70e−3
16 1.81e−4 1.99 8.74e−4 1.63
32 4.52e−5 2.01 2.72e−4 1.69
64 1.10e−5 2.03 7.62e−5 1.83
128 2.66e−6 2.05 2.05e−5 1.90

Figure 3. The profile of solutions of problem (6.16) at t = 0.1 with different values of α.

Table 7. Numerical results for problem (6.16), α = 0.5, τ = 1/500.

M L2-Error Rate L∞-Error Rate

8 5.75e−3 1.10e−2
16 1.44e−3 2.00 2.80e−3 1.97
32 3.57e−4 2.01 7.26e−4 1.94
64 8.55e−5 2.06 1.96e−4 1.89
128 1.98e−5 2.11 5.14e−5 1.93

model (6.16) interpolates the heat and wave equations when the fractional order α increases from zero to one.
This transition is observed numerically. In Figure 3, we display the profile of the numerical solutions to case
(c) at time t = 0.1 with different values of α. We observe that, the closer α is to zero, the slower is the decay.
Furthermore, the oscillations in Figure 3a are inherited from the L2-projection Phv which is oscillatory. This
reflects, in particular, the wave feature of the model (6.16).
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