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QUADRATIC CONVERGENCE OF LEVENBERG-MARQUARDT

METHOD FOR ELLIPTIC AND PARABOLIC INVERSE ROBIN

PROBLEMS

Daijun Jiang1,∗, Hui Feng2,∗∗ and Jun Zou3,∗∗∗,∗∗∗∗

Abstract. We study the Levenberg-Marquardt (L-M) method for solving the highly nonlinear and
ill-posed inverse problem of identifying the Robin coefficients in elliptic and parabolic systems. The
L-M method transforms the Tikhonov regularized nonlinear non-convex minimizations into convex
minimizations. And the quadratic convergence of the L-M method is rigorously established for the
nonlinear elliptic and parabolic inverse problems for the first time, under a simple novel adaptive
strategy for selecting regularization parameters during the L-M iteration. Then the surrogate functional
approach is adopted to solve the strongly ill-conditioned convex minimizations, resulting in an explicit
solution of the minimisation at each L-M iteration for both the elliptic and parabolic cases. Numerical
experiments are provided to demonstrate the accuracy, efficiency and quadratic convergence of the
methods.
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1. Introduction

We are concerned in this work with the determination of the Robin coefficient in both stationary elliptic
and time-dependent parabolic systems from noisy measurement data on a partial boundary. This is a highly
nonlinear and ill-posed inverse problem and arises in many applications of practical importance. The Robin
coefficient may characterize the thermal properties of conductive materials on the interface or certain physical
processes near the boundary, e.g., it represents the corrosion damage profile in corrosion detection [10, 15], and
indicates the thermal property in quenching processes [27].

For the description of the model problems that are considered in this work, we let Ω ⊂ Rd (d ≤ 3) be an
open bounded and connected domain, with a C2-smooth boundary ∂Ω, which consists of two relatively smooth
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disjointed parts Γi and Γa, i.e., ∂Ω = Γi ∪ Γa. Γi and Γa are respectively the part of the boundary that is
inaccessible and accessible to experimental measurements. Then we shall consider the inverse Robin problems
associated with the elliptic boundary value problem

−∇ · (a(x)∇u) + c(x)u = f(x) in Ω ,

a(x) ∂u∂n + γ(x)u = g(x) on Γi ,

a(x) ∂u∂n = h(x) on Γa ,

(1.1)

and the parabolic initial boundary value problem
∂tu−∇ · (a(x)∇u) = f(x, t) in Ω × [0, T ] ,

a(x) ∂u∂n + γ(x)u = g(x, t) on Γi × [0, T ] ,

a(x) ∂u∂n = h(x, t) on Γa × [0, T ] ,

u(x, 0) = u0(x) in Ω .

(1.2)

The coefficients a(x) and c(x) are the heat conductivity and radiative coefficient, satisfying that a ≤ a(x) ≤ ā
and c ≤ c(x) ≤ c̄ in Ω, where a, ā and c, c̄ are positive constants. Functions f , g and h are the source strength,
ambient temperature and heat flux respectively. Both coefficients γ(x) in (1.1) and (1.2) represent the Robin
coefficients, which will be the focus of our interest and is assumed to stay in the following feasible constraint
set:

K :=
{
γ ∈ L2(Γi); 0 < γ1 ≤ γ(x) ≤ γ2 a.e. on Γi

}
,

where γ1 and γ2 are two positive constants. For convenience, we often write the solutions of the systems (1.1)
and (1.2) as u(γ) to emphasize their dependence on the Robin coefficient γ.

We are now ready to formulate the inverse problems of our interest in this work.

Elliptic Inverse Robin Problem: recover the Robin coefficient γ(x) in (1.1) on the inaccessible part Γi
from the measurable data z of u on the accessible part Γa.

Parabolic inverse Robin problem: recover the Robin coefficient γ(x) in (1.2) on the inaccessible part Γi
from the measurable data z of u on the accessible part Γa over the time period [0, T ].

Inverse problems are generally ill-posed, namely at least one of the three criteria for well-posedness, i.e.,
the existence, uniqueness and stability, is violated [2]. Like most inverse problems, the inverse Robin problems
are usually ill-posed, since there exists always noise in the measurable data zδ of the forward solution u. In
view of the measurement noise, the data zδ may not have any desired regularity, hence the existence and
stability do not hold generally for inverse Robin problems. However, these inverse problems may be well-posed
under some restrictive conditions on the given data and the constraint set of the feasible Robin coefficients;
see Section 2.3. The inverse Robin problems have been widely studied in literatures; see [4, 10, 18–20] and
the references therein. The Gauss-Newton method was applied in [10] to solve the least-squares formulation
of the elliptic inverse Robin problem, but with no consideration of regularizations. An L1-tracking functional
approach was suggested for the elliptic inverse Robin problem in [4]. Effectiveness and justifications of least-
squares formulations with regularizations were analysed in [18–20] for the Robin inverse problems, and some
iterative methods were applied to solve the resulting nonlinear least-squares minimizations. However, we may
observe a common feature of these existing methods, which solve directly the nonlinear optimizations resulting
from least-squares formulations with regularisations, but these optimisation problems are highly non-convex as
the forward solution u(γ) is nonlinear with respect to γ, and strongly unstable at discrete level with fine mesh
sizes and time step sizes due to the severe ill-posedness of the inverse problems and the fact that noise is always
present in the observation data.
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In order to alleviate the effects of these drawbacks, we shall apply the L-M iterative method [9, 13, 23, 26,
30] to solve the nonlinear optimizations resulting from least-squares formulations with regularisations for the
concerned inverse Robin problems. With the L-M method, we need only to solve a convex optimization at each
iteration. Furthermore, in combination with the surrogate functional technique, we will not require the solution
of any optimisation problems in each iteration as the minimisers can be computed explicitly. Another important
novelty of this work is its establishment of the quadratic rate of convergence of the L-M method for both the
elliptic and parabolic inverse Robin problems. This appears to be the first time in literature to demonstrate
the quadratic convergence of the L-M method for a highly nonlinear ill-posed inverse problem. Compared with
general optimal control problems or general direct nonlinear optimisation systems, the analysis on the quadratic
rate of convergence of the L-M method here is much more delicate and tricky, due to the severe ill-posedness,
high nonlinearity and strong instability of the current inverse problems and the direct effect on the convergence
from two crucial parameters involved, namely the regularization parameter and the noise level in the data.

The rest of the paper is organized as follows. In Section 2, we present the well-posedness of the forward
solutions to the considered elliptic and parabolic systems and discuss the uniqueness and stability of the elliptic
and parabolic inverse Robin problems. In Sections 3 and 4, we formulate the Tikhonov regularizations for the
nonlinear elliptic and parabolic inverse Robin problem respectively and study some mathematical properties of
the resulting nonlinear optimisations. In Sections 3.1 and 4.1, Fréchet derivatives of the forward solution of (1.1)
and (1.2) and corresponding adjoint operators are derived respectively. In Sections 3.2 and 4.2, the L-M iterative
methods are formulated and their quadratic convergences are established. The surrogate functional approach is
applied in Sections 3.3 and 4.3 to solve the convex minimization at each L-M iteration for the nonlinear elliptic
and parabolic inverse Robin problem respectively. Several numerical experiments are presented in Section 5 to
illustrate the efficiency, accuracy and quadratic convergence of the proposed methods. Some concluding remarks
are given in Section 6.

Throughout this work, C is often used for a generic positive constant. We shall use the symbol 〈·, ·〉 for the
general inner product, and write the norms of the spaces Hm(Ω), L2(Ω), H1/2(Γ ) and L2(Γ ) (for some Γ ⊂ ∂Ω)
respectively as ‖ · ‖m,Ω , ‖ · ‖Ω , ‖ · ‖1/2,Γ and ‖ · ‖Γ . For any γ∗ ∈ K, we shall frequently use its neighborhood
of γ∗ with radius b > 0 on Γi:

N(γ∗, b) = {γ ∈ K; ‖γ − γ∗‖Γi ≤ b}. (1.3)

2. Well-posedness of the forward solutions and uniqueness of
the inverse Robin problems

In this section, we shall present two preliminary lemmas for recalling the classical well-posedness of the
forward solutions u to the elliptic and parabolic systems (1.1) and (1.2), then demonstrate and discuss the
uniqueness and stability of the corresponding inverse Robin problems.

2.1. Well-posedness of the forward problems

We first introduce the following two well-posedness results, which can be found, e.g., [12] (Thms. 2.4.1.3 and
2.4.2.6) for the elliptic system (1.1), and [24] (Thm. 6.2) for the parabolic system (1.2), for an open bounded
and connected domain with C2-boundary. The domain was assumed to be C∞-smooth in [24], but it is not
essential, and C2-smoothness is sufficient with some natural modifications of the arguments.

Lemma 2.1. Assume that a(x) ∈ C1(Ω̄) and c(x) ∈ L∞(Ω), both with a positive lower bound, and γ(x) ∈ K,

f(x) ∈ L2(Ω), g(x) ∈ H 1
2 (Γi) and h(x) ∈ H 1

2 (Γa). Then there exists a unique solution u ∈ H2(Ω) to the system
(1.1) with the estimate

‖u‖2,Ω ≤ C(‖f‖Ω + ‖g‖ 1
2 ,Γi

+ ‖h‖ 1
2 ,Γa

). (2.1)
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Lemma 2.2. Assume that a(x) ∈ C1(Ω̄) with a positive lower bound, γ(x) ∈ K, f(x, t) ∈ L2(0, T ;L2(Ω)),

g(x, t) ∈ L2(0, T ;H
1
2 (Γi)) ∩ H

1
4 (0, T ;L2(Γi)), h(x, t) ∈ L2(0, T ;H

1
2 (Γa)) ∩ H 1

4 (0, T ;L2(Γa)) and u0(x) ∈
H1(Ω). Then there exists a unique solution u ∈ L2(0, T ;H2(Ω)) ∩ H1(0, T ;L2(Ω)) to the system (1.2) with
the estimate:

‖u‖L2(0,T ;H2(Ω)) + ‖u‖H1(0,T ;L2(Ω)) ≤ C(‖f‖L2(0,T ;L2(Ω)) + ‖g‖
L2(0,T ;H

1
2 (Γi))

+ ‖g‖
H

1
4 (0,T ;L2(Γi))

+‖h‖
L2(0,T ;H

1
2 (Γa))

+ ‖h‖
H

1
4 (0,T ;L2(Γa))

+ ‖u0‖1,Ω). (2.2)

2.2. Uniqueness of the inverse Robin problems

We first study the uniqueness of the elliptic inverse Robin problem.

Theorem 2.3. Let γ1 and γ2 be two solutions to the elliptic inverse Robin problem as stated in Section 1.
Furthermore, we assume that meas({x ∈ Γi; u(x) = 0}) = 0 where u is the solution to the forward system (1.1),
then γ1 = γ2 almost everywhere on Γi.

Proof. It is straightforward to verify using (1.1) that u(γ1)− u(γ2) satisfies
−∇ · (a(x)∇(u(γ1)− u(γ2))) + c(x)(u(γ1)− u(γ2)) = 0 in Ω ,

a(x)∂(u(γ1)−u(γ2))
∂n = 0 on Γa ,

u(γ1)− u(γ2) = 0 on Γa ,

(2.3)

and on the boundary Γi,

a(x)
∂(u(γ1)− u(γ2))

∂n
+ γ1u(γ1)− γ2u(γ2) = 0. (2.4)

The unique continuation principle [16] implies that u(γ1) − u(γ2) = 0 in Ω. Hence, by the trace theorem and
the weak form of the system (2.3), we have

‖u(γ1)− u(γ2)‖∂Ω ≤ C‖u(γ1)− u(γ2)‖1,Ω = 0,

and for any ϕ ∈ H1(Ω),∫
Γi

a(x)
∂(u(γ1)− u(γ2))

∂n
ϕds =

∫
Ω

a(x)∇(u(γ1)− u(γ2)) · ∇ϕ+ c(x)(u(γ1)− u(γ2))ϕdx = 0 .

Therefore we immediately see that

a(x)
∂(u(γ1)− u(γ2))

∂n
= 0 and u(γ1) = u(γ2) on Γi,

which, along with (2.4), leads to

u(γ1)(γ1 − γ2) = 0 on Γi.

Now the assumption that meas({x ∈ Γi : u(x) = 0}) = 0 implies γ1 = γ2 a.e. on Γi.

Next, we establish the uniqueness of the parabolic inverse Robin problem.
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Theorem 2.4. Let γ1 and γ2 be two solutions to the parabolic inverse Robin problem as stated in Section 1.
Moreover, we assume that meas({x ∈ Γi; u(x, t) = 0 for t ∈ (0, T )}) = 0, where u is the solution to the forward
system (1.2), then γ1 = γ2 almost everywhere on Γi.

Proof. It is straightforward to verify using (1.2) that u(γ1)− u(γ2) satisfies


∂t(u(γ1)− u(γ2))−∇ · (a(x)∇(u(γ1)− u(γ2))) = 0 in Ω × [0, T ] ,

a(x)∂(u(γ1)−u(γ2))
∂n = 0 on Γa × [0, T ] ,

u(γ1)− u(γ2) = 0 on Γa × [0, T ] ,

(u(γ1)− u(γ2))(x, 0) = 0 in Ω ,

(2.5)

and on the boundary Γi × [0, T ],

a(x)
∂(u(γ1)− u(γ2))

∂n
+ γ1u(γ1)− γ2u(γ2) = 0. (2.6)

The unique continuation principle [16] implies that u(γ1)− u(γ2) = 0 in Ω× [0, T ]. Hence, by the trace theorem
and the weak form of the system (2.5), we have

‖u(γ1)− u(γ2)‖∂Ω ≤ C‖u(γ1)− u(γ2)‖1,Ω = 0,

and for any ϕ ∈ L2(0, T ;H1(Ω)),

∫ T

0

∫
Γi

a(x)
∂(u(γ1)− u(γ2))

∂n
ϕdsdt =

∫ T

0

∫
Ω

a(x)∇(u(γ1)− u(γ2)) · ∇ϕdxdt

+

∫ T

0

∫
Ω

∂t(u(γ1)− u(γ2))ϕdxdt = 0 .

Therefore we immediately see that

a(x)
∂(u(γ1)− u(γ2))

∂n
= 0 and u(γ1) = u(γ2) on Γi × [0, T ],

which, along with (2.6), yields sthat

u(γ1)(γ1 − γ2) = 0 on Γi × [0, T ].

Now the assumption meas({x ∈ Γi; u(x, t) = 0 for t ∈ (0, T )}) = 0 implies γ1 = γ2 a.e. on Γi.

2.3. Stability of the inverse Robin problems

In the next section we shall derive and establish our main results of this work, namely, the quadratic
convergence of the Levenberg-Marquardt method for solving the nonlinear optimisations resulting from the
least-squares formulation of the elliptic and parabolic inverse Robin problems. For this purpose, the unique-
ness of the inverse problems we demonstrated in the previous section is insufficient. Instead we shall need the
following stability conditions:

‖u(γ)− u(γ∗)‖Γa ≥ c1‖γ − γ∗‖Γi ∀ γ ∈ N(γ∗, b) (2.7)
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for the elliptic inverse Robin problem, and

∫ T

0

‖u(γ)− u(γ∗)‖2Γadt ≥ c̄1‖γ − γ∗‖2Γi , ∀ γ ∈ N(γ∗, b) (2.8)

for the parabolic inverse Robin problem. Here c1, c̄1 and b are positive constants, with b ∈ (0, 1).
Conditions (2.7) and (2.8) are the so-called local Lipschitz stability in a neighborhood of the true Robin

coefficient γ∗ for the elliptic and parabolic inverse Robin problems respectively [6, 17]. A global Lipschitz stability
was established in [28] (Thm. 2.4) for some physically very important cases, namely the Robin coefficients are
piecewise constant. A monotone global Lipschitz stability was demonstrated in [5] (Thm. 3). When the feasible
Robin coefficients are restricted on a line segment formed by two functions in the constraint set K, the local
Lipschitz stability was also verified (see [5], Thm. 2).

Stability analysis is a very important topic for inverse problems, and there are numerous studies for Lipschitz
stability of various inverse problems in the literature, for example, for reconstructing the conductivity [1, 11],
the source strength [8] and the potential [3] in elliptic systems, for determining the coefficients in a non-
stationary transport equation [22] and the radiative transport equation [25], and for the identification of the
source strength [14] (Thm. 3.1), the conductivity [31] (Thm. 1.1) and the radiative coefficient [29] (Thm. 2.1)
in parabolic systems.

The main results and their analyses in this work, namely the quadratic convergence of the L-M method for
solving the nonlinear regularized optimizations associated with the inverse Robin problems, are very general in
the sense that they may be extended to other inverse problems principally, as long as Lipschitz stabilities similar
to the conditions (2.7) and (2.8) are valid for the concerned inverse problems. We emphasize that the exact
formulations of the Lipschitz stabilities should be different from (2.7) and (2.8), depending on the individual
inverse problems and the concrete forms of measurement data, and this may lead to many natural modifications
of the detailed analyses in this work.

3. Elliptic inverse Robin problem and its L-M solution

3.1. Tikhonov regularization for elliptic inverse Robin problem

In this section we first formulate the Levenberg-Marquardt method for solving the nonlinear non-convex
optimisation problems resulting from the least-squares formulation of the elliptic inverse Robin problem as
stated in Section 1, incorporated with Tikhonov regularization to handle its ill-posedness due to the presence of
the noise in the observation data [20]. We assume the noise level in the observation data zδ of the true solution
u to the elliptic system (1.1) is of order δ, namely

‖u(γ∗)− zδ‖Γa ≤ δ , (3.1)

where γ∗ is the true Robin coefficient. The elliptic inverse Robin problem is frequently transformed into the
following stabilized minimization system with Tikhonov regularization:

min
γ∈K
J (γ) = ‖u(γ)− zδ‖2Γa + β‖γ‖2Γi , (3.2)

where β is the regularization parameter. The formulation (3.2) was shown to be stable in the sense that its
minimizer depends continuously on the change of the noise in the data zδ [20].

For the subsequent analysis on the convergence of the Levenberg-Marquardt method for solving the optimi-
sation (3.2), we shall frequently need the Fréchet derivative of the forward solution u(γ) of system (1.1). Let
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w := u′(γ)d be the Fréchet derivative at direction d, then it solves the following system:
−∇ · (a(x)∇w) + c(x)w = 0 in Ω ,

a(x)∂w∂n + γ w = −d u(γ) on Γi ,

a(x)∂w∂n = 0 on Γa .

(3.3)

Let u′(γ)∗ be the adjoint operator of the Fréchet derivative u′(γ), then it it easy to verify that w∗ := u′(γ)∗p ∈
H1(Ω) at a general direction p solves the following system

−∇ · (a(x)∇w∗) + c(x)w∗ = 0 in Ω ,

a(x)∂w
∗

∂n + γ w∗ = 0 on Γi ,

a(x)∂w
∗

∂n = −p u(γ) on Γa .

(3.4)

The following lemma gives an important relation for our later study.

Lemma 3.1. The following relation holds for any directions d and p:

〈w, u(γ)p〉Γa = 〈u(γ)d, w∗〉Γi . (3.5)

Proof. For any ϕ,ψ ∈ H1(Ω), we can readily derive the variational forms of systems (3.1) and (3.1):∫
Ω

a(x)∇w · ∇ϕdx +

∫
Ω

c(x)wϕdx =

∫
Γi

(−du(γ)− γw)ϕds, (3.6)

∫
Ω

a(x)∇w∗ · ∇ψdx +

∫
Ω

c(x)w∗ψdx = −
∫
Γi

γw∗ψds−
∫
Γa

pu(γ)ψds. (3.7)

Now (3.5) follows by taking ϕ = w∗ and ψ = w respectively in (3.6) and (3.7).

3.2. Levenberg-Marquardt method and its convergence

The nonlinearity of the forward solution u(γ) of the system (1.1) makes the minimization (3.2) highly non-
linear and non-convex with respect to the Robin coefficient γ, as well as strongly unstable at discrete level with
the fine mesh size due to the ill-posedness of the inverse problem and the fact that noise is always present in the
observation data. To alleviate these difficulties in numerical solutions, we shall apply the Levenberg-Marquardt
method to solve (3.2). For a given γ̄ ∈ K, we apply the linearization

u(γ) ≈ u(γ̄) + u′(γ̄)(γ − γ̄),

then we may solve the minimization system (3.2) by the following L-M iteration, which is widely used for general
nonlinear optimization problems [9, 30]:

Jk(γk+1) = min
γ∈K

Jk(γ) := ‖u′(γk)(γ − γk)− (zδ − u(γk))‖2Γa + βk‖γ − γk‖2Γi . (3.8)

Before our study of the convergence of the iteration (3.8), we shall develop some auxiliary results.
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Lemma 3.2. There exist two positive constants L and c2 such that it holds for all γ, γ̄ ∈ K that

‖u(γ)− u(γ̄)‖Γa ≤ L‖γ − γ̄‖Γi , (3.9)

‖u′(γ̄)(γ − γ̄)− (u(γ)− u(γ̄))‖Γa ≤ c2‖γ − γ̄‖2Γi . (3.10)

Proof. From the variational form of the system (1.1), we can easily find that∫
Ω

a(x)∇(u(γ)− u(γ̄)) · ∇ϕdx +

∫
Ω

c(x)(u(γ)− u(γ̄))ϕdx +

∫
Γi

γ̄(u(γ)− u(γ̄))ϕds

= −
∫
Γi

(γ − γ̄)u(γ)ϕds. (3.11)

Taking ϕ = u(γ)− u(γ̄) and using the lower bounds of a(x), c(x), and γ̄, we derive

min{a, c}‖u(γ)− u(γ̄)‖21,Ω + γ1‖u(γ)− u(γ̄)‖2Γi ≤ |
∫
Γi

(γ − γ̄)u(γ)(u(γ)− u(γ̄))ds|

≤ ‖u(γ)‖L∞(Γi)‖γ − γ̄‖Γi‖u(γ)− u(γ̄)‖Γi .

The Sobolev embedding theorem and estimate (2.1) imply that ‖u(γ)‖L∞(Γi) ≤ C‖u(γ)‖2,Ω ≤ C. Then it follows
by the Cauchy-Schwarz inequality that

min{a, c}‖u(γ)− u(γ̄)‖21,Ω ≤
C2

2γ1
‖γ − γ̄‖2Γi .

Now estimate (3.9) follows directly from this inequality and the trace theorem. To verify the estimate (3.10),
we first show

‖u′(γ)d‖∂Ω ≤ C‖d‖Γi . (3.12)

Indeed, choosing ϕ = u′(γ)d in (3.6), we readily get∫
Ω

a(x)|∇(u′(γ)d)|2dx +

∫
Ω

c(x)|u′(γ)d|2dx +

∫
Γi

γ|u′(γ)d|2ds = −
∫
Γi

du(γ)(u′(γ)d)ds.

Then it follows by the Cauchy-Schwarz inequality that

min{a, c}‖u′(γ)d‖21,Ω ≤
C2

2γ1
‖d‖2Γi ,

which, along with the trace theorem, gives (3.12) immediately.
Next, we prove the estimate (3.10). Taking γ = γ̄ and d = γ − γ̄ in (3.6), we have∫

Ω

a(x)∇u′(γ̄)(γ − γ̄) · ∇ϕdx +

∫
Ω

c(x)u′(γ̄)(γ − γ̄)ϕdx +

∫
Γi

γ̄u′(γ̄)(γ − γ̄)ϕds

= −
∫
Γi

(γ − γ̄)u(γ̄)ϕds ∀ ϕ ∈ H1(Ω) . (3.13)
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Subtracting (3.13) from (3.11) yields∫
Ω

a(x)∇(u′(γ̄)(γ − γ̄)− (u(γ)− u(γ̄))) · ∇ϕdx +

∫
Γi

γ̄(u′(γ̄)(γ − γ̄)− (u(γ)− u(γ̄)))ϕds

+

∫
Ω

c(x)(u′(γ̄)(γ − γ̄)− (u(γ)− u(γ̄)))ϕdx =

∫
Γi

(γ − γ̄)(u(γ)− u(γ̄))ϕds.

Then applying the trace theorem, Lagrange mean value theorem and inequality (3.12), we derive

‖u′(γ̄)(γ − γ̄)− (u(γ)− u(γ̄))‖Γa ≤ C‖u′(γ̄)(γ − γ̄)− (u(γ)− u(γ̄))‖1,Ω ≤ C‖(γ − γ̄)(u(γ)− u(γ̄))‖Γi
= C‖(γ − γ̄)u′(ξ)(γ − γ̄)‖Γi ≤ c2‖γ − γ̄‖2Γi ,

where ξ is some element in K between γ and γ̄.

Now we are ready to establish a quadratic rate on the convergence of the L-M method (3.8), under the stability
condition (2.7). This condition is the frequently adopted basic condition to ensure the quadratic convergence
of the L-M method for most direct nonlinear optimization problems [9, 30], so it is natural to bring it to the
current nonlinear ill-posed inverse problems.

It is a well-known technical difficulty in a practical numerical realisation of any Tikhonov regularised opti-
misation system like the ones (3.2) and (3.8) to choose a reasonable and effective regularization parameter β or
βk. Another important novelty of this work is our suggestion of a very simple and easy implementable choice of
the parameter βk based on the following rule:

βk = ‖u(γk)− zδ‖Γa . (3.14)

And surprisingly, as we shall demonstrate below, this choice of the regularization parameter βk ensures a
quadratical convergence of the resulting L-M iteration (3.8).

Considering the presence of the noise (see (3.1)), it is reasonable for us to terminate the L-M iteration (3.8)
when its minimizer γk is accurate enough in terms of the noise level. This is also consistent with the popular
discrepancy principle. More specifically, we shall terminate the iteration if the following criterion is realised:

c1‖γk − γ∗‖Γi < 2δ or ‖u(γk)− zδ‖Γa < δ . (3.15)

As it is usually hard to achieve the knowledge of c1 in practice, the first condition serves mainly as a theoretical
alternative condition to ensure the quadratic convergence of the L-M iteration. Instead, the second condition is
more convenient to realize for applications.

