The authors study an integral inverse problem arising in the biology of the olfactory system. The transduction of an odor into an electrical signal is accomplished by a depolarising influx of ions through cyclic-nucleotide-gated (CNG for short) channels on the cilium membrane. The inverse problem studied in this paper consists in finding the spatial distribution of the CNG channels from the measured transduce electrical signals. The Mellin transform allows us to write an explicit formula for its solution. Proving observability and continuity inequalities is then a question of estimating the Mellin transform of the kernel of this integral equation on vertical lines. New estimates using arguments in the spirit of the stationary phase method are proven and a numerical scheme is proposed to reconstruct the density of CNG channels from modeled current representing experimental data, for an approximated model. For the original model an identifiability and a non observability (in some weighted L2 spaces) results are proven.
Accepté le :
DOI : 10.1051/m2an/2017062
@article{M2AN_2018__52_5_2083_0, author = {Bourgeron, Thibault and Conca, Carlos and Lecaros, Rodrigo}, title = {Determining the distribution of ion channels from experimental data}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {2083--2107}, publisher = {EDP-Sciences}, volume = {52}, number = {5}, year = {2018}, doi = {10.1051/m2an/2017062}, zbl = {1411.92040}, mrnumber = {3900702}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2017062/} }
TY - JOUR AU - Bourgeron, Thibault AU - Conca, Carlos AU - Lecaros, Rodrigo TI - Determining the distribution of ion channels from experimental data JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2018 SP - 2083 EP - 2107 VL - 52 IS - 5 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2017062/ DO - 10.1051/m2an/2017062 LA - en ID - M2AN_2018__52_5_2083_0 ER -
%0 Journal Article %A Bourgeron, Thibault %A Conca, Carlos %A Lecaros, Rodrigo %T Determining the distribution of ion channels from experimental data %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2018 %P 2083-2107 %V 52 %N 5 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2017062/ %R 10.1051/m2an/2017062 %G en %F M2AN_2018__52_5_2083_0
Bourgeron, Thibault; Conca, Carlos; Lecaros, Rodrigo. Determining the distribution of ion channels from experimental data. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 5, pp. 2083-2107. doi : 10.1051/m2an/2017062. http://www.numdam.org/articles/10.1051/m2an/2017062/
[1] Du calcul des dérivations. Levrault frères (1800).
,[2] Identification of cl(ca) channel distributions in olfactory cilia. Math. Meth. Appl. Sci. 31 (2008) 1860–1873. | DOI | MR | Zbl
, , and ,[3] Estimating the division rate of the growth-fragmentation equation with a self-similar kernel. Inverse Probl. 30 (2014) 025007–025028. | DOI | MR | Zbl
, and ,[4] Cyclic AMP diffusion coefficient in frog olfactory cilia. Biophys. J. 76 (1999) 2861–2867. | DOI
, and ,[5] Determination of the calcium channel distribution in the olfactory system. J. Inverse Ill-Posed Probl. 22 (2014) 671–711. | DOI | MR | Zbl
, , and ,[6] Regularization of Inverse Problems. Vol. 375 of Mathematics and its Applications. Springer (1996). | MR | Zbl
, and ,[7] Molecular and Cellular Physiology of Neurons. Harvard University Press, 2nd edition (2014).
, and ,[8] Clustering of cyclic-nucleotide-gated channels in olfactory cilia. Biophys. J. 91 (2006) 179–188. | DOI
, and ,[9] Perturbation approximation of solutions of a nonlinear inverse problem arising in olfaction experimentation. J. Math. Biol. 55 (2007) 745–765. | DOI | MR | Zbl
and ,[10] Integral equation models for the inverse problem of biological ion channel distributions. J. Phys.: Conf. Ser. 73 (2007) 1742–6596.
and ,[11] Numerical approximation of solutions of a nonlinear inverse problem arising in olfaction experimentation. Math. Comput. Model. 43 (2006) 945–956. | DOI | MR | Zbl
, , , and ,[12] Origin of the chloride current in olfactory transduction. Neuron 11 (1993) 123–132. | DOI
,[13] Both external and internal calcium reduce the sensitivity of the olfactory cyclic-nucleotide-gated channel to camp. J. Neurophysiol. 81 (1999) 2675–2682. | DOI
,[14] Calcium-activated chloride conductance in frog olfactory cilia. J. Neurosci. 11 (1991) 3624–3629. | DOI
and ,[15] Transmembrane currents in frog olfactory cilia. J. Membr. Biol. 120 (1991) 75–81. | DOI
and ,[16] An electrophysiological survey of frog olfactory cilia. J. Exp. Biol. 195 (1994) 307–328. | DOI
, and ,[17] Cyclic GMP diffusion coefficient in rod photoreceptor outer cyclic gmp diffusion coefficient in rod photoreceptor outer cyclic gmp diffusion coefficient in rod photoreceptor outer segments. Biophys. J. (1995) 373–382.
, and ,[18] Robert Hjalmar Mellin. Adv. Math. 61 (1933) i–vi. | JFM | MR
,[19] The deconvolution problem: an overview. Proc. IEEE 74 (1986) 82–85. | DOI
,[20] Fourier Analysis on Groups. Interscience Publishers, Inc., New York (1962). | MR | Zbl
Cité par Sources :