Generalized wave propagation problems and discrete exterior calculus
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 3, pp. 1195-1218.

We introduce a general class of second-order boundary value problems unifying application areas such as acoustics, electromagnetism, elastodynamics, quantum mechanics, and so on, into a single framework. This also enables us to solve wave propagation problems very efficiently with a single software system. The solution method precisely follows the conservation laws in finite-dimensional systems, whereas the constitutive relations are imposed approximately. We employ discrete exterior calculus for the spatial discretization, use natural crystal structures for three-dimensional meshing, and derive a “discrete Hodge” adapted to harmonic wave. The numerical experiments indicate that the cumulative pollution error can be practically eliminated in the case of harmonic wave problems. The restrictions following from the CFL condition can be bypassed with a local time-stepping scheme. The computational savings are at least one order of magnitude.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2018017
Classification : 35L65, 58A10, 58A14, 58J32, 58J90, 65M06, 65M12, 65M22
Mots clés : Differential geometry, exterior algebra, boundary value problems, acoustics, electromagnetism, elasticity, quantum mechanics, finite difference, discrete exterior calculus
Räbinä, Jukka 1 ; Kettunen, Lauri 1 ; Mönkölä, Sanna 1 ; Rossi, Tuomo 1

1
@article{M2AN_2018__52_3_1195_0,
     author = {R\"abin\"a, Jukka and Kettunen, Lauri and M\"onk\"ol\"a, Sanna and Rossi, Tuomo},
     title = {Generalized wave propagation problems and discrete exterior calculus},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1195--1218},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {3},
     year = {2018},
     doi = {10.1051/m2an/2018017},
     zbl = {1404.35288},
     mrnumber = {3865563},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2018017/}
}
TY  - JOUR
AU  - Räbinä, Jukka
AU  - Kettunen, Lauri
AU  - Mönkölä, Sanna
AU  - Rossi, Tuomo
TI  - Generalized wave propagation problems and discrete exterior calculus
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 1195
EP  - 1218
VL  - 52
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2018017/
DO  - 10.1051/m2an/2018017
LA  - en
ID  - M2AN_2018__52_3_1195_0
ER  - 
%0 Journal Article
%A Räbinä, Jukka
%A Kettunen, Lauri
%A Mönkölä, Sanna
%A Rossi, Tuomo
%T Generalized wave propagation problems and discrete exterior calculus
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 1195-1218
%V 52
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2018017/
%R 10.1051/m2an/2018017
%G en
%F M2AN_2018__52_3_1195_0
Räbinä, Jukka; Kettunen, Lauri; Mönkölä, Sanna; Rossi, Tuomo. Generalized wave propagation problems and discrete exterior calculus. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 3, pp. 1195-1218. doi : 10.1051/m2an/2018017. http://www.numdam.org/articles/10.1051/m2an/2018017/

[1] F. Aurenhammer and R. Klein, Voronoi diagrams, in Handbook of Computational Geometry, edited by J.-R. Sack and J. Urrutia. North-Holland, Amsterdam, Netherlands (2000) 201–290. | MR | Zbl

[2] I.M. Babuska and S.A. Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? J. Numer. Anal. 34 (1997) 2392–2423. | DOI | MR | Zbl

[3] G. Bao, G.W. Wei and S. Zhao, Numerical solution of the Helmholtz equation with high wavenumbers. Int. J. Numer. Methods Eng. 59 (2004) 389–408. | DOI | MR | Zbl

[4] H. Bériot, A. Prinn and G. Gabard, Efficient implementation of high-order finite elements for helmholtz problems. Int. J. Numer. Methods Eng. 106 (2016) 213–240. | DOI | MR | Zbl

[5] A. Bossavit, The Sommerville mesh in Yee-like schemes, in Scientific Computing in Electrical Engineering: SCEE-2002. Vol. 4 of Mathematics in Industry. Springer, Berlin (2003) 128–136. | Zbl

[6] A. Bossavit and L. Kettunen, Yee-like schemes on a tetrahedral mesh, with diagonal lumping. Int. J. Numer. Model. 12 (1999) 129–142. | DOI | Zbl

[7] A. Bossavit and L. Kettunen, Yee-like schemes on staggered cellular grids: a synthesis between FIT and FEM approaches. IEEE Trans. Magn. 36 (2000) 861–867. | DOI

