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DETERMINING THE DISTRIBUTION OF ION CHANNELS FROM

EXPERIMENTAL DATAI

Thibault Bourgeron1,2,*, Carlos Conca3 and Rodrigo Lecaros4

Abstract. The authors study an integral inverse problem arising in the biology of the olfactory
system. The transduction of an odor into an electrical signal is accomplished by a depolarising influx
of ions through cyclic-nucleotide-gated (CNG for short) channels on the cilium membrane. The inverse
problem studied in this paper consists in finding the spatial distribution of the CNG channels from the
measured transduce electrical signals. The Mellin transform allows us to write an explicit formula for
its solution. Proving observability and continuity inequalities is then a question of estimating the Mellin
transform of the kernel of this integral equation on vertical lines. New estimates using arguments in the
spirit of the stationary phase method are proven and a numerical scheme is proposed to reconstruct the
density of CNG channels from modeled current representing experimental data, for an approximated
model. For the original model an identifiability and a non observability (in some weighted L2 spaces)
results are proven.
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1. Introduction

1.1. Olfactory transduction via inverse modelling

Identification of detailed features of neuronal systems is a major issue in the biosciences for the coming
years. In this respect, inverse problem methods and models have already shown not only to be efficient but
also to have given answers to relevant questions regarding the transduction of chemical information into an
electrical signal [5, 11, 12]. As a contribution to this field, this paper proposes and analyses a new mathematical
model to determine the spatial distribution of CNG ion channels along the length of a cilium. It corresponds
to a new approach for a simplified model developed by D.A. French et al. in [11]. We present both theoretical
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2 INRIA Numed, 46 allée d’Italie, 69007 Lyon, France.
3 Department of Engineering Mathematics, Center for Mathematical Modelling (CMM), UMI 2807 CNRS-Chile & Center for
Biotechnology and Bioengineering (CeBiB), University of Chile, Santiago, Chile.
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and numerical results, which are contrasted with modeled current representing experimental data obtained by
French in [10].

Cilia are long thin cylindrical structures that extend from an olfactory receptor into the nasal mucus. When
an odorant molecule binds to an olfactory receptor in a cilium membrane, it successively activates two enzymes,
which results in an increase in the concentration of cyclic adenosine monophosphate (cAMP) concentration
within the olfactory receptor neuron. Some of the cAMP binds to cyclic nucleotide-gated (CNG) ion channels,
causing them to open. This allows a depolarizing influx of Na+ ions to flow into the cell, which causes the
neuron to depolarize. More details about this biological mechanism can be found in the textbook [7] (Part five,
16, II), for instance. Although the single-channel properties have been well described, the distribution of these
channels along the cilia remains still widely unknown and may well turn out to be crucial in determining the
kinetics of the neuronal response.

Experimental procedures to isolate a single (grass frog) cilium have been developed in [8, 12, 14, 15, 16].
One olfactory cilium is drawn into a pipette which is then moved to a pseudo intracellular bath which contains
no cAMP. The pipette containing the cilium is then transferred to a bath containing cAMP. Contact with the
bath initiates the diffusion of cAMP into the cilium. The transmembrane electrical current through the cilium
is recorded.

A very natural issue is whether it is possible to determine the CNG channel distribution along the length of
a cilium from transmembrane experimental current data. In [11] the authors proposed a mathematical model
for the dynamics of cAMP concentration in this experiment, consisting of two nonlinear differential equations
and a constrained Fredholm integral equation of the first kind. Numerical methods to compute the channel
distribution were proposed in [9, 11]. However, specific computations indicated that this mathematical problem
is highly ill-conditioned.

To determine mathematically the CNG channels distribution along the cilium, some simplifications proposed
in [10] and resulted in the inverse problem of determining a function, say ρ = ρ(x) > 0, representing the
distribution of the CNG channels, from measurements in time of the transmembrane electrical current, denoted
I0[ρ]. This mathematical model for ρ is an integral equation of the following form:

∀t > 0 I0[ρ](t) :=

∫ L

0

ρ(x)H0(c(t, x)) dx, (1.1)

where H0 is known as the Hill function of exponent n > 0. It is defined by:

∀c > 0 H0(c) :=
cn

cn +Kn
1/2

. (1.2)

In this definition, the parameter n represents the average number of bound molecules when a CNG ion channel
opens, while K1/2 > 0 represents the half-bulk concentration. These parameters are experimentally determined.
On the other hand, in the integral equation (1.1), c(t, x) denotes the concentration of cAMP. This ligand diffuses
along the cilium with a diffusivity constant D. In (1.1), L denotes the length of the cilium, which, for simplicity,
is assumed to be one-dimensional.