Lemma 3.3. Under the conditions (2.7), (3.14) and (3.15), if γk ∈ N(γ∗, b) then γk+1 generated by the iteration
(3.8) satisfies

‖u′(γk)(γk+1 − γk)− (zδ − u(γk))‖Γa ≤ c3(‖γk − γ∗‖2Γi + δ), (3.16)

‖γk+1 − γk‖2Γi ≤ c4(‖γk − γ∗‖2Γi + δ), (3.17)

where constants c3 and c4 are given explicitly by c3 =
√

max{2c22 + 2L2 + 1, 3} and c4 = max{ 4c22
c1

+ 1, 2}.

Proof. As γk+1 is a minimizer in (3.8), we derive using the estimates (3.1), (3.9), (3.10), equality (3.14) and the
Cauchy-Schwarz inequality

‖u′(γk)(γk+1 − γk)− (zδ − u(γk))‖2Γa ≤ Jk(γk+1) ≤ Jk(γ∗)
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= ‖u′(γk)(γ∗ − γk)− (u(γ∗)− u(γk)) + u(γ∗)− zδ‖2Γa + βk‖γ∗ − γk‖2Γi
≤ 2c2

2‖γk − γ∗‖4Γi + 2δ2 + ‖u(γk)− u(γ∗) + u(γ∗)− zδ‖2Γa‖γ
∗ − γk‖2Γi

≤ 2c2
2‖γk − γ∗‖4Γi + 2δ2 + 2L2‖γ∗ − γk‖4Γi + 2δ2‖γ∗ − γk‖2Γi

≤ (2c2
2 + 2L2 + 1)‖γk − γ∗‖4Γi + (2 + δ2)δ2

≤ max{2c22 + 2L2 + 1, 3}(‖γk − γ∗‖4Γi + δ2),

which implies (3.16) immediately.
Again, using the minimizing property of γk+1 in (3.8) and the estimates (3.1) and (3.10), we can deduce as

follows:

‖γk+1 − γk‖2Γi ≤
1

βk
Jk(γk+1) ≤ 1

βk
Jk(γ∗)

=
1

βk
‖u′(γk)(γ∗ − γk)− (zδ − u(γk))‖2Γa + ‖γ∗ − γk‖2Γi

≤ 1

βk
(2c2

2‖γk − γ∗‖4Γi + 2δ2) + ‖γ∗ − γk‖2Γi

=
2c2

2‖γk − γ∗‖4Γi
‖u(γk)− zδ‖Γa

+
2δ2

‖u(γk)− zδ‖Γa
+ ‖γ∗ − γk‖2Γi . (3.18)

As stated in (3.15), the iterative process (3.8) terminates if c1‖γk−γ∗‖Γi < 2δ or ‖u(γk)− zδ‖Γa < δ. Otherwise

we have c1‖γk − γ∗‖Γi ≥ 2δ and ‖u(γk)− zδ‖Γa ≥ δ. Then we can easily see that 2δ2

‖u(γk)−zδ‖Γa
≤ 2δ and

‖u(γk)− zδ‖Γa ≥ ‖u(γk)− u(γ∗)‖Γa − ‖u(γ∗)− zδ‖Γa
≥ c1‖γk − γ∗‖Γi − δ ≥ c1‖γk − γ∗‖Γi −

c1
2
‖γk − γ∗‖Γi

=
c1
2
‖γk − γ∗‖Γi≥

c1
2
‖γk − γ∗‖2Γi ,

where we have used the fact that ‖γk− γ∗‖Γi ≤ b < 1 in the last inequality. Now the desired result (3.17) follows
readily from these two estimates and (3.18).

Lemma 3.4. Under the conditions (2.7), (3.14) and (3.15), let γk and γk+1 be two consequent iterates generated
by the iteration (3.8) such that both γk and γk+1 lie in N(γ∗, b), then

‖γk+1 − γ∗‖Γi ≤ c5(‖γk − γ∗‖2Γi + δ), (3.19)

where constant c5 is given explicitly by c5 = (c3 + c2c4 + 1)/c1.

Proof. It follows from (2.7), (3.10), (3.16) and (3.17) that

c1‖γk+1 − γ∗‖Γi ≤ ‖u(γk+1)− u(γ∗)‖Γa ≤ ‖u(γk+1)− zδ‖Γa + δ

= ‖u′(γk)(γk+1 − γk) + u(γk)− zδ − {u′(γk)(γk+1 − γk) + u(γk)− u(γk+1)}‖Γa + δ

≤ ‖u′(γk)(γk+1 − γk) + u(γk)− zδ)‖Γa + ‖u′(γk)(γk+1 − γk) + u(γk)− u(γk+1)‖Γa + δ

≤ c3(‖γk − γ∗‖2Γi + δ) + c2‖γk+1 − γk‖2Γi + δ

≤ c3(‖γk − γ∗‖2Γi + δ) + c2c4(‖γk − γ∗‖2Γi + δ) + δ

≤ (c3 + c2c4 + 1)(‖γk − γ∗‖2Γi + δ),
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which implies the estimate (3.19).

In order to establish the quadratic convergence of the L-M iteration, we now emphasize the dependence of
all the constants c1, · · · , c5 in our previous estimates on the radius b of the ball N(γ∗, b). First, we know both
constants c2 and c3 in (3.10) and (3.16) are independent of b. But constant c1 in (2.7) depends on this radius
b, so we will write c1(b) to emphasize this dependence. Similarly, we can write the constants c4 and c5 in the
estimates (3.17) and (3.19) as c4(b) and c5(b).

We are now ready to establish our major convergence results in this work, the quadratic convergence and
quadratic rate of convergence for the L-M iteration (3.8). For simplicity, we set

r(b, δ) = min

b, b−
√
c4
(

1
3

)
δ√

c4
(

1
3

)
+ 1

 , α = c5

(
1

3

)(√
c4

(
1

3

)
+ 1

)
, β(x) = αx+

√
c4

(
1

3

)
x , (3.20)

d0 =
1 + 2c4

(
1
3

)
− 2
√
c24
(

1
3

)
+ c4

(
1
3

)
4α2

, d =
1

2
d0 . (3.21)

Theorem 3.5. For any b ∈
[

1−
√

1−4αβ(d)

2α ,
1+
√

1−4αβ(d)

2α

]
, we assume the conditions (2.7), (3.14) and (3.15)

are satisfied and the noise level δ is small such that

δ < min

{
b2

c4( 1
3 )
, d

}
. (3.22)

Then for any γ0 ∈ N(γ∗, r(b, δ)), the sequence {γk} generated by (3.8) stays always in N(γ∗, b) and satisfies

‖γk+1 − γ∗‖Γi ≤ c5
(

1

3

)
(‖γk − γ∗‖2Γi + δ).

Proof. From the results of Lemma 3.4, we only need to show that the sequence {γk} generated by (3.8) stays
always in N(γ∗, b). This is proved below by the mathematical induction.

First, we derive several helpful estimates. We can readily see from (3.9) and assumption (2.7) that c1(b) ≤ L.
Then by the definitions of c3, c4, c5 and α, we derive

c5(b) >
c3
c1(b)

>

√
2L2

c1(b)
≥
√

2 , c4(b) ≥ 2 , α ≥
√

2(2 + 1) > 3 .

On the other hand, using the definitions of r(b, δ) and the fact that δ is smaller than the first fraction in the
condition (3.22), we see r(b, δ) > 0. Hence, by the choice b we know 0 < b < 1/3, and γ0 ∈ N(γ∗, r(b, δ)) ⊂
N(γ∗, 1/3). Then by the triangle inequality and estimate (3.17) with b = 1/3 we deduce

‖γ1 − γ∗‖Γi ≤ ‖γ1 − γ0‖Γi + ‖γ0 − γ∗‖Γi ≤

(√
c4

(
1

3

)
+ 1

)
‖γ0 − γ∗‖Γi +

√
c4

(
1

3

)
δ

≤

(√
c4

(
1

3

)
+ 1

)
r(b, δ) +

√
c4

(
1

3

)
δ ≤ b,
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which implies γ1 ∈ N(γ∗, b) ⊂ N(γ∗, 1/3).
Now we show γl+1 ∈ N(γ∗, b) if γk ∈ N(γ∗, b) for k = 1, ..., l. Indeed, we deduce from the triangle inequality,

the estimate (3.17) for γl ∈ N(γ∗, b) and the estimate (3.19) for γl, γl−1 ∈ N(γ∗, b) that

‖γl+1 − γ∗‖Γi ≤ ‖γl+1 − γl‖Γi + ‖γl − γ∗‖Γi

≤

(√
c4

(
1

3

)
+ 1

)
‖γl − γ∗‖Γi +

√
c4

(
1

3

)
δ

≤

(√
c4

(
1

3

)
+ 1

)
c5

(
1

3

)
(‖γl−1 − γ∗‖2Γi + δ) +

√
c4

(
1

3

)
δ

<

(√
c4

(
1

3

)
+ 1

)
c5

(
1

3

)
(‖γl−1 − γ∗‖2Γi + d) +

√
c4

(
1

3

)
d

≤ αb2 + β(d) ≤ b , (3.23)

which implies that γl+1 ∈ N(γ∗, b), if it holds that αb2 + β(d) ≤ b.
To see αb2 + β(d) ≤ b, we need several helpful estimates. First, we use the definitions of β, d0, d and α in

(3.20) and (3.21) and direct computings to derive

1− 4αβ(d) > 1− 4αβ(d0) = 1− 4α2d0 − 4α

√
c4

(
1

3

)
d0

= 1−

{
1 + 2c4

(
1

3

)
− 2

√
c24

(
1

3

)
+ c4

(
1

3

)}
− 2

√√√√c4

(
1

3

){
1 + 2c4

(
1

3

)
− 2

√
c24

(
1

3

)
+ c4

(
1

3

)}

= 2

(√
c24

(
1

3

)
+ c4

(
1

3

)
− c4

(
1

3

))
− 2

(√
c24

(
1

3

)
+ c4

(
1

3

)
− c4

(
1

3

))
= 0.

This, along with the fact that α > 3, implies 1 +
√

1− 4αβ(d) ≤ 2 < (2α)/3. We are now ready to verify
αb2 + β(d) ≤ b. For this, we define a quadratic functional f(b) = αb2− b+ β(d) . As 1− 4αβ(d) > 0, it is easy to

see 0 < b1 =
1−
√

1−4αβ(d)

2α < 1/6 and b1 < b2 =
1+
√

1−4αβ(d)

2α < 1/3, and b1 and b2 are two solutions of f(b) = 0.
Clearly for any b ∈ [b1, b2], we know f(b) ≤ 0, namely, αb2 + β(d) ≤ b.

3.3. Surrogate functional technique

In each step of the L-M iteration we have to solve the minimization problem (3.8). Let us now derive its
optimality system, i.e., J ′k(γk+1)ξ = 0 for any ξ ∈ L2(Γi). By direct computations, we have

J ′k(γ)ξ = 2〈u′(γk)(γ − γk)− (zδ − u(γk)), u′(γk)(ξ)〉Γa + 2βk〈γ − γk, ξ〉Γi

= 2

〈
u(γk)

{
u′(γk)∗

(
u′(γk)(γ − γk)− (zδ − u(γk))

u(γk)

)}
, ξ

〉
Γi

+ 2βk〈γ − γk, ξ〉Γi ,

where we have used the adjoint relation (3.5). This is equivalent to the following equation:

u(γk)

{
u′(γk)∗

(
u′(γk)(γ − γk)

u(γk)

)}
+ βk(γ − γk) = u(γk)

{
u′(γk)∗

(
zδ − u(γk)

u(γk)

)}
. (3.24)
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So we have to solve this rather complicated linear system (whose discretized system is highly ill-conditioned)
to get the solution γk+1 at each iteration of (3.8), e.g., by some iterative method. This is still difficult and
computationally very expensive.

Next, we shall make use of the surrogate functional technique to greatly simplify the solution to the min-
imization (3.8), resulting in an explicit solution at each iteration. The resultant algorithm is computationally
much less expensive. The surrogate functional technique was studied in [7] for solving a linear inverse operator
equation of the form Kh = f . We now construct a surrogate functional Jsk(γ, ζ) of Jk(γ) in (3.8) for any ζ ∈ K:

Jsk(γ, ζ) = Jk(γ) +A‖γ − ζ‖2Γi − ‖u
′(γk)(γ − ζ)‖2Γa , (3.25)

where A can be any positive constant such that ‖u′(γk)d‖2Γa ≤ A‖d‖
2
Γi

for all d ∈ L2(Γi). Next, we will simplify
the expression (3.25). Using the adjoint relation (3.5), we can rewrite Jsk(γ, ζ) as follows:

Jsk(γ, ζ) = ‖u′(γk)(γ − γk)− (zδ − u(γk))‖2Γa + βk‖γ − γk‖2Γi +A‖γ − ζ‖2Γi − ‖u
′(γk)(γ − ζ)‖2Γa

= ‖u′(γk)(γ)‖2Γa − 2〈u′(γk)(γ), zδ − u(γk) + u′(γk)(γk)〉Γa + ‖zδ − u(γk) + u′(γk)(γk)‖2Γa
+βk‖γ − γk‖2Γi +A‖γ − ζ‖2Γi − ‖u

′(γk)(γ)‖2Γa + 2〈u′(γk)(γ), u′(γk)(ζ)〉Γa − ‖u′(γk)(ζ)‖2Γa

= −2

〈
γ, u(γk)

{
u′(γk)∗

(
zδ − u(γk) + u′(γk)(γk − ζ)

u(γk)

)}〉
Γi

+ βk‖γ − γk‖2Γi

+A‖γ − ζ‖2Γi + ‖zδ − u(γk) + u′(γk)(γk)‖2Γa − ‖u
′(γk)(ζ)‖2Γa

= A‖γ − ζ − 1

A
u(γk)

{
u′(γk)∗

(
zδ − u(γk) + u′(γk)(γk − ζ)

u(γk)

)}
‖2Γi + βk‖γ − γk‖2Γi

+
{
‖zδ − u(γk) + u′(γk)(γk)‖2Γa − ‖u

′(γk)(ζ)‖2Γa +A‖ζ‖2Γi

−A‖ζ +
1

A
u(γk)

{
u′(γk)∗

(
zδ − u(γk) + u′(γk)(γk − ζ)

u(γk)

)}
‖2Γi

}
. (3.26)

We can see that the last term above is independent of γ, so does not affect the minimization. Hence we will
drop that term in the functional Jsk(γ, ζ) and obtain

min
γ∈K

Jsk(γ, ζ)= min
γ∈K

A‖γ−ζ− 1

A
u(γk)

{
u′(γk)∗

(
zδ − u(γk)+u′(γk)(γk−ζ)

u(γk)

)}
‖2Γi+βk‖γ−γ

k‖2Γi . (3.27)

This is a simple quadratic minimization, and we can compute its minimizer exactly:

argmin
γ∈K

Jsk(γ, ζ) =
βk

A+ βk
γk +

A

A+ βk
ζ +

1

A+ βk
u(γk)

{
u′(γk)∗

(
zδ − u(γk) + u′(γk)(γk − ζ)

u(γk)

)}
. (3.28)

This motivates us with the following reconstruction algorithm for the Robin coefficient in (1.1), which is clearly
much easier and computationally much less expensive than solving the minimization (3.8) directly.

Algorithm 3.6. Choose two tolerance parameters ε1, ε2 > 0 and an initial value γ0, and set k := 0.

1. Compute γk+1: set ζ0 = γk and n := 0.
(1.1). Compute

ζn+1 =argmin
γ∈K

Jsk(γ, ζn)=
1

A+βk

(
βkγ

k+Aζn+u(γk)

{
u′(γk)∗

(
zδ − u(γk)+u′(γk)(γk−ζn)

u(γk)

)})
.
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(1.2). If
‖ζn+1−ζn‖Γi
‖ζn‖Γi

≤ ε1, set γk+1 = ζn+1, go to Step 2; otherwise set n := n+ 1, go to Step (1.1).

2. If
‖γk+1−γk‖Γi
‖γk‖Γi

≤ ε2, stop the iteration; otherwise set k := k + 1, go to Step 1.

4. Parabolic inverse Robin problem and its L-M solution

4.1. Tikhonov regularization for the parabolic inverse Robin problem

We now follow what we did in Section 3 to convert our interested parabolic inverse Robin problem to a
nonlinear optimization problem by a Tikhonov regularization, and then propose to solve the optimization by
the L-M method. Let γ∗ be the true Robin coefficient in the system (1.2), and the noise level in the observation
data zδ of the true solution u to the parabolic system (1.2) be of order δ, i.e.,∫ T

0

‖u(γ∗)− zδ‖2Γadt ≤ δ2. (4.1)

Let β be a tregularization parameter, then we may transform the parabolic inverse Robin problem to the
following minimization with Tikhonov regularization, which was shown to be a stable formulation [19]:

min
γ∈K
J (γ) =

∫ T

0

‖u(γ)− zδ‖2Γadt+ β‖γ‖2Γi . (4.2)

For our later analysis, we need the Fréchet derivative of the forward solution u(γ) of system (1.2). Let
w := u′(γ)d be the derivative at direction d ∈ L2(Γi), then w ∈ L2(0, T ;H1(Ω)) solves the system:

∂tw −∇ · (a(x)∇w) = 0 inΩ × (0, T ) ,

a(x)∂w∂n + γ w = −d u(γ) onΓi × (0, T ) ,

a(x)∂w∂n = 0 onΓa × (0, T )

w(x, 0) = 0 inΩ ,

(4.3)

For any direction p ∈ L2(0, T ;L2(Γa)), we define the adjoint w∗ := u′(γ)∗p, then w∗ ∈ L2(0, T ;H1(Ω)) solves
the following parabolic system:

−∂tw∗ −∇ · (a(x)∇w∗) = 0 inΩ × [0, T ] ,

a(x)∂w
∗

∂n + γ w∗ = 0 onΓi × [0, T ] ,

a(x)∂w
∗

∂n = −p u(γ) onΓa × [0, T ] ,

w∗(x, T ) = 0 inΩ .

