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GENERALIZED WAVE PROPAGATION PROBLEMS AND

DISCRETE EXTERIOR CALCULUSI

Jukka Räbinä*,**, Lauri Kettunen, Sanna Mönkölä
and Tuomo Rossi

Abstract. We introduce a general class of second-order boundary value problems unifying application

areas such as acoustics, electromagnetism, elastodynamics, quantum mechanics, and so on, into a single 
framework. This also enables us to solve wave propagation problems very efficiently with a single 
software system. The solution method precisely follows the conservation laws in finite-dimensional 
systems, whereas the constitutive relations are imposed approximately. We employ discrete exterior 
calculus for the spatial discretization, use natural crystal structures for three-dimensional meshing,
and derive a “discrete Hodge” adapted to harmonic wave. The numerical experiments indicate that
the cumulative pollution error can be practically eliminated in the case of harmonic wave problems.
The restrictions following from the CFL condition can be bypassed with a local time-stepping scheme.
The computational savings are at least one order of magnitude.
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1. Introduction
We present a unifying class of wave propagation problems and a framework to solve such problems in finite 

dimensional spaces. The key properties of the numerical solutions are the exact agreement with conservation 
laws, approximate constitutive relations, and explicit solution processes. The class of wave propagation problems 
covers both the classical and modern fields of physics, such as electromagnetism, sound propagation, elastic 
waves, quantum mechanics, and so on.

The class of wave propagation problems we deal with is characterized by a partial differential equation system:

∂t(Mu) + Du = f + Fu, (1.1)
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Table 1. The correspondence between the choices of u and different field theories in three
dimensions.

Choice of formal sum u Branch of physics

(u0, u1, 0, 0)T or (0, 0, u3, u4)T Acoustics
(0, u1, u2, 0)T Electromagnetism

(u0, u1, u2, 0)T or (0, u1, u2, u3)T Elastodynamics
(u0, u1, u2, u3)T Quantum mechanics

where ∂t is the time differential, M is a positive definite operator, D is the differential (a skew self-adjoint
operator), and u is a formal sum of the scalar and vector fields representing the propagating wave. Function f
is a source term, and Fu represents the power into and out of the system.

In (3 + 1)-dimensions and in terms of classical vector analysis, operators M and D are given by

M =


m0

m1

m2

m3

 , D =


div

grad −curl
curl −grad

−div

 ,

where m0, . . . ,m3 are scalars. The corresponding formal sum u is then given by u = (u0, u1, u2, u3)T , where u0

and u3 are scalar fields and u1 and u2 are vector fields. Consequently, the first column of M and of D operate
on scalar field u0, the second one on vector field u1, and so on.

Many wave propagation problems in physics can now be given as instances of (1.1) by selecting some of the
entries in the formal sum u as null (see Tab. 1; more examples with further details are shown in Sect. 5.)

This class of wave propagation problems is characterized by some common properties. Especially, the multi-
plication of the homogeneous form of equation (1.1) from left by the adjoint u∗ implies 0 = u∗∂t(Mu) + u∗Du =
1
2∂t(u

∗Mu). This is about the conservation of scalar function u∗Mu, which can be interpreted in many cases as
energy conservation.

This framework coincides with R. Picard’s “Mother PDE” suggesting a setting from which a large class of
linear partial differential equations can be inherited [29]. His work offers proofs for the well-posedness, existence,
and uniqueness of solutions.

Our spatial discretization strategy is an extension of generalized Yee-like schemes; that is, finite difference
time domain (FDTD) techniques [36, 51]. Such approaches are also referred to as the finite integration technique
(FIT) [48] or the cell method [40–42].

The discretization process relies on the work presented in [6, 7] recognizing the differentiable and metric
structure. The generalized Yee-like schemes are nowadays known by the name discrete exterior calculus (DEC),
thanks to the intuitive correspondence between the “continuous” and “discrete” models [16, 21, 34]. This is
to say, the counterparts of the differential operators and the so-called Hodge operator are matrices in finite-
dimensional spaces. The matrices representing the differential operators do not depend on the metric, and
hence, they can be recognized as finite-dimensional counterparts of the so-called exterior derivative.

In this paper, we primarily examine time integration schemes, tiling strategies of space, and approximations
of the Hodge operator, which are all critical in coming up with efficient solution methods. This study generalizes
our previous work specialized in electromagnetism [30, 31].

2. Spatial discretization

The cornerstone of spatial discretization is the Stokes theorem; the exterior derivative dw of a differential
form w integrated over an orientable manifold Ω should coincide with the integral of w over the boundary ∂Ω.
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That is, ∫
Ω

dw =

∫
∂Ω

w. (2.1)

To construct a system of equations whose solution approximates the wave problem, first a finite-dimensional
approximation of function u in equation (1.1) is generated with a linear combination of basis functions. That
is, the approximation of u is

∑
i ūiwi, where column vector ū is the finite-dimensional solution and the wi’s

form the set of basis functions. In particular, if ū and the basis functions are chosen such that coefficients ū
correspond with the values of functions at vertices, circulations along edges, fluxes on faces, and with net masses
in volumes, and then the finite-dimensional counterparts of the exterior derivative d and correspondingly of its
metric counterparts grad, curl, and div are obtained by imposing equation (2.1) to hold on all edges, faces, and
volumes of the finite element mesh.

In more detail, let us call the sets of p-cells of an n-dimensional finite element kind of mesh by Cp, p = 0, . . . , n.
In addition, let us assume that each set is indexed by integers and the p-cells cpj ∈ Cp are oriented.

The formal sums
∑
j α

p
j c
p
j , where αpj ∈ R, are called p-chains [50]. The boundary of a (p + 1)-chain is a

p-chain:

∑
j

αpj c
p
j = ∂

(∑
i

αp+1
i cp+1

i

)
.

We are particularly interested in the chains whose real number coefficients α are either ±1 or 0. These are
the chains that are assemblies of the cells of the finite element mesh. Consequently, hereinafter we assume
αpj ∈ {−1, 0, 1}.

The incidence relations between the cells of the finite element mesh can be expressed with so-called incidence
matrices. Let dp be a matrix such that entry dp(i, j) = 0 if cell cpj is not on the boundary of cell cp+1

i , dp(i, j) = 1

if cell cpj is on the boundary of cell cp+1
i and their orientations match, and dp(i, j) = −1 if cell cpj is on the

boundary of cell cp+1
i but their orientations do not match. This implies that the boundary of a (p + 1)-chain

can now be given by

∂

(∑
i

αp+1
i cp+1

i

)
=
∑
i,j

αp+1
i dp(i, j) c

p
j .

This is to say that dp can be interpreted as the discrete counterpart of boundary operator ∂.
A p-cochain maps p-chains to real numbers. Accordingly, the integral of field u on the p-manifold

corresponding with p-chain
∑
j α

p
j c
p
j can be understood as a p-cochain

∑
j α

p
j ūp(j) where ūp(j) =

∫
cpj
u.

The Stokes law implies the derivative of p-cochain can now be given by∑
i,j

αp+1
i dp(i, j) ūp(j) ,

and consequently, in DEC one calls dp the discrete exterior operator and considers ūp as a discrete p-form.
(Be aware, however, they are only finite-dimensional counterparts to the exterior derivative d and differential
forms.) In a three-dimensional metric space, d0, d1, and d2 also correspond to the operators grad, curl, and
div, respectively.

Wave propagation problems contain two partial differential equations. In the DEC approach, a dual pair of a
finite element kind of mesh is exploited, one to each differential equation. Namely, the two meshes are called the
primal and dual meshes. On the discrete level, the skew-symmetric property of D in equation (1.1) is obtained
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Table 2. The correspondence between discrete exterior derivatives and metric-dependent
operators.

On primal mesh Counterpart On dual mesh Counterpart

d0 grad dT0 −div
d1 curl dT1 curl
d2 −div dT2 grad

by associating each p-cell cpj of the primal mesh with the (n − p)-cell cp∗j of the dual mesh. Then the discrete

exterior operator in the dual mesh becomes dTp ; that is, the transpose of dp (see Tab. 2).
In addition to the differential equations, wave problems incorporate material laws, which hold at each ordinary

point of the domain, and hence they are local conditions. In the continuous model, the material laws are in
composition with the Hodge operator. In the linear case, they can be incorporated into the Hodge relation.
Consequently, in DEC, the material laws are typically included in the discrete Hodge operator mapping
primal p-chains onto dual (n− p)-chains [16, 21, 34]. Accordingly, the quality of meshes plays a major role in
the material approximation.

It is desirable that the meshes are interlocked such that the corresponding (supports of) primal and dual
cells intersect near their centers. We would like to emphasize that the cells having common points is not a
necessary condition. To end up with a diagonal discrete Hodge matrix, it is enough to assume the primal and
dual cells are perpendicular to each other. The Delaunay-Voronoi duality is a well-known example of such a pair
of interlocked meshes [1, 14, 27, 46].

Once a pair of dual meshes exists, the following step is to impose the material laws. Let the discrete primal
p-forms and dual (n − p)-forms be denoted by ūp and ūp∗, respectively. In the discrete case, the material law
is of the form ūp∗ = ?pūp, where ?p is a discrete Hodge star. When the mesh grain tends to zero, the so-called
consistency error [7] should vanish. This is achieved if the entries of the discrete Hodge are chosen such that

?p(j, j) =

∫
cp∗j

u∫
cpj
u

=
|cp∗j |
|cpj |

. (2.2)

We call this matrix as a general Hodge approximation.
To sum up, the finite-dimensional counterpart of equation (1.1) is now given by

∂t(Mū) + Dū = f̄ + Fū, (2.3)

where M is a diagonal positive definite matrix and D is a skew-symmetric matrix given by

M =


?0m0

?1m1

?2m2

?3m3

 , D =


−dT0 ?1

?1d0 −dT1 ?2

?2d1 −dT2 ?3

?3d2

 .

Column vectors f̄ and Fū represent the source terms and power transfer in the finite-dimensional case.

2.1. Structured Voronoi-Delaunay grids

The Voronoi-Delaunay mesh generation starts from establishing the primal nodes. For a given set of nodes,
one calculates a Voronoi-diagram using a metric in which the material parameters are isotropic. The cells of
the Voronoi-diagram indicate the partitioning for the dual mesh. The p-cells of the primal mesh are determined
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Figure 1. The primal and dual cells of repetitive two-dimensional tilings.

by associating them with the corresponding (n − p)-cells of the dual mesh. Both primal and dual meshes can
include simplicial and non-simplicial cells. The intersections of (supports of) primal and dual cells locate at the
circumcenters of each primal cells.

The Voronoi-Delaunay process enables both structured and unstructured mesh generation. This paper con-
siders mainly structured grids consisting of homogeneous blocks. The main advantage of such grids is that the
duplication process makes the mesh generation fast and also suitable for parallel computing. Due to recurring
elements, the disadvantages are that the grids hardly adapt for curved and oblique interfaces, and the local
adjustment of element density can be difficult. To overcome this, the different structured grids can be merged
together such that unstructured elements exist only at transition layers. In finite difference approaches, the
Cartesian grids imply non-identical wave propagation speeds in different directions. We consider alternative
structured tilings to eliminate this property.

In two dimensions, we select four different tilings, as illustrated in Figure 1. The first two tilings, the square
and the snub square, are periodic by a 90◦ increment, while the last two, the triangle and the tetrille (also
known as deltoidal trihexagonal tiling [12]), are periodic by a 60◦ increment. The edges of the square and the
triangle tiling have only two and three orientations, respectively. Both the snub square and the tetrille have six
different edge orientations, and thus, we anticipate better matches in propagation speeds in different directions.

In three dimensions, we consider five different tilings based on a cubic lattice (see Fig. 2). The space can be
tiled by such blocks. Thus, the implementation for these structures is, in principle, as simple as for a primitive
cubic structure. A finite difference scheme with the cubic tiling corresponds to the conventional Yee scheme [51].

The face-centered cubic (FCC) and the body-centered cubic (BCC) are the main structures in cubic crystal
systems [11]. They are constructed from a cubic grid by adding a vertex at each face or body center, respectively.
The FCC tiling is composed of alternating regular octahedra and regular tetrahedra at a ratio of 1:2. The dual
body elements are Kepler’s rhombic dodecahedra consisting of 12 congruent rhombic faces [24]. The primal
of the BCC grid is composed of congruent tetrahedra, where each face is a congruent isosceles triangle. The
dual tiling consists of truncated octahedra, each having six square faces and eight regular hexagon faces. This
tessellation is known as the Kelvin structure, first introduced in [39]. Due to its sharp dihedral angles, the BCC
grid is preferred when a finite difference scheme is applied on tetrahedral meshes [5, 45].

To obtain sharper dihedral angles, we recall the concept of tetrahedrally close-packed (TCP) structures
described by Frank and Kasper [20]. Mainly, we consider the A15 and the C15 structures, where the vertex sets
are based on the BCC and the FCC, respectively. The maximum dihedral angles of TCP structures are relatively
sharp compared to the BCC structure, and the smallest maximal angle of 74.20◦ is achieved by C15 [19].
The dual elements of TCP structures are theoretically of good quality, since they include only pentagonal
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Figure 2. The vertex positions and the resulting primal and dual cells in three-dimensional
tilings.

and hexagonal faces, with no adjacent hexagons [35]. Besides, the dual structure of A15 was found to be a
counterexample to Kelvin’s conjecture on minimal surfaces [47]. In modern knowledge, this so-called Weaire-
Phelan structure partitions a three-dimensional space into cells of equal volume with the smallest area of surface
between them [18, 25, 33]. The previous studies indicated relatively isotropic properties when a finite difference
scheme was applied with TCP structures in the application area of electromagnetism [31].