Hill type functions are extensively used in biochemistry to model the fraction of ligand bound to a macro-
molecule as a function of the ligand concentration. Since the presence of cAMP on the cilium membrane triggers
the opening of the CNG channels, in equation (1.1), the quantity H0(c(t, x)) models the fraction of opened CNG
channel as a function of the cAMP concentration. In others words, H0(c(t, x)) can be regarded as the probability
of opening of a CNG channel as a function of the cAMP concentration; see [13] for more details. After [5, 10],



DETERMINING THE DISTRIBUTION OF ION CHANNELS FROM EXPERIMENTAL DATA 2085

we assume that c(t, x) is known, analytically, and given by:

c(t, x) := c0 erfc

(
x

2
√
Dt

)
, (1.3)

where c0 > 0 is the maintained concentration of cAMP with which the pipette comes into contact at the open
end (x = 0) of the cilium (while x = L is the closed end). Here, erfc := 1 − erf and erf is the Gauss error
function:

erf(z) := 2π−1/2
∫ z

0

e−τ
2

dτ.

Accordingly, it is straightforward to check that c is decreasing in both its variables and that it remains bounded:
for all (t, x), 0 6 c(t, x) 6 c0.

Despite its elegance, thanks to the simplicity of its formulation, the model (1.1) to recover ρ from I0[ρ] does
not overcome the unsatisfactory issues found in its non-linear version, it still leads to several theoretical and
practical difficulties due to the fact that this problem is ill-posed, mathematically. Indeed, since H0(c(t, x)) is
a smooth mapping, the operator ρ 7→ I0[ρ] is compact from Lp(0, L) to Lp(0, T ) for every L, T > 0, 1 < p <∞.
Thus, even if the operator I0 would be injective, its inverse would not be continuous, because if so, then the
identity map in Lp(0, L) would be compact, which is knowingly false.

As already mentioned, the quantity H0(c(t, x)) in (1.2) is a typical choice in biochemical contexts. However,
from a purely mathematical viewpoint, it is clear, from the proofs contained in this paper, that any model
based on a first-order integral equation which has a diffusive and smooth kernel, gives rise to an ill-posed
inverse problem. Thus, an approximation of H0(c(t, x)) by a non-diffusive and non-smooth kernel seems to be
inevitable when proposing a mathematical model for this biochemical process.

A natural way to overcome this ill-posedness of the model (1.1) consists of replacing the kernel of the integral
equation with a non-smooth variant of the Hill function. Precisely, let a ∈ (0, c0) be a given real parameter. The
new kernel we consider is obtained by keeping the original Hill function H0 in the interval [0, a], and by forcing
a saturation state for higher concentrations. Thereby, we are led to introduce the following disruptive version
of H0 (see Fig. 1):

H1(c) := H0(c)1c6a + 1a<c6c0 , (1.4)

where 1J denotes the characteristic function of the interval J . Based on (1.4), we are now in a position of
proposing an inverse mathematical model to recover the distribution of the CNG channels ρ from the measured
transmembrane electrical current, which is now modeled by the integral operator:

I1[ρ](t) :=

∫ L

0

ρ(x)H1(c(t, x)) dx, (1.5)

where c(t, x) is still defined by (1.3). From a mathematical viewpoint the approximation made can be understood
by the fact, as t tends to +∞, the factor x/

√
Dt appearing in (1.3) tends to 0, and consequently c(t, x) tends

to c0.

1.2. Main results

The main aim of this paper is to study model (1.5). We consider the direct problem and associated inverse
problems. We prove identifiability and observability results, as well as continuity/stability with respect to
measured data. Since (1.5) is a Fredholm equation of the first type, it is natural to tackle it using the convolution
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Figure 1. The Hill function H0, defined by (1.2), and its disruptive version H1 (dashed line)
defined by (1.4), for a = 0.157.

formalism. The convolution is of multiplicative type and the Mellin transform1 is the most appropriate tool to
carry out this task. In particular, we prove that problem (1.5) admits a unique solution in a weighted L2 space,
and that it depends continuously on the first derivative (I1[ρ])′ of the corresponding measured current. Moreover,
this method allows us to reconstruct the CNG channels distribution ρ from the modeled experimental data,
using numerical simulations.

More precisely, let us introduce the following notations regarding weighted Banach spaces. For q in R,
q + iR denotes the vertical line {q + it, t ∈ R} of the complex plane having abscissa q, and for p ∈ R (p > 1),
Lp ([0,∞), xq), or simply Lpq , stands for the Lebesgue space with the weight xq, i.e.,

Lpq =
{
f : [0,∞)→ R | ‖f‖Lp

q
< +∞

}
,

where

‖f‖Lp
q

=

(∫ ∞
0

|f(x)|p xq dx

)1/p

.

The space Lpq endowed with this norm is a Banach space.

As we shall see, integral operator (1.5) can be written in terms of a multiplicative convolution. Thus our
problem comes down to a deconvolution problem. We refer the reader to [19] and the references therein, for
an introduction to this subject. A classical tