Quadratic convergence of Levenberg-Marquardt method for elliptic and parabolic inverse robin problems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 3, pp. 1085-1107.

We study the Levenberg-Marquardt (L-M) method for solving the highly nonlinear and ill-posed inverse problem of identifying the Robin coefficients in elliptic and parabolic systems. The L-M method transforms the Tikhonov regularized nonlinear non-convex minimizations into convex minimizations. And the quadratic convergence of the L-M method is rigorously established for the nonlinear elliptic and parabolic inverse problems for the first time, under a simple novel adaptive strategy for selecting regularization parameters during the L-M iteration. Then the surrogate functional approach is adopted to solve the strongly ill-conditioned convex minimizations, resulting in an explicit solution of the minimisation at each L-M iteration for both the elliptic and parabolic cases. Numerical experiments are provided to demonstrate the accuracy, efficiency and quadratic convergence of the methods.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2018016
Classification : 31A25, 65M12, 90C25
Mots clés : Inverse Robin problems, Levenberg-Marquardt method, surrogate functional.
Jiang, Daijun 1 ; Feng, Hui 1 ; Zou, Jun 1

1
@article{M2AN_2018__52_3_1085_0,
     author = {Jiang, Daijun and Feng, Hui and Zou, Jun},
     title = {Quadratic convergence of {Levenberg-Marquardt} method for elliptic and parabolic inverse robin problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1085--1107},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {3},
     year = {2018},
     doi = {10.1051/m2an/2018016},
     mrnumber = {3865559},
     zbl = {1404.35174},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2018016/}
}
TY  - JOUR
AU  - Jiang, Daijun
AU  - Feng, Hui
AU  - Zou, Jun
TI  - Quadratic convergence of Levenberg-Marquardt method for elliptic and parabolic inverse robin problems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 1085
EP  - 1107
VL  - 52
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2018016/
DO  - 10.1051/m2an/2018016
LA  - en
ID  - M2AN_2018__52_3_1085_0
ER  - 
%0 Journal Article
%A Jiang, Daijun
%A Feng, Hui
%A Zou, Jun
%T Quadratic convergence of Levenberg-Marquardt method for elliptic and parabolic inverse robin problems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 1085-1107
%V 52
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2018016/
%R 10.1051/m2an/2018016
%G en
%F M2AN_2018__52_3_1085_0
Jiang, Daijun; Feng, Hui; Zou, Jun. Quadratic convergence of Levenberg-Marquardt method for elliptic and parabolic inverse robin problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 3, pp. 1085-1107. doi : 10.1051/m2an/2018016. http://www.numdam.org/articles/10.1051/m2an/2018016/

[1] G. Alessandrini and S. Vessella, Lipschitz stability for the inverse conductivity problem. Adv. Appl. Math. 35 (2005) 207–241. | DOI | MR | Zbl

[2] H.T. Banks and K. Kunisch, Estimation Techniques for Distributed Parameter Systems, Birkhauser. Boston (1989). | DOI | MR | Zbl

[3] E. Beretta, M. De Hoop and L. Qiu, Lipschitz stability of an inverse boundary value problem for a Schrodinger-type equation. SIAM J. Math. Anal. 45 (2013) 679–699. | DOI | MR | Zbl

[4] S. Chaabane, J. Ferchichi and K. Kunisch, Differentiability properties of the L1-tracking functional and application to the Robin inverse problem. Inverse Problems 20 (2004) 1083–1097. | DOI | MR | Zbl

[5] S. Chaabane and M. Jaoua, Identification of Robin coefficients by the means of boundary measurements. Inverse Problems 15 (1999) 1425–1438. | DOI | MR | Zbl

[6] M. Choulli, An inverse problem in corrosion detection: stability estimates. J. Inverse Ill-posed Prob. 12 (2004), 349–367. | DOI | MR | Zbl

[7] I. Daubechies, M. Defrise and C. Demol, An iterative thresholding algorithm for linear inverse problems. Commun. Pure Appl. Math. 57 (2004) 1413–1457. | DOI | MR | Zbl

[8] A. El Badia, A. El Hajj, M. Jazar and H. Moustafa, Lipschitz stability estimates for an inverse source problem in an elliptic equation from interior measurements. Appl. Anal. 95 (2016) 1873–1890. | DOI | MR | Zbl