3. Time integration

The solution of equation (2.3) is about time integration. For this, ū and f̄ are considered as indexed families
of column vectors and the kth instances are denoted by uk and fk, respectively. The time differential ∂tū is

approximated with central difference uk+1−uk−1

σ , where σ = 2∆t, and ∆t is the time step size between instances.
The time integration procedure for equation (2.3) becomes

σ−1M(uk+1 − uk−1) + Duk = fk + Fuk. (3.1)

Multiplication from left by M−1σ leads to solution process, where the instance uk+1 is calculated from two
previous instances uk and uk−1. Thus, the time integration method is explicit. If M is diagonal, then this yields
a highly efficient solution method.

In the so-called leapfrog time-stepping procedure, the discrete 0- and 2-forms are differentiated at even time
instances and the discrete 1- and 3-forms at the odd ones. Accordingly, for an even k we write

uk =


uk0
·

uk2
·

 , uk+1 =


·

uk+1
1

·
uk+1

3

 .
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Figure 3. Stability is obtained by avoiding variables to change signs on consequent instances.

The term Fuk is approximated by a sum of two components Fa(uk+1 + uk−1) + Fbu
k, where Fa and Fb are

matrices depending on F such that Fa = ς−1(F − Fb), where ς = 2. If the matrix M − σFa is invertible,1 we
can reformulate equation (3.1) as

uk+1 = uk−1 + (M− σFa)
−1
σ
(
fk + 2Fau

k−1 + (Fb −D)uk
)
. (3.2)

3.1. Conservation of energy

Let Ek be σ−1M(uk+1 − uk−1) + Duk − fk − Fuk; see equation (3.1). We consider the equation(
uk+1 + uk−1

)T
Ek +

(
Ek+1 + Ek−1

)T
uk = 0. This can be expressed as(

uk+1 + uk−1
)T

fk +
(
fk+1 + fk−1

)T

uk +
(
uk+1 + uk−1

)T (
F + FT

)
uk =

P k+1 − P k−1

σ
,

where the terms

P k = (uk)TMuk + (uk+1)TMuk−1 (3.3)

represent discrete energy at instance k. For zero source terms fk = 0 and F = 0, we have P k+1 = P k−1; that
is, perfect conservation of energy.

The stability of the time integration is guaranteed if the components in equation (3.3) are bounded. Thus, we
require a lower bound for (uk+1)TMuk−1. To achieve this, one usually employs the so-called Courant-Friedrichs-
Lewy (CFL) condition [10, 37, 49]. By assuming fk = 0 in equation (3.1), we can write

2uk − uk−2 − uk+2 = M−1σ (D− F)
(
uk+1 + uk−1

)
= M−1σ (D− F)M−1σ (F−D)uk.

In addition, we have

(uk)T (2uk − uk−2 − uk+2)

(uk)Tuk
=

(uk)TM−1(D− F)M−1(F−D)uk

(uk)Tuk
σ2 ≤ χmaxσ

2 ≤ 4χmax∆t2,

where χmax is the largest eigenvalue of the system matrix M−1(D − F)M−1(F −D). The left-hand side is
bounded above by constant C ≤ 4; that is, stability is obtained, if ∆t ≤

√
C/4χmax.

3.2. Local time stepping

According to the CFL condition, the smallest elements of the spatial grid specify the largest possible ∆t,
resulting in stable time integration. If the spatial tiling is locally refined, the usage of a globally uniform (global)
time step size throughout the system can result in inefficient time integration. This motivates locally adaptive
(local) time-stepping schemes.

We consider a simple central difference approach, where the global time step is divided into an odd number
of local time steps [9, 52]. Our algorithms include an automated CFL kind of condition, which can be adapted

1Since M− σFa is a diagonal and positive definite matrix, the inverse is diagonal and the iteration process is highly efficient.
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Figure 4. Even (black) and odd (red) time instances always match when regional time step
sizes are set as ∆t

3i . (color online)

to unstructured spatial discretizations. The method is an expansion of the leapfrog time-stepping strategy, and
it does not require additional computational or memory resources. Alternative local time-stepping strategies
can be found in the literature [13, 17, 23].

For stability, we want
∣∣2ukj − uk−2

j − uk+2
j

∣∣ to be bounded from above by Cumax
j , where umax is a vector

whose components umax
j fulfill |ukj | ≤ umax

j .
Let |A| denote a matrix whose entries are the absolute values of the corresponding entries of A, and |A|j is

a row vector consisting of the jth row of |A|. Let ∆tj be the time step size in the neighborhood of ukj . Without
source terms, equation (3.1) combined with the triangle inequality and σ ≤ 2∆t leads to∣∣2ukj − uk−2

j − uk+2
j | ≤ 4∆t2j |M−1(D− F)M−1(F−D)

∣∣
j
umax.

The stability condition is satisfied if

∆tj ≤

√
Cumax

j

4 |M−1(D− F)M−1(F−D)|j umax
(3.4)

holds.
The choice of umax specifies how the condition is weighted between elements. For example, if the umax is the

eigenvector corresponding to the maximal eigenvalue χmax of
∣∣M−1(D− F)M−1(F−D)

∣∣, then the global CFL

criterion ∆tj ≤
√
C/4χmax is obtained. We choose the vector umax by assigning the same weight to each term

in equation (3.3). Then, a diagonal matrix M implies umax
j = M

−1/2
jj .

We select σ in equations (3.1) and (3.2) such that σj,j = 2∆tj . The local time-stepping technique is explicit,
and the diagonality implies efficiency.

The interfaces between different time step sizes need to be considered carefully because the conservation of
discrete energy, equation (3.3), is slightly violated. Our approach is to set a global maximal time step size ∆t
and divide that locally by sj = 3i, i ∈ N, to obtain local time interval ∆tj = ∆t

sj
. With this strategy, all the even

and odd time instances with regions of larger time step size have matching even and odd instances on regions
of smaller time interval, as illustrated in Figure 4. This seems to maintain the system energy when integrated
over longer time periods, as suggested by the numerical experiments in Sections 5.1 and 5.5.

4. Time-harmonic problems

In the previous sections, we considered wave propagation in the time domain. In the frequency domain,
the source terms f̄ = feiωt generate time-harmonic solutions ū = ueiωt, where ω is the angular frequency. In
this section, we show how the explicit time integration scheme of equation (3.2) can be imbedded into an
iterative algorithm to solve time-harmonic problems. For problems with single angular frequency, we introduce
a time integration scheme by employing σ = 2sinω∆t

ω in equation (3.1), and additionally, ς = 2 cosω∆t in

equation (3.2). For local time stepping, we have diagonal matrices σ and ς with elements σj,j =
2sinω∆tj

ω and
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ςj,j = 2 cosω∆tj . In addition, the consistency error is minimized by taking advantage of the a priori known
properties of time-harmonic waves.

4.1. Efficient iteration methods

It is known that the time-harmonic steady state is reached by integrating a time-dependent equation asymp-
totically in time (the asymptotic approach). This approach is a reasonable choice if the wave propagates without
reflections or if it is reflected by a convex object. Otherwise, the convergence to the time-harmonic state can
be slow. This is why we proceed by generalizing a technique pioneered by Bristeau et al. [8] to discrete exterior
calculus and linear wave equations.

This provides us with a controlled version of the asymptotic approach based on quadratic optimization within
time period 2π

ω . By dividing the time period into T time steps, we see that for a time-harmonic solution, one
has uk+T − uk = 0, where uk is the solution at the kth time step and uk+T is the solution at the (k + T )th
time step (T is an even integer). Since uk+T can be solved with respect to uk from equation (3.2), we can
present the problem as a minimization of the squared M-norm ‖uk+T − uk‖2M = ‖Auk + b‖2M, where A is a
time integration matrix and b represents the source terms and power transfer for a single time period. The
minimization problem is equivalent to a linear system:

Â∗ΛÂ

(
uk

uk+1

)
= −Â∗Λ

T/2∑
i=1

 ∏
(T−2i)/2

B−1C

 (ΛB)−1σ

(
f2i−1

f2i

) , (4.1)

where k is an even integer, Â =
∏
T/2(B−1C) − I, Â∗ is its adjoint operator (also known as backward time

integration), Λ = diag(M,M),

B = I + Λ−1σ

(
ς−1(Fb − F) 0

(D− Fb) ς−1(Fb − F)

)
,

C = I + Λ−1σ

(
ς−1(F− Fb) −(D− Fb)

0 ς−1(F− Fb)

)
,

and I is the identity matrix.
Since equation (4.1) has a symmetric and positive definite coefficient matrix Â∗ΛÂ, we use the conjugate

gradient method for the solution process. To compute the gradient by the adjoint equation technique, each
conjugate gradient iteration step requires integration over one time period with operator Â and integration over
one time period with the adjoint operator Â∗. The computational cost of these time integrations is about the
same. The conjugate gradient iteration is computationally twice as demanding as integration from uk to uk+T .

Another alternative to construct a quadratic optimization problem for time-harmonic solutions is to consider
half of the time period. In this case, ‖uk+T/2 + uk‖2M should be minimized, as shown in Chapter 9 [30]. Only
the first half of the time period is used, and the computational cost of a conjugate gradient iteration is roughly
the same as the computational cost of an asymptotic iteration.

We start the iteration from zero initial values; that is, u0 = 0. To get a smooth initial approximation, the
source terms are not switched on abruptly at t = 0 but smoothly instead. For this, the right-hand side source
terms f̄ are multiplied by

wtr :=

(
2− sin

(
πt

2Ttr

))
sin

(
πt

2Ttr

)
during the transient period 0 ≤ t < Ttr. This technique is called the Mur transition [28]. In numerical exper-
iments, we use a three-stage iteration method. First, the initial condition is computed by the Mur transition.
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Second, the asymptotic iteration is used, and third, the convergence is accelerated by the control realized by
the conjugate gradient algorithm.

4.2. Harmonic Hodge

The discrete Hodge of equation (2.2) is built on the assumption of locally constant fields in the neighbourhood
of the point where the material relation is imposed. In time-harmonic problems, however, it is possible to estimate
a priori how the solution will vary in the vicinity of the point. Next, we derive such an approach to minimize
the consistency error in time harmonic problems. This results in another discrete Hodge matrix, which we call
harmonic Hodge.

The procedure to optimize the discrete Hodge for time-harmonic problems is a least square approach
minimizing the following norm:

‖?pūp(j)− ūp∗(j)‖2 ,

where u is integrated in “all directions” over a unit n-sphere, n = 1, 2, 3. The minimum is when the derivative
vanishes.

In terms of u and its complex conjugate u∗, the jth entry of the diagonal harmonic Hodge is

?p (j, j) =

∫
Ω

(RΩu
∗)p(j) (RΩu)p∗(j) dΩ∫

Ω
(RΩu∗)p(j) (RΩu)p(j) dΩ

, (4.2)

where Ω is a unit n-sphere and RΩ an operator that rotates u while integrating in all directions over Ω.
The time-harmonic solution of a wave at point x is of the form u = eiκκκ·x, where κκκ is the vectorial wave

number. Substituting this back to (4.2) yields

?p(j, j) =
|cp∗j |
|cpj |

1 +
∑

e∈S(∂cpj )

weκ
2r2
e

4 + 2n
−

∑
e∈S(cpj )

weκ
2r2
e

4 + 2n

 + O(κ4r4) , (4.3)

where n is the dimension of space, and the non-negative weights we are proportional volume terms, and hence
they should fulfill condition ∑

e∈S(∂cpj )∪S(cpj )

we = 1.

The other terms in (4.3) are specified as follows: S(∂cpj ) is the set of edges from the circumcenter of cpj to
the circumcenters of the bounding cells of cpj , and S(cpj ) is the set of edges from the circumcenter of cpj to the
circumcenters of the neighboring (p+ 1)-cells. Wave number κ is ‖κκκ‖, and re is the length of edge e (see Fig. 5).

For example, let us consider a two-dimensional triangular grid of edge length h. The primal cell volumes are

|c0j | = 1, |c1j | = h, and |c2j | =
√

3
4 h

2. By ignoring the boundary elements, the dual cell volumes are |c0∗j | =
√

3
2 h

2,

|c1∗j | = 1√
3
h, and |c2∗j | = 1. The effective lengths are re = h

2 for e ∈ S(c0j ) ∪ S(∂c1j ), re = h√
12

for e ∈ S(c1j ) ∪
S(∂c2j ), and re = 0 otherwise. The terms of harmonic Hodge depend on the choice of the weights we. If the

computation does not include discrete 2-forms, we recommend to set we = 0 for e ∈ S(c1j ) ∪ S(∂c2j ). Then

equation (4.3) indicates ?0(j, j) =
√

3
2 h

2
(

1− κ2h2

32

)
and ?1(j, j) = 1√

3

(
1 + κ2h2

32

)
. However, if the computation

ignores 0-forms, we recommend setting we = 0 for e ∈ S(c0j ) ∪ S(∂c1j ). This indicates ?1(j, j) = 1√
3

(
1− κ2h2

96

)
and ?2(j, j) = 4√

3h2

(
1 + κ2h2

96

)
.
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Figure 5. Sets S(∂cpj ) and S(cpj ) of a node (p = 0), an edge (p = 1), a facet (p = 2), and a

volume (p = 3). The edges of S(∂cpj ) to the circumcenters of the bounding cells are shown in

red, and the edges of S(cpj ) to the circumcenters of the neighboring (p+ 1)-cells are shown in

blue. (color online)

5. Numerical experiments

Next, the presented framework is applied to several branches of physics. We consider quantum mechanics
in Section 5.1, linear acoustics in Section 5.3, and electromagnetics in Section 5.4. We also perform numerical
experiments by coupling linear elasticity and linear acoustics in Section 5.5.

The numerical experiments demonstrate versatile finite difference simulations in structured and unstructured
grids. Especially, the applications are designed to indicate the difference between the structured grids described
in Section 2.1, and clarify the advantage of employing harmonic Hodge instead of general Hodge. They also
consider the efficiency of a local time-stepping strategy in comparison to global time stepping by examining the
conservation of energy and the computational costs.

The described algorithms are implemented in C++ programming language, and the parallelization is
applied with a message passing interface (MPI). Similarly to other finite difference approaches, the particular
implementation parallelizes almost perfectly, as our previous studies suggest [32].

5.1. Long-term stability

The full system of equation (1.1), where F = 0, can be expressed as



∂t
c ∂x ∂y ∂z 0 0 0 0

∂x
∂t
c 0 0 0 ∂z −∂y 0

∂y 0 ∂t
c 0 −∂z 0 ∂x 0

∂z 0 0 ∂t
c ∂y −∂x 0 0

0 0 −∂z ∂y
∂t
c 0 0 −∂x

0 ∂z 0 −∂x 0 ∂t
c 0 −∂y

0 −∂y ∂x 0 0 0 ∂t
c −∂z

0 0 0 0 −∂x −∂y −∂z ∂t
c





u0

u1x

u1y

u1z

u2x

u2y

u2z

u3


=



f0

f1x

f1y

f1z

f2x

f2y

f2z

f3


,

where c is the wave speed. One can easily see that the following always holds for complex variables:


∂t
c 0 ∂z ∂x − i∂y
0 ∂t

c ∂x + i∂y −∂z
∂z ∂x − i∂y

∂t
c 0

∂x + i∂y −∂z 0 ∂t
c



u0 + iu2z

iu2x − u2y

u1z − iu3

iu1y + u1x

 =


f0 + if2z

if2x − f2y

f1z − if3

if1y + f1x

 .
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Table 3. Minimal, mean, and maximal element sizes in the unstructured mesh.

Min Mean Max

Primal length 0.010 0.13 0.31
Dual length 4.2e−07 0.043 0.22
Primal area 4.9e−05 0.0061 0.031
Dual area 1.0e−11 0.0037 0.031

Primal volume 2.2e−07 0.00015 0.0015
Dual volume 8.2e−05 0.00097 0.0037

Figure 6. Illustration of the lower half of the random mesh.

We consider the vector on the left-hand side as complex valued wave function ψ, the Weyl spinors. The obtained
Weyl equation with a source term is(

I4
∂t
c

+
∑

µ=x,y,z

(
0 σµ
σµ 0

)
∂µ

)
ψ = f. (5.1)

Here σx, σy, and σz are the Pauli matrices. In quantum mechanics, this relativistic wave equation describes
massless spin-1/2 particles.

In this section, we examine the conservation of u∗Mu. As an example, we solve the Weyl equation in a sphere
of radius R = 2. The mesh was generated by first introducing a structured two-dimensional grid on the boundary
and inserting 30,113 randomly positioned nodes inside the sphere. Any two nodes were not allowed to be closer
than 0.01 away from each other. The resulting unstructured mesh is illustrated in Figure 6, and the element
sizes are listed in Table 3.

At t = 0, we initialize u0 = u1x = u1y = u1z = u2x = u2y = u2z = u3 = sin(2πR). We employ the general
discrete Hodge given in equation (2.2) and integrate in time without any harmonic correction. The time inte-
gration is processed throughout t ∈ [0, 1000] employing global and local time-stepping strategies. The stability
limits were examined using equation (3.4) with different constants C. In the global time stepping, the smallest
local time step is applied in the whole domain. We solve equation (5.1) with f̄ = 0 and specify the discrete
energy with equation (3.3).

As illustrated in Figure 7, the results indicate that the energy conservation holds with global time stepping,
where the stability constant C = 4 is applied. The stability limit is relatively strict, since we observed immediate
dispersion already with constant C = 4.5. The local time-stepping produces a small variation of energy, but we
observe the long-term energy conservation. With stability constants C = 4, C = 3.33, and C = 2, the standard
deviations (SD) of energy are 0.0080, 0.0067, and 0.0033, respectively. These are small measures in comparison
with the average energy level of 132.696.
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Figure 7. Conservation of energy with the local time-stepping technique employing C = 4,
C = 3.33, and C = 2. Exact energy conservation is detected by global time stepping with C = 4.

The simulations were performed with 24 Intel (Xeon) Haswell (E5-2690v3, 64 bits) cores. With local time
stepping, the iteration times per period T = 1 were 0.958, 1.02, and 1.31 s with C = 4, C = 3.33, and C = 2,
respectively. In contrast, the iteration time was 10.3 s with global time stepping with C = 4. Thus, we observed
significant improvement in efficiency by employing local instead of global time stepping. In further experiments,
the stability constant C = 3.33 is employed, if not mentioned otherwise.

5.2. Wave speed error

An error in wave speed generates cumulative phase error into the discrete solution. This error dominates
especially when the domain diameter is large compared to the wavelength. In this section, we examine the error
in wave propagation speed with different Hodge approximations and structured grids. The prototype problem
is

∂t(?pmpūp)− dTp ?p+1 ūp+1 = f̄p + Fpūp, (5.2)

∂t(?p+1mp+1ūp+1) + ?p+1dpūp = f̄p+1 + Fp+1ūp+1,

where p is chosen between 0 and n− 1, and n = 1, 2, 3 is the dimension of the domain.
An n-dimensional domain, n = 1, 2, 3, illustrated in Figure 8, is discretized with various structured grids, as

described in Section 2.1. Each grid is cut by an n-sphere of radius 3, and an absorbing boundary condition is
introduced at the mesh boundary r = 3. In region 2 < r < 3, a matched layer is determined with absorption
terms Fp,j,j = −3(rj −2)?p (j, j), where rj is the radius at the center position of cell cpj . The source terms f̄p and

f̄p+1 are designed to generate a plane wave inside the domain. The matrices mp and mp+1 are identity matrices.
The reference solution is a harmonic plane wave u = u0e

iω(t−x), where ω = 2π is the angular frequency and t and
x are the time and the propagated spatial distance, respectively. The wave propagation speed is c = 1 implying
wavenumber κ = ω/c = 2π, wavelength ` = 2π/κ = 1, and frequency f = c/` = 1. Each simulation is carried out
by 10 periods of Mur transition and 40 periods of asymptotic iteration. At the end of the simulations, we compare
the numerical and the reference solutions inside a region r < 1 and adapt a linear regression curve indicating
phase difference as a function of propagated spatial distance. The relative wave speed error is determined by
the slope of the regression line.