[8] M.O. Bristeau, R. Glowinski and J. Périaux, Controllability methods for the computation of time-periodic solutions: application to scattering. J. Comput. Phys. 147 (1998) 265–292. | DOI | MR | Zbl

[9] M.W. Chevalier, R.J. Luebbers and V.P. Cable, FDTD local grid with material traverse. IEEE Trans. Antennas Propag. 45 (1997) 411–421. | DOI

[10] M. Cinalli and A. Schiavoni, A stable and consistent generalization of the FDTD technique to nonorthogonal unstructured grids. IEEE Trans. Antennas Propag. 54 (2006) 1503–1512. | DOI | MR | Zbl

[11] J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, 3rd edn. A Series of Comprehensive Studies in Mathematics. Springer (1999). | MR | Zbl

[12] J.H. Conway, H. Burgiel and C. Goodman-Strauss, The Symmetries of Things. CRC Press (2016). | DOI | MR

[13] F. Coquel, Q.L. Nguyen, M. Postel and Q.H. Tran, Local time stepping applied to implicit-explicit methods for hyperbolic systems. Multiscale Model. Simul. 8 (2010) 540–570. | MR | Zbl

[14] B.N. Delaunay, Sur la sphére vide. Bull. Acad. Sci. USSR 7 (1934) 793–800. | JFM | Zbl

[15] L.F. Demkowicz and J. Gopalakrishnan, An overview of the discontinuous Petrov Galerkin method, Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations. Springer (2014) 149–180. | DOI | MR | Zbl

[16] M. Desbrun, E. Kanso and Y. Tong, Discrete differential forms for computational modeling. Discrete Differ. Geom. Oberwolfach Semin. 38 (2008) 287–324. | DOI | MR | Zbl

[17] J. Diaz and M.J. Grote, Energy conserving explicit local time stepping for second-order wave equations. SIAM J. Sci. Comput. 31 (2009) 1985–2014. | DOI | MR | Zbl

[18] Q. Du and D. Wang, The optimal centroidal Voronoi tessellations and the Gersho’s conjecture in the three-dimensional space. Comput. Math. Appl. 49 (2005) 1355–1373. | DOI | MR | Zbl

[19] D. Eppstein, J.M. Sullivan and A. Üngör, Tiling space and slabs with acute tetrahedra. Comput. Geom.: Theory Appl. 27 (2004) 237–255. | DOI | MR | Zbl

[20] F.C. Frank and J.S. Kasper, Complex alloy structures regarded as sphere packings. II. Analysis and classification of representative structures. Acta Crystallogr. 12 (1959) 483–499. | DOI

[21] A.N. Hirani, Discrete Exterior Calculus. Ph.D. Dissertation. California Institute of Technology (2003). | MR

[22] F. Ihlenburg and I. Babuska, Finite element solution of the Helmholtz equation with high wave number. Part II. J. Numer. Anal. 34 (1997) 315–358. | DOI | MR | Zbl

[23] P. Joly, Variational methods for time-dependent wave propagation problems. Top. Comput. Wave Propag. (2003) 201–264. | DOI | MR | Zbl

[24] J. Kepler, Strena seu nive sexangula, 1611. The Six-cornered Snowflake (English translation by Colin Hardie) Clarendon Press, Oxford, UK (1966).

[25] R. Kusner and J.M. Sullivan, Comparing the Weaire-Phelan equal-volume foam to Kelvin’s foam. Forma 11 (1996) 233–242. | MR | Zbl

[26] L.D. Landau and E.M. Lifshitz, Theory of Elasticity. Pergamon Press, Oxford (1975).

[27] P. Maur, Delaunay Triangulation in 3D. Tech. Report DCSE/TR-2002-02, University of West Bohemia in Pilsen, Department of Computer Science and Engineering, January (2002).

[28] G. Mur, The finite-element modeling of three-dimensional electromagnetic fields using edge and nodal elements. IEEE Trans. Antennas Propag. 41 (1993) 948–953. | DOI

[29] R. Picard, A structural observation for linear material laws in classical mathematical physics. Math. Methods Appl. Sci. 32 (2009) 1768–1803. | DOI | MR | Zbl

[30] J. Räbinä, On a Numerical Solution of the Maxwell Equations by Discrete Exterior Calculus. Ph.D. Dissertation. University of Jyväskylä (2014).