(4.4)

We shall need the following useful relation between u′(γ) and its adjoint u′(γ)∗.

Lemma 4.1. It holds for any directions d ∈ L2(Γi) and p ∈ L2(0, T ;L2(Γa)) that∫ T

0

〈u(γ)w, p〉Γadt = 〈d,
∫ T

0

u(γ)w∗dt〉Γi . (4.5)

Proof. For any ϕ,ψ ∈ L2(0, T ;H1(Ω)), it is easy to derive the variational forms of (4.1) and (4.4):∫ T

0

∫
Ω

∂twϕdxdt +

∫ T

0

∫
Ω

a(x)∇w · ∇ϕdxdt =

∫ T

0

∫
Γi

(−du(γ)− γw)ϕdsdt, (4.6)
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−
∫ T

0

∫
Ω

∂tw
∗ψdxdt +

∫ T

0

∫
Ω

a(x)∇w∗ · ∇ψdxdt

= −
∫ T

0

∫
Γi

γw∗ψdsdt−
∫ T

0

∫
Γa

pu(γ)ψdsdt. (4.7)

By integrating by parts with respect to t in (4.7), we derive

−
∫
Ω

w∗(x, T )ψ(x, T )dx +

∫
Ω

w∗(x, 0)ψ(x, 0)dx +

∫ T

0

∫
Ω

∂tψw
∗dxdt

+

∫ T

0

∫
Ω

a(x)∇w∗ · ∇ψdxdt = −
∫ T

0

∫
Γi

γw∗ψdsdt−
∫ T

0

∫
Γa

pu(γ)ψdsdt. (4.8)

Taking ϕ = w∗ in (4.6), ψ = w in (4.8) and noting that w∗(x, T ) = w(x, 0) = 0, we can easily find that∫ T

0

〈u(γ)w, p〉Γadt =

∫ T

0

〈d, u(γ)w∗〉Γidt = 〈d,
∫ T

0

u(γ)w∗dt〉Γi .

4.2. Levenberg-Marquardt method and its convergence

The minimization (4.2) is highly nonlinear and non-convex due to the nonlinearity of the parabolic forward
solution u(γ) to system (1.2) with respect to the Robin coefficient γ. Motivated by the same reasons as we
pointed out earlier for the elliptic case, we apply the L-M iteration method to alleviate the nonlinearity and
non-convexity of the minimization (4.2):

Jk(γk+1) = min
γ∈K

Jk(γ) =:

∫ T

0

‖u′(γk)(γ − γk)− (zδ − u(γk))‖2Γadt+ βk‖γ − γk‖2Γi . (4.9)

In the rest of this section, we establish our main result, namely, the quadratic convergence of the L-M iteration
(4.9), under the basic condition (2.8). The same as we did in Section 3.2, we suggest a very simple and easy
implementable strategy at each L-M iteration to choose the regularization parameter βk adaptively:

βk = ‖u(γk)− zδ‖L2(0,T ;L2(Γa)), (4.10)

and terminate the iteration based on the following criterion:

√
c̄1‖γk − γ∗‖Γi < 2δ or ‖u(γk)− zδ‖L2(0,T ;L2(Γa)) < δ . (4.11)

We now present several auxiliary results for our later analysis of the convergence of the iteration (4.9).

Lemma 4.2. There exist two positive constants L̄ and c̄2 such that it holds for any γ, γ̄ ∈ K that∫ T

0

‖u(γ)− u(γ̄)‖2Γadt ≤ L̄‖γ − γ̄‖2Γi , (4.12)∫ T

0

‖u′(γ̄)(γ − γ̄)− (u(γ)− u(γ̄))‖2Γadt ≤ c̄2‖γ − γ̄‖4Γi . (4.13)
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Proof. From the variational form of the system (1.2), we can easily see for any ϕ ∈ L2(0, T ;H1(Ω)) that∫
Ω

∂t(u(γ)− u(γ̄))ϕdx +

∫
Ω

a(x)∇(u(γ)− u(γ̄)) · ∇ϕdxdx

+

∫
Γi

γ̄(u(γ)− u(γ̄))ϕds = −
∫
Γi

(γ − γ̄)u(γ)ϕds. (4.14)

Taking ϕ = u(γ)− u(γ̄) in (4.14) and integrating by parts with respect to t over [0, τ ] for τ ∈ [0, T ], then using
the Cauchy-Schwarz inequality, Sobolev embedding theorem and estimate (2.2), we derive

1

2
‖u(γ)(x, τ)− u(γ̄)(x, τ)‖2Ω + a

∫ τ

0

‖∇u(γ)−∇u(γ̄)‖2Ωdt+ γ1

∫ τ

0

‖u(γ)− u(γ̄)‖2Γidt

≤ |
∫ τ

0

∫
Γi

(γ − γ̄)u(γ)(u(γ)− u(γ̄))dsdt|

≤ ‖u(γ)‖L2(0,T ;L∞(Γi))

√
τ‖γ − γ̄‖Γi‖u(γ)− u(γ̄)‖L2(0,τ ;L2(Γi))

≤ C‖u(γ)‖L2(0,T ;H2(Ω))

√
τ‖γ − γ̄‖Γi‖u(γ)− u(γ̄)‖L2(0,τ ;L2(Γi))

≤ C‖γ − γ̄‖Γi‖u(γ)− u(γ̄)‖L2(0,τ ;L2(Γi)).

Now a direct application of the Young’s inequality gives

‖u(γ)(x, τ)− u(γ̄)(x, τ)‖2Ω +

∫ τ

0

‖∇u(γ)−∇u(γ̄)‖2Ωdt ≤ C‖γ − γ̄‖2Γi ,

from which and the trace theorem, we obtain∫ T

0

‖u(γ)− u(γ̄)‖2Γadt ≤ C
∫ T

0

‖u(γ)− u(γ̄)‖21,Ωdt ≤ L̄‖γ − γ̄‖2Γi .

To verify the estimate (4.13), we first have by taking ϕ = u′(γ)d in (4.6) and then following the same technique
as we did for (4.12) that ∫ T

0

‖u′(γ)d‖2∂Ωdt ≤ C‖γ − γ̄‖2Γi . (4.15)

Next, we take γ = γ̄ and d = γ − γ̄ in (4.6) to deduce∫ T

0

∫
Ω

∂t(u
′(γ̄)(γ − γ̄))ϕdxdt +

∫ T

0

∫
Ω

a(x)∇(u′(γ̄)(γ − γ̄)) · ∇ϕdxdt

=

∫ T

0

∫
Γi

(−(γ − γ̄)u(γ̄)− γ̄(u′(γ̄)(γ − γ̄)))ϕdsdt. (4.16)

Subtracting (4.16) from (4.14) gives∫ T

0

∫
Ω

∂t(u
′(γ̄)(γ − γ̄)− (u(γ)− u(γ̄)))ϕdxdt+

∫ T

0

∫
Ω

a(x)∇(u′(γ̄)(γ − γ̄)− (u(γ)− u(γ̄))) · ∇ϕdxdt

+

∫ T

0

∫
Γi

γ̄(u′(γ̄)(γ − γ̄)− (u(γ)− u(γ̄)))ϕdsdt =

∫ T

0

∫
Γi

(γ − γ̄)(u(γ)− u(γ̄))ϕdsdt.
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Now applying the trace theorem, Lagrange mean value theorem and estimate (4.15), we can derive

∫ T

0

‖u′(γ̄)(γ − γ̄)− (u(γ)− u(γ̄))‖2Γadt

≤ C
∫ T

0
‖u′(γ̄)(γ − γ̄)− (u(γ)− u(γ̄))‖21,Ωdt

≤ C
∫ T

0
‖(γ − γ̄)(u(γ)− u(γ̄))‖2Γidt

= C
∫ T

0
‖(γ − γ̄)u′(ξ)(γ − γ̄)‖2Γidt ≤ c̄2‖γ − γ̄‖

4
Γi
,

where ξ is some element in K between γ and γ̄.

Lemma 4.3. Under the conditions (2.8), (4.10) and (4.11), if γk ∈ N(γ∗, b), then γk+1 generated by the
iteration (4.9) satisfies

∫ T

0

‖u′(γk)(γk+1 − γk)− (zδ − u(γk))‖2Γadt ≤ c̄3(‖γk − γ∗‖4Γi + δ2), (4.17)

‖γk+1 − γk‖2Γi ≤ c̄4(‖γk − γ∗‖2Γi + δ), (4.18)

where c̄3 and c̄4 are two constants given explicitly by c̄3 = max{2c̄2 + 2L̄+ 1, 3} and c̄4 = max{ 4c̄2√
c̄1

+ 1, 2}.

Proof. As γk+1 is a minimizer in (4.9), then by using the estimates (4.1), (4.12)-(4.13), the equality (4.10) and
Cauchy-Schwarz inequality, we derive

∫ T

0

‖u′(γk)(γk+1 − γk)− (zδ − u(γk))‖2Γadt ≤ Jk(γk+1) ≤ Jk(γ∗)

=

∫ T

0

‖u′(γk)(γ∗ − γk)− (u(γ∗)− u(γk)) + u(γ∗)− zδ‖2Γadt+ βk‖γ∗ − γk‖2Γi

≤ 2c̄2‖γk − γ∗‖4Γi + 2δ2 +

∫ T

0

‖u(γk)− u(γ∗) + u(γ∗)− zδ‖2Γadt‖γ∗ − γk‖2Γi

≤ 2c̄2‖γk − γ∗‖4Γi + 2δ2 + 2L̄‖γ∗ − γk‖4Γi + 2δ2‖γ∗ − γk‖2Γi
≤ (2c̄2 + 2L̄+ 1)‖γk − γ∗‖4Γi + (2 + δ2)δ2

≤ max{2c̄2 + 2L̄+ 1, 3}(‖γk − γ∗‖4Γi + δ2)

≡ c̄3(‖γk − γ∗‖4Γi + δ2).

Using the minimizing property of γk+1 in (4.9), the estimates (4.1) and (4.13), we can derive that

‖γk+1 − γk‖2Γi ≤
1

βk
Jk(γk+1) ≤ 1

βk
Jk(γ∗)

=
1

βk

∫ T

0

‖u′(γk)(γ∗ − γk)− (zδ − u(γk))‖2Γadt+ ‖γ∗ − γk‖2Γi

≤ 1

βk
(2c̄2‖γk − γ∗‖4Γi + 2δ2) + ‖γ∗ − γk‖2Γi

=
2c̄2‖γk − γ∗‖4Γi

‖u(γk)− zδ‖L2(0,T ;L2(Γa))
+

2δ2

‖u(γk)− zδ‖L2(0,T ;L2(Γa))
+ ‖γ∗ − γk‖2Γi . (4.19)
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We know the iterative process (4.9) terminates if
√
c̄1‖γk − γ∗‖Γi < 2δ or ‖u(γk)− zδ‖L2(0,T ;L2(Γa)) < δ by the

criterion (4.11). Otherwise we have
√
c̄1‖γk − γ∗‖Γi ≥ 2δ and ‖u(γk)− zδ‖L2(0,T ;L2(Γa)) ≥ δ, which yields that

2δ2/‖u(γk)− zδ‖L2(0,T ;L2(Γa)) ≤ 2δ and

‖u(γk)− zδ‖L2(0,T ;L2(Γa)) ≥ ‖u(γk)− u(γ∗)‖L2(0,T ;L2(Γa)) − ‖u(γ∗)− zδ‖L2(0,T ;L2(Γa))

≥
√
c̄1‖γk − γ∗‖Γi − δ ≥

√
c̄1‖γk − γ∗‖Γi −

√
c̄1
2
‖γk − γ∗‖Γi =

√
c̄1
2
‖γk − γ∗‖Γi≥

√
c̄1
2
‖γk − γ∗‖2Γi .

Now the desired estimate (4.18) follows directly from (4.19) and the above two estimates.

Lemma 4.4. Under the conditions (2.8), (4.10) and (4.11), let γk and γk+1 be two consequent iterates generated
by the iteration (4.9) and satisfy that γk, γk+1 ∈ N(γ∗, b), then

‖γk+1 − γ∗‖Γi ≤ c̄5(‖γk − γ∗‖2Γi + δ), (4.20)

where c̄5 is a constant given explicitly by c̄5 =
√

(2c̄3 + 4c̄2c̄24 + 1)/c̄1.

Proof. Similarly to the proof of Lemma 3.4, it is direct to derive (4.20) as follows:

c̄1‖γk+1 − γ∗‖2Γi ≤
∫ T

0

‖u(γk+1)− u(γ∗)‖2Γadt ≤
∫ T

0

‖u(γk+1)− zδ‖2Γadt+ δ2

≤ 2

∫ T

0

‖u′(γk)(γk+1 − γk) + u(γk)− (zδ)‖2Γadt+ 2c̄2‖γk+1 − γk‖4Γi + δ2

≤ (2c̄3 + 4c̄2c̄
2
4 + 1)(‖γk − γ∗‖4Γi + δ2) .

The same as we did in the previous section for the elliptic Robin problem, we make it clear now how all the
constants c̄1, . . ., c̄5 in our previous estimates depend on the size b of the neighborhood N(γ∗; b). We can easily
check that constants c̄2 and c̄3 in (4.13) and (4.17) are independent of the radius b, but the constants c̄1, c̄4
and c̄5 in (2.8) (4.18) and (4.20) respectively depend on b. So we write these three constants as c̄1(b), c̄4(b) and
c̄5(b) to emphasize their dependence on b. In addition, we introduce

r̄(b, δ) = min

b, b−
√
c̄4
(

1
3

)
δ√

c̄4
(

1
3

)
+ 1

 , ᾱ =

(√
c̄4

(
1

3

)
+ 1

)
c̄5

(
1

3

)
, β̄(x) = ᾱx+

√
c̄4

(
1

3

)
x ,

d̄0 =
1 + 2c̄4

(
1
3

)
− 2
√
c̄24
(

1
3

)
+ c̄4

(
1
3

)
4ᾱ2

, d̄ =
1

2
d̄0 .

Following the same arguments as we did for Theorem 3.5, we can derive our main result, namely, the quadratic
convergence of the L-M iteration (4.9).

Theorem 4.5. For any b ∈
[

1−
√

1−4ᾱβ̄(d̄)

2ᾱ ,
1+
√

1−4ᾱβ̄(d̄)

2ᾱ

]
, we assume the noise level is small such that

δ < min

{
b2

c̄4
(

1
3

) , d̄} , (4.21)
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and the conditions (2.8), (4.10) and (4.11) are satisfied, then for any γ0 ∈ N(γ∗, r̄(b, δ)), the sequence {γk}
generated by (4.9) stay always in N(γ∗, b) and satisfies

‖γk+1 − γ∗‖Γi ≤ c̄5
(

1

3

)
(‖γk − γ∗‖2Γi + δ).

4.3. Surrogate functional method

Based on the same motivation as we did in Section 3.3 for the elliptic Robin inverse problem, we apply the
surrogate functional method to essentially simplify the solution to the minimization (4.9) involved in each step
of the L-M iteration, resulting in explicit solutions at each iteration. For this purpose, we construct an auxiliary
surrogate functional Jsk(γ, ζ) of Jk(γ) of the form for a given ζ ∈ K:

Jsk(γ, ζ) = Jk(γ) +A‖γ − ζ‖2Γi −
∫ T

0

‖u′(γk)(γ − ζ)‖2Γadt, (4.22)

where A is any positive constant such that
∫ T

0
‖u′(γk)d‖2Γadt ≤ A‖d‖2Γi for d ∈ L2(Γi). Now we can convert the

functional Jsk(γ, ζ) in (4.22) into a more explicit representation by using the relation (4.5):

Jsk(γ, ζ) =

∫ T

0

‖u′(γk)(γ − γk)− (zδ − u(γk))‖2Γadt+ βk‖γ − γk‖2Γi +A‖γ − ζ‖2Γi

−
∫ T

0

‖u′(γk)(γ − ζ)‖2Γadt

= −2

〈
γ,

∫ T

0

u(γk)

{
u′(γk)∗

(
zδ − u(γk) + u′(γk)(γk − ζ)

u(γk)

)}
dt

〉
Γi

+ βk‖γ − γk‖2Γi

+A‖γ − ζ‖2Γi +

∫ T

0

‖zδ − u(γk) + u′(γk)(γk)‖2Γadt−
∫ T

0

‖u′(γk)(ζ)‖2Γadt

= A‖γ − ζ − 1

A

∫ T

0

u(γk)

{
u′(γk)∗

(
zδ − u(γk) + u′(γk)(γk − ζ)

u(γk)

)}
dt‖2Γi + βk‖γ − γk‖2Γi

+

{∫ T

0

‖zδ − u(γk) + u′(γk)(γk)‖2Γadt−
∫ T

0

‖u′(γk)(ζ)‖2Γadt+A‖ζ‖2Γi

−A‖ζ +
1

A

∫ T

0

u(γk)

{
u′(γk)∗

(
zδ − u(γk) + u′(γk)(γk − ζ)

u(γk)

)}
dt‖2Γi

}
. (4.23)

We note the last term in (4.23) is a constant, so we drop the term in the functional Jsk(γ, ζ) to get

min
γ∈K

Jsk(γ, ζ)= min
γ∈K

A‖γ−ζ− 1

A

∫ T

0

u(γk)

{
u′(γk)∗

(
zδ−u(γk)+u′(γk)(γk−ζ)

u(γk)

)}
dt‖2Γi+βk‖γ−γ

k‖2Γi .