In one dimension, the mesh is a combination of uniform line segments on the x-axis, and the length of
segments is varied between 1

200 and 1
7 . For comparison, the general Hodge of equation (2.2) and the harmonic

Hodge of equation (4.3) with angular wavenumber κk = 2π are applied. The simulated wave speed is found
to be slower than expected (see Fig. 9). The wave speed error is proportional to h2 and h4 with general and
harmonic Hodge, respectively. The polynomial approximation for harmonic Hodge improves the accuracy as the
edge length decreases.
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Figure 8. Two-dimensional illustration of the geometry.

Figure 9. Wave speed error of one-dimensional wave equation (5.2).

Figure 10. Wave speed error of two-dimensional wave equation (5.2), where p = 0 on the left
and p = 1 on the right. The wave propagation angle is varied by 5◦ increments. The solid line
represents error for general Hodge, and the dotted line represents error for harmonic Hodge.

In two dimensions, there are two instances for the wave equation in equation (5.2). That is, p = 0 correspond-
ing with discrete 0- and 1-forms, and p = 1 corresponding with discrete 1- and 2-forms. We examine four grid
types, namely square, snub square, triangle, and tetrille. To compare the computational costs, we scale the grids
to include 300 unknowns per unit area. This means that the edge length of the square grid is 1

10 , and the scale of
other grids depend on p. The wave propagation speed is studied as the propagation angles are increased in five
degree increments. Since the grids are symmetric in several propagation directions (see Sect. 2.1), we restrict
our numerical experiments to 10 propagation directions with square and snub square grids and 7 propagation
directions with triangle and tetrille grids.
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Figure 11. Wave speed error of three-dimensional wave equation (5.2) in 10 propagation
directions. The solid line represents error for general Hodge, and the dotted line represents
error for harmonic Hodge.

The relative wave speed errors are presented in Figure 10. The general Hodge produces on average 1.4%
slower wave propagation speed than expected. The smallest (0.82%) and the largest (2.0%) absolute values of
wave speed errors are obtained with a triangle grid, for p = 1 and p = 0, respectively. The harmonic Hodge
decreases absolute value of the wave speed error on average to 0.007%, but the angular dependency remains. The
largest angular dependency, with a standard deviation of 0.33%, is obtained with square grid, which produces
identical results for p = 0 and p = 1. The smallest angular dependencies (SD< 0.01%) are obtained with tetrille
and triangle grids.

In three dimensions, the wave equation (5.2) includes three instances with p = 0, 1, 2. The five structured
grid types of Figure 2 are employed to fill the spherical domain. The grids are scaled to match the edge length
1
10 of the cubic grid. That includes 4,000, 6,000 and 4,000 unknowns per unit volume for p values 0, 1, and 2,
respectively. The wave speed is measured in 10 wave propagation directions, presented in the top-left corner of
Figure 11. Due to symmetries, these directions pierce the unit sphere at intervals of about 15◦.

The relative wave propagation speed errors are presented in Figure 11. With the general Hodge, the wave
speed is on average 1.2% shorter than expected. The smallest (0.6–0.7%) and largest (2.1%) absolute average
errors are obtained with p = 2 and p = 0, respectively, when tetrahedral grids BCC, A15, and C15 were
employed. In the case of p = 1, the smallest value 0.84% is obtained with the FCC structure. The harmonic
Hodge nearly eliminates the systematic wave speed error and produces a propagation speed that is 0.012% too
slow on average. The largest directional dependency, with a standard deviation of 0.38%, is observed with the
cubic grid, independently of p. The C15 consistently produces the lowest standard deviation (SD < 0.021% for
every p). Other relatively isotropic structures are A15 (SD < 0.093% for all p) and BCC (SD < 0.13% for every
p and especially 0.0046% for p = 2).

5.3. Sound propagation

In this section, we consider the numerical solution of sound propagation with both Hodge approximations
of equations (2.2) and (4.3) and different grids. We concentrate on the pollution effect, which is a phase error
that deteriorates the accuracy of numerical solutions with high frequency. The effect has been studied in several
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Figure 12. Illustration for one-, two-, and three-dimensional meshes with a Cartesian inner
grid.

papers in the finite element context (see, e.g., [2, 3, 22]). The techniques reducing the pollution effect include
higher-order discretizations and optimal test functions [4, 15]. Presumably, minimization of the wave propagation
speed error also decreases the pollution effect. That is, the harmonic Hodge, derived in Section 4.2 and verified
in Section 5.2, is a good candidate to eliminate the pollution error. The number of mesh elements per wavelength
is kept constant.

Sound propagation is modeled by the first order system of the acoustic wave equation as

∂tK
−1p+ div v = 0, (Hooke’s law) (5.3)

∂t ρv + grad p = 0, (Newton’s law)

where p is the pressure, v is the velocity, ρ is the density, and K is the stiffness coefficient. At the discrete level,
it is a special case of equation (5.2), in which the discrete 0-form ū0 and discrete 1-form ū1 are interpreted as
pressure and velocity, respectively. The material parameters are presented by the diagonal matrices m0 = K−1I
and m1 = ρI, where K = 1 and ρ = 1. The exact solution of equation (5.3) in a spherical domain centered at
the origin is

p =
1

r
eiω(t−r), v =

(
1

r
+

1

iωr2

)
eiω(t−r), (5.4)

where r is the distance from the origin and v represents the radial component of velocity. To examine the error
between the numerical solution and the reference solution, a spherical layer with an inner radius of 0.5 and an
outer radius of 2.5 is used as the computational domain. In the center of the domain, a spherical sound emitter
is modeled by boundary conditions satisfying the exact solution of equation (5.4) at r = 0.5, and an absorbing
boundary condition is applied on the outer boundary.

We discretize the problem in one, two, and three dimensions employing mesh structures, as shown in Figure 12.
We vary the inner grid such that all the different structured grids shown in Section 2.1 are tested. Similarly to
previous experiments, the grids are scaled to make the computational costs comparable. The harmonic steady
state results are obtained with 5 periods of Mur transition proceeding with 20f periods of asymptotic iteration,
where f is the frequency.2 The relative error is integrated over the whole domain by comparing the numerical
results to the exact solution elementwise.

In one dimension, the edge lengths h = 1
10 , h = 1

20 , and h = 1
40 are considered. Since we employ a one-

dimensional grid to represent a three-dimensional cone, we modify the Hodge approximations of equations (2.2)
and (4.3) to spherical coordinates by replacing dual volume |cp∗j | with x2

j |c
p∗
j |, where xj is the x-coordinate

of the circumcenter of the cell cpj .
3 The angular wavenumber is κk = 2πf. The relative error of the solution is

2Wave propagates 10 times the distance between inner and outer boundaries.
3The Hodge of the basis vectors in Cartesian and spherical coordinates is not the same.
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Figure 13. Relative error by frequency in one dimension.

Figure 14. Relative error by frequency in two dimensions. The grids include 300 unknowns
per `2.

presented as a function of frequency in Figure 13. The error seems to be of the form h2(a + bf), where a and
b are case-dependent constants. The magnitude of the pollution effect is measured by b. We find that with the
general Hodge, the pollution effect is of magnitude b = 12 ± 1, while with the harmonic Hodge, the pollution
effect seems to be b = (3.6 ± 0.4)h2. This confirms the assumption that the pollution effect correlates to the
propagation speed error.

The two-dimensional cylindral symmetric domain is a 90◦ sector of a disc. In this case, the dual volume
|cp∗j | in the Hodge approximations has to be replaced with (xj + yj)|cp∗j |, where xj and yj are the circumcenter
coordinates of the cell cpj . Due to the symmetries, the boundaries inside 0.5 < r < 2.5 are made to realize the
condition, where the normal component of the velocity is zero. The pollution effects for different grid structures
and Hodge approximations are illustrated in Figure 14. With general Hodge, the relative error increases rapidly
when the frequency is increased. Applying a linear regression curve indicates that the pollution effect is of the
magnitude b = 11± 2. With harmonic Hodge, the pollution effect seems to be much smaller. The value of b is 2
and 0.6 for the square and the snub square tilings, respectively, and b < 0.01 with the triangle and the tetrille
grids.

In three dimensions, we consider two approaches for linear acoustics obtained by setting p = 0 and p = 2 in
equation (5.2). The latter approach operates with discrete 2- and 3-forms and corresponds to equation (5.3)
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Figure 15. Relative error by frequency in three dimensions employing equation (5.2) with
p = 0 (on the left) and p = 2 (on the right). The grids include 4 000 unknowns per `3.

when ū2 and ū3 are interpreted as velocity and negative pressure, respectively. The material laws are included
in the diagonal matrices m2 = ρI and m3 = K−1I.

The discretization covers one-eighth of a hollow sphere. On the boundaries inside 0.5 < r < 2.5, the normal
component of the velocity is set to zero. The resulting relative errors are illustrated in Figure 15. A relatively
heavy pollution effect is observed, when the general Hodge is applied. Almost independently of p, the pollution
term for the cubic grid is b = 7.2 ± 0.4. The highest (b = 14 ± 1) and lowest (b = 3.2 ± 0.4) pollution effects
are obtained with tetrahedral grids when p = 0 and p = 2, respectively. With the harmonic Hodge, the smallest
pollution effect is obtained with the C15 grid (b < 0.01). The A15 and the BCC grids also produce a relatively
small pollution effect (b = 0.12 ± 0.02) when p = 2. The highest value of b is obtained with the cubic grid
(b = 2.0± 0.1). It is also worth mentioning that for low frequencies, the cubic grid seems to produce the most
accurate results, a = 2.7 ± 0.1. In contrast, the tetrahedral grids yield a = 5.7 ± 0.3 and a = 13 ± 2 on p = 0
and p = 2, respectively.

The conclusion is that the pollution effect can be eliminated almost completely when high-quality structured
grids are applied with harmonic Hodge approximation. We observed no remarkable pollution effect with the
C15 grid when the free distance in the domain was scaled up to 32 wavelengths. In two dimensions, the triangle
and the tetrille grids succeed in eliminating the pollution effect up to 128 wavelengths of free distance.

5.4. Electromagnetic scattering

Electromagnetic waves satisfy

∂tεe− curlh = 0, (Ampère’s law)

∂tµh+ curl e = 0. (Faraday’s law)

The discrete counterpart of this is equation (5.2) with p = 1. Two alternative interpretations are possible. One
may understand the 1-form ū1 as the counterpart of the electric field and introduce m1 = εI and m2 = µI.
Also, one may consider ū1 as the magnetic field strength and introduce m1 = µI and m2 = εI.

Let us examine a scattering from 1,000 spherical particles packed into a spherical domain with a radius of
4.7898 and a packing density of 20%. The particle radius is 0.28011, and the permittivity inside the particles
is ε = 2.25. Elsewhere, permittivity is set to ε = 1. Permeability is µ = 1 in the whole domain. The particle

cluster is exposed by a plane wave with wavelength ` = 1 propagating in directions (0, 0, 1),
√

1
2 (1, 1, 0), and

−
√

1
3 (1, 1, 1), as shown in Figure 16.
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Figure 16. A convex structured grid with 26 intersecting planes employing the C15 grid with
6,000 unknowns per unit volume. Particles and the absorbing layer are marked by red. (color
online)

We employ a convex structured mesh in the solution process. The mesh generation process, which is paral-
lelized by MPI, intersects the desired grid by 26 planes and surrounds it by a layer, which is suitable for the
demands of a 0.7 thick perfectly matched layer (PML). The particle positions are imported in element flags
during the mesh-generation process.

The scattered wave is obtained by subtracting the incident plane wave from the solution. The iteration
process includes 5 periods of Mur transition, 60 periods of asymptotic iteration, and 30 control iterations. As a
result, we obtain a near field solution on the inner interface of the PML. The far-field solution and the Muller
matrices are computed using a near-to-far-field transformation presented in [38, 44]. To obtain the averaged
Muller matrix, we solve the problem using two orthogonal linear polarizations. From the solutions, the averaged
Muller matrix is calculated using 128 polarization planes for different angles φ.

We use the five three-dimensional grids shown in Figure 2. In each case, we choose namely 10, 14, and 20
elements per wavelength. The discretization levels are scaled to include 6 000, 16 464, and 48 000 unknowns
per unit volume. The reference result is computed with the C15 grid and harmonic Hodge. The reference task
includes 50 elements per wavelength; that is, 750 000 unknowns per unit volume and 700 million unknowns in
total. We compute two solutions by including the material variation on m1 and m2 and take the average of
Muller matrices as the reference. The first components of the reference matrices are illustrated in Figure 17. We
denote a single orientation of averaged Muller matrix by Sref

i and compute the relative Muller matrix error by

e =

√√√√√√
∫ π

0
sin θ

∑
i,j,k

(
Si,j,k − Sref

i,j,k

)2

dθ∫ π
0

sin θ
∑
i,j,k

(
Sref
i,j,k

)2

dθ
.

In both cases, the relative error is approximately 0.2%, indicating good accuracy.
The results in Figure 18 demonstrate that the error decreases in relation to h2. With the general Hodge

approximation, the errors are relatively large, and no significant differences are observed between grid types.
The smallest error is obtained with the FCC grid, and the error is about 7% smaller than the average of the
errors obtained with other grids. The harmonic Hodge eliminates the systematic propagation speed error. The
grid “anisotropy” becomes the most significant error source. The cubic and the FCC grids produce the largest
errors. The BCC (surprisingly not the C15) seems to offer the best accuracy. It has possibly a better alignment
for corresponding primal and dual elements.