[31] J. Räbinä, S. Mönkölä and T. Rossi, Efficient time integration of Maxwell’s equations by generalized finite-differences. SIAM J. Sci. Comput. 37 (2015) B834–B854. | DOI | MR | Zbl

[32] J. Räbinä, S. Mönkölä, T. Rossi, A. Penttilä, J. Markkanen and K. Muinonen, Controlled time integration for the numerical simulation of meteor radar reflections. J. Quant. Spectrosc. Radiat. Transf. 178 (2016) 295–305. | DOI

[33] M.D. Sikiric, O. Delgado-Friedrichs and M. Deza, Space fullerenes: a computer search for new Frank-Kasper structures. Acta Crystallogr. Sect. A 66 (2010) 602–615. | DOI | Zbl

[34] A. Stern, Y. Tong, M. Desbrun and J.E. Marsden, Geometric computational electrodynamics with variational integrators and discrete differential forms, in Geometry, Mechanics, and Dynamics. Springer (2015) 437–475. | DOI | MR | Zbl

[35] J.M. Sullivan, The geometry of bubbles and foams. Foams Emuls. (NATO ASI volume E) 354 (1998) 379–402. | MR

[36] A. Taflove, Application of the finite-difference time-domain method to sinusoidal steady state electromagnetic penetration problems. IEEE Trans. Electromagn. Compat. 22 (1980) 191–202. | DOI

[37] A. Taflove and M.E. Brodwin, Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations. IEEE Trans. Microwave Theory Tech. 23 (1975) 623–630. | DOI

[38] A. Taflove and K. Umashankar, Radar cross section of general three-dimensional scatterers. IEEE Trans. Electromagn. Compat. 25 (1983) 433–440. | DOI

[39] W. Thomson, On the division of space with minimum partitional area. Acta Math. 11 (1887) 121–134. | DOI | JFM | MR

[40] E. Tonti, A direct formulation of field laws: the cell method, Comput. Model. Eng. Sci. 2 (2001) 237–258.

[41] E. Tonti, Why starting from differential equations for computational physics? J. Comput. Phys. 257 (2014) 1260–1290. | DOI | MR | Zbl

[42] E. Tonti and F. Zarantonello, Algebraic formulation of elastodynamics: the cell method. Comput. Model. Eng. Sci. 64 (2010) 37–70.

[43] G. Turk and M. Levoy, Zippered polygon meshes from range images, in Proc. of the 21st Annual Conference on Computer Graphics and Interactive Techniques (New York, NY, USA), SIGGRAPH ’94, ACM (1994) 311–318. | DOI

[44] K. Umashankar and A. Taflove, A novel method to analyse electromagnetic scattering of complex object. IEEE Trans. Electromagn. Compat. 24 (1982) 397–405. | DOI

[45] E. Vanderzee, A.N. Hirani and D. Guoy, Triangulation of simple 3D shapes with well-centered tetrahedra, in Proc. of the 17th International Meshing Roundtable (2008) 19–35. | DOI

[46] G.F. Voronoi, Nouvelles applications des paramètres continus à la théorie de formes quadratiques. J. Reine Angew. Math. 133 (1908) 97–178. | DOI | JFM | MR

[47] D. Weaire and R. Phelan, A counter-example to Kelvin’s conjecture on minimal surfaces. Philos. Mag. Lett. 69 (1994) 107–110. | DOI | MR | Zbl

[48] T. Weiland, A discretization method for the solution of Maxwell’s equations for six-component fields. Electron. Commun. AEUE 31 (1977) 116–120.

[49] T. Weiland and R. Schuhmann, Stability of the FDTD algorithm on nonorthogonal grids related to the spatial interpolation scheme. IEEE Trans. Magn. 34 (1998) 2751–2754. | DOI

[50] H. Whitney, Geometric Integration Theory. Princeton University Press, Princeton (1957). | DOI | MR | Zbl

[51] K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14 (1966) 302–307. | DOI | Zbl

[52] S.S. Zivanovic, K.S. Yee and K.K. Mei, A subgridding method for the time-domain finite-difference method to solve Maxwell’s equations. IEEE Trans. Microwave Theory Tech. 39 (1991) 471–479. | DOI

Cité par Sources :