Then it is easy to find the exact minimizer to this quadratic minimization:

argmin
γ∈K

Jsk(γ, ζ) =
1

A+ βk

(
βkγ

k +Aζ +

∫ T

0

u(γk)

{
u′(γk)∗

(
zδ − u(γk) + u′(γk)(γk − ζ)

u(γk)

)}
dt

)
. (4.24)

This motivates us with the following reconstruction algorithm that is computationally much easy and less
expensive than the minimization (4.9).
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Algorithm 4.6. Choose two tolerance parameters ε1, ε2 > 0 and an initial value γ0, set k := 0.

1. Compute γk+1: set ζ0 = γk and n := 0.
(1.1). Compute

ζn+1 = argmin
γ∈K

Jsk(γ, ζn)

=
1

A+ βk

(
βkγ

k +Aζn +

∫ T

0

u(γk)

{
u′(γk)∗

(
zδ − u(γk) + u′(γk)(γk − ζn)

u(γk)

)}
dt

)
.

(1.2). If
‖ζn+1−ζn‖Γi
‖ζn‖Γi

≤ ε1, set γk+1 = ζn+1, go to Step 2; otherwise set n := n+ 1, go to Step (1.1).

2. If
‖γk+1−γk‖Γi
‖γk‖Γi

≤ ε2, stop the iteration; otherwise set k := k + 1, go to Step 1.

5. Numerical experiments

In this section, we present several numerical examples to check the efficiency and accuracy of Algorithms 3.6
and 4.6 for recovering the Robin coefficients in the elliptic and parabolic systems (1.1) and (1.2) respectively.
We choose the domain Ω = (0, 1)× (0, 2) and triangulate it into N ×M small squares of equal size and further
divide each square through its diagonal into two triangles. This results in a finite element triangulation of
domain Ω. All the elliptic problems involved in Algorithms 3.6 are solved by the continuous linear finite element
method, while all the parabolic problems in Algorithm 4.6 are solved by the continuous linear finite element
method in space and the backward difference scheme in time.

The parameters involved in Algorithms 3.6 and 4.6 are chosen as follows. The initial guesses are set to be
identically equal to some constants, which as we see are rather poor initial guesses for all the test problems.
The noisy data zδ is obtained by adding some uniform random noise to the exact data, i.e., zδ = u + δRu,
where R is a uniform random function varying in the range [−1, 1]. Let γ∗ and γk be the exact parameter and
its numerical reconstruction by Algorithms 3.6 and 4.6 respectively at the kth L-M iteration. We shall compute
the absolute and relative errors:

ek = ‖γk − γ∗‖Γi and ēk =
‖γk − γ∗‖Γi
‖γ∗‖Γi

.

We choose two examples for the Robin coefficient reconstructions on the partial boundary Γi = {(x, y); x =
1, 0 ≤ y ≤ 2} in the elliptic system (1.1), where we take a(x) = c(x) = 1 in Ω, the ambient temperature
g = 2 + (cos(πy) + 1)γ(x) on Γi, the heat flux h = 0 on Γa, the source strength f = (π2 + 1) cos(πy) + x2 − 2
and the exact forward solution u = x2 + cos(πy) in Ω. We set the mesh N = 16 and M = 32, two tolerance
parameters ε1 = 2× 10−3, ε2 = 0.01, the constant A = 1 and the initial guess γ0 = 2.

Example 5.1. In this example, we fix the noise level δ = 2% and select two different exact Robin coefficients
to verify the efficiency and accuracy of the proposed Algorithm 3.6:

(1) γ = 3− sin(π2 y) on Γi;
(2) γ = (y − 1)2 + 2 on {(x, y) ∈ Γi; 0 ≤ y ≤ 1} and γ = −(y − 1)2 + 2 on {(x, y) ∈ Γi; 1 ≤ y ≤ 2}.

Example 5.2. In this example, we take the exact Robin coefficient γ = −(y − 1)2 + 2 on Γi. In order to check
the quadratic convergence of Algorithm 3.6, we turn off the noise, i.e., the noise level δ = 0.

Figure 1 presents the exact and reconstructed Robin coefficients, the L-M iteration number k and the relative
error ēk for Example 5.1, while Table 1 lists the absolute error ek and the ratio ek/e

2
k−1 for Example 5.2. We can

see from Figure 1 that the numerical reconstructed Robin coefficients appear to be quite satisfactory, even with
very rough initial guesses (the same constant everywhere) in the presence of a 2% noise in the data. Moreover,
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Figure 1. Exact and reconstructed Robin coefficients for Example 5.1: (1) k = 4, ēk = 0.0168;
(2) k = 5, ēk = 0.0252.

Table 1. Numerical results for Example 5.2.

k ek ek/e
2
k−1

0 0.6325 –
1 0.3567 0.8915
2 0.1343 1.0555
3 0.0139 0.7695

Table 1 shows that ek and e2
k−1 are of the same order approximately, which indeed confirms the quadratic

convergence of our proposed Algorithm 3.6.
Next, we demonstrate two numerical examples of reconstructing the Robin coefficient γ(x) on the partial

boundary Γi = {(x, y); x = 1, 0 ≤ y ≤ 2} in the parabolic system (1.2) with a(x) = 1 and T = 2. We take the
ambient temperature g = (2 + (cos(πy) + 1)γ(x))t on Γi × [0, T ], the heat flux h = 0 on Γa × [0, T ], the source
strength f = cos(πy) + x2 + (π2 cos(πy)− 2)t and the exact forward solution u = (x2 + cos(πy))t in Ω × [0, T ].
We set the mesh N = 16 and M = 32, two tolerance parameters ε1 = 2× 10−3, ε2 = 0.01, the constant A = 1
and the initial guess γ0 = 2.

Example 5.3. We take the noise level δ = 2% and select two different exact Robin coefficients:
(1) γ = − 1

2 (y − 1)2 + 2 on Γi; (2) γ = 1
2 (sin(π2 y) + y

1
4 ) + 1 on Γi

to verify the efficiency and accuracy of the proposed Algorithm 4.6.

Example 5.4. We take the exact Robin coefficient γ = −(y − 1)2 + 2 on Γi. In order to check the quadratic
convergence of Algorithm 4.6, we turn off the noise, i.e., the noise level δ = 0.

Figure 2 presents the exact and reconstructed Robin coefficients, the L-M iteration number k and the relative
error ēk for Example 5.3. Table 2 lists the absolute error ek and the ratio ek/e

2
k−1 for Example 5.4. As we can

observe from Figure 2, the numerical recovered Robin coefficients are quite satisfactory, even with some very
rough initial guesses (just a constant in the whole Γi) in the presence of a 2% noise in the data. And we also
notice that Algorithm 4.6 converges quite fast, with about 5 to 6 iterations. More importantly, we can see from
Table 2 that ek and e2

k−1 are about the same order, confirming a quadratic convergence of Algorithm 4.6.
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Figure 2. Exact and reconstructed Robin coefficients for Example 5.3: (1) k = 5, ēk = 0.0158;
(2) k = 6, ēk = 0.0275.

Table 2. Numerical results for Example 5.4.

k ek ek/e
2
k−1

0 0.6325 –
1 0.4404 1.1007
2 0.2615 1.3479
3 0.1237 1.8082
4 0.0501 3.2745

6. Concluding remarks

We have justified in this work the uniqueness of the elliptic and parabolic Robin inverse problems. Then the
L-M iterative method is formulated to solve the nonlinear Tikhonov regularized optimizations, which transform
the original highly nonlinear and nonconvex minimizations into convex minimizations. We have established the
quadratic convergence and the quadratic rate of convergence for the L-M iterations for the highly ill-posed
nonlinear elliptic and parabolic Robin inverse problems. This appears to be the first time in literature to
achieve the quadratic convergence and the quadratic rate of convergence for the L-M iterations rigorously for a
highly nonlinear and ill-posed inverse problem, in combination with a simple and easily implementable choice
rule of regularization parameters. The surrogate functional techniques have been applied to solve the convex
minimizations at each L-M iteration, which lead to explicit expressions of the minimizers for both the elliptic
and parabolic cases, resulting in two computationally very efficient solvers for the highly ill-posed nonlinear
inverse problems. Numerical experiments have demonstrated the computational efficiency of the methods and
their robustness against the noise in the observation data.

Acknowledgements. The authors would like to thank two anonymous referees for their many constructive comments and
suggestions, which have helped us improve the organisation and the quality of the paper essentially.
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