[9] J.Y. Fan and Y.X. Yuan, On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption. Computing 74 (2005) 23–39. | DOI | MR | Zbl

[10] W. Fang and M. Lu, A fast collocation method for an inverse boundary value problem. Int. J. Numer. Methods Eng. 59 (2004) 1563–1585. | DOI | MR | Zbl

[11] R. Gaburro and Eva Sincich, Lipschitz stability for the inverse conductivity problem for a conformal class of anisotropic conductivities. Inverse Problems 31 (2015) 015008–015026. | DOI | MR | Zbl

[12] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman Advanced Publishing Program, Boston (1985). | MR | Zbl

[13] M. Hanke, A regularization Levenberg-Marquardt scheme, with applications to inverse groundwater filtration problems. Inverse Problems 13 (1997) 79–95 | DOI | MR | Zbl

[14] O.Y. Imanuvilov and M. Yamamoto, Lipschitz stability in inverse parabolic problems by the Carleman estimate. Inverse Problems14 (1998) 1229–1245. | DOI | MR | Zbl

[15] G. Inglese, An inverse problem in corrosion detection. Inverse Problems 13 (1997) 977–94. | DOI | MR | Zbl

[16] V. Isakov, Inverse Problems for Partial Differential Equations, 2nd edn. Springer, NY (2006). | MR | Zbl

[17] D. Jiang and J. Zou, Local Lipschitz stability for inverse Robin problems in elliptic and parabolic systems. Preprint arXiv: (2016). | arXiv

[18] B. Jin, Conjugate gradient method for the Robin inverse problem associated with the Laplace equation. Int. J. Numer. Methods Eng. 71 (2007) 433–53. | DOI | MR | Zbl

[19] B. Jin and X. Lu, Numerical identification of a Robin coefficient in parabolic problems. Math. Comput. 81 (2012) 1369–98. | DOI | MR | Zbl

[20] B. Jin and J. Zou, Numerical estimation of the Robin coefficient in a stationary diffusion equation. IMA J. Numer. Anal. 30 (2010) 677–701. | DOI | MR | Zbl

[21] M. Klibanov, Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems. J. Inverse Ill-Posed Prob. 21 (2013) 477–560. | DOI | MR | Zbl

[22] M. Klibanov and S. Pamyatnykh, Lipschitz stability of a non-standard problem for the non-stationary transport equation via a Carleman estimate. Inverse Problems 22 (2006) 881–90. | DOI | MR | Zbl

[23] K. Levenberg, A method for the solution of certain nonlinear problems in least squares. Quart. Appl. Math. 2 (1944) 164–6. | DOI | MR | Zbl

[24] J.L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications II. Springer-Verlag Berlin, Heidelberg, NY (1972). | Zbl

[25] M. Machida and M. Yamamoto, Global Lipschitz stability in determining coefficients of the radiative transport equation. Inverse Problems 30 (2014) 035010. | DOI | MR | Zbl

[26] D.W. Marquardt, An algorithm for least-squares estimation of nonlinear inequalities SIAM J. Appl. Math. 11 (1963) 431–41. | DOI | MR | Zbl

[27] A.M. Osman and J.V. Beck, Nonlinear inverse problem for the estimation of time-and-space dependent heat transfer coefficients. J. Thermophys. Heat Transf. 3 (1989) 146–52. | DOI

[28] E. Sincich, Lipschitz stability for the inverse Robin problem. Inverse Problems 23 (2007) 1311–26. | DOI | MR | Zbl

[29] M. Yamamoto and J. Zou, Simultaneous reconstruction of the initial temperature and heat radiative coefficient. Inverse Problems 17 (2001) 1181–202. | DOI | MR | Zbl

[30] N. Yamashita and M. Fukushima, On the rate of convergence of the Levenberg-Marquardt method. Computing 15 (2001) 237–249. | MR | Zbl

[31] G.H. Yuan and M. Yamamoto, Lipschitz stability in the determination of the principal part of a parabolic equation. ESAIM: COCV 15 (2009) | Numdam | MR | Zbl

Cité par Sources :