Applying material variation on faces instead of edges seems to improve the averaged accuracy by a small
margin. Particularly, the best accuracy is obtained by employing the BCC grid with a material variation on
m2. One possible explanation is that m2 include more degrees of freedom than m1 because the number of faces
is about 1.7 times larger than the number of edges on tetrahedral grids. Nevertheless, all the details of the
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Figure 17. First components of averaged Muller matrices for three propagation directions.

Figure 18. Relative error of Muller matrix by varying grid type, Hodge approximation, mesh
element size, and the placement of material variation.

results cannot be explained by this property. The fact that the elements do not adapt particle surfaces may
cause a loss of accuracy. For example, if the elements are larger than a distance between the particles, then the
finite-dimensional model does not capture the problem to be modeled.

In conclusion, this numerical experiment indicates that the harmonic Hodge can certainly improve the simula-
tion accuracy in comparison to the general Hodge, especially with tetrahedral meshes, where the error decreased
to one-tenth. This means that the same accuracy is obtained for one-hundredth of the computational cost. If
the domain size or the frequency increases, the difference of the two Hodge approximations is also expected to
increase due to the pollution effect.

5.5. A coupled problem of linear elasticity and acoustics

The propagation of elastodynamic waves in isotropic media can be written by

∂tK
−1p+ div v = 0,

∂tρv + grad p+ curlw = 0, (5.5)

∂tµ
−1w − curl v = 0,

where K = (λ+2µ) is the stiffness coefficient presented as functions of the Lamé parameters µ and λ, and ρ is the

material density [26]. This is equivalent to the second-order elastodynamic wave equation ρ∂
2u
∂t2 − gradKdiv u+
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Figure 19. Velocity is illustrated by relocating vertex positions on the object surface by 2-
form. The contours represent the zero velocity. A cross section of 3-form at y = 0 visualizes the
pressure generated by elastic vibration.

curlµ curlu = 0, where u is the displacement vector. The spatially discretized version of equation (5.5) is

∂t(?1m1ū1)− dT1 ?2 ū2 = f̄1 + F1ū1,

∂t(?2m2ū2) + ?2d1ū1 − dT2 ?3 ū3 = f̄2 + F2ū2, (5.6)

∂t(?3m3ū3) + ?3d2ū2 = f̄3 + F3ū3,

where the discrete forms ū1, ū2, and ū3 represent the terms w, v, and −p, respectively. The material matrices
are m1 = µ−1I, m2 = ρI, and m3 = K−1I.

We solve the propagation of elastic waves in a standard three-dimensional object called the Stanford
bunny [43]. The public domain surface mesh is first modified such that each surface 2-cell includes its cir-
cumcenter. The bunny is then scaled and positioned such that the length, width, and height are 3.11,
2.41, and 3.08, respectively, and the vertex positions (x, y, z)T belong to the intervals x ∈ [−1.22, 1.89],
y ∈ [−1.24, 1.17], and z ∈ [−0.33, 2.75]. The surface mesh is embedded inside a cubic tiling, generated on interval
[−2.3, 2.9]× [−2.3, 2.2]× [−1.4, 3.8] with edge length h = 1

20 . The bottom of the bunny surface at z < −0.2 is
attached to the ground by the boundary condition:

u2 =

{
(z + 0.2) sin(2πt)(1, 0,−1)T , t < 1,

0, t ≥ 1.

The time integration proceeds from t = 0 to t = 200.
We solve two different cases. First, we eliminate the external domain outside the bunny and consider elastic

waves inside the object. The perfectly reflecting boundary condition, where f̄p = 0 and Fp = 0, is applied on
the surface at z ≥ −0.2. The material parameters µ = 1, ρ = 1, and K = 4 are employed. This implies that the
longitudinal and the lateral waves propagate with wave speeds of 2 and 1, respectively. In equation (4.3), we
have κk = 2π, κk = 1.5π, and κk = π for ?1, ?2, and ?3, respectively.

In the second case, a coupled acoustic wave equation is solved in the external domain outside the bunny.
The acoustic problem is obtained by neglecting ū1 from the elastodynamic equation (5.6). On the interface,
the continuity of the normal velocity is naturally imposed. On the acoustic part, the material parameters are
ρ = 0.01 and K = 0.0025. This corresponds with an acoustic wave speed 0.5. Thus, κj = 4π is selected for the
discrete Hodge equation (4.3). To absorb the outgoing wave, we employ a PML with a thickness of 0.5 on the
external boundary.
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Figure 20. Conservation of energy.

Figure 19 illustrates the time evolution of the coupled problem. The first longitudinal wave arrives on top of
the bunny back at t = 1.1, and the first lateral wave reaches the top of the head at t = 2.8. The domain is filled
with waves at t = 20.

The simulations are performed with a local time-stepping strategy on 24 Intel Haswell computing cores at
2.6 GHz. The evolution of discrete elastic energy, as given in equation (3.3), is illustrated in Figure 20. In a
purely elastic test, the elastic energy remains constant. The iteration time is 2.2 s for period T = 1. In contrast,
that is 29 times faster than the iteration with a global time-stepping strategy, which evidently struggles with a
few unstructured elements near the boundary. In the coupled problem, the elastic energy decreases exponentially
due to the transformation into acoustic energy, which is absorbed into the PML. The iteration time is 5.6 s,
which is 82 times faster than we observe with the global time-stepping strategy.

6. Conclusions

In this paper, we introduce a general class of linear wave propagation problems having a wide application area
in classical and quantum physics. This class lends itself to so-called discrete exterior calculus and to generalized
finite difference kinds of explicit solution schemes.

A key property of the finite-dimensional solution process is the precise fulfillment of conservation laws. Wave
propagation problems incorporate two differential equations, and in both cases, the exterior derivate is imposed
in the strong sense. For this reason, for instance, energy is also conserved in the finite-dimensional case. This is
also demonstrated and verified by numerical experiments.

Finite difference methods usually include what is called a pollution effect. As the wave does not propagate with
the same speed in all directions, the pollution effect increases the numerical error, especially when the problem
is integrated over a long time interval. Our numerical experiments suggest, however, that the pollution effect can
be practically eliminated by choosing an appropriate spatial grid consisting of regular blocks mimicking natural
crystal structures and by adapting the discrete Hodge to the frequency on which the wave problem is fed. We
use the term “harmonic Hodge” for such adapted matrices representing the Hodge operator in finite-dimensional
spaces.

The numerical experiments in this paper cover linear acoustics, electromagnetism, coupled elasticity and
acoustics, and the Weyl equation.
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[31] J. Räbinä, S. Mönkölä and T. Rossi, Efficient time integration of Maxwell’s equations by generalized finite-differences. SIAM
J. Sci. Comput. 37 (2015) B834–B854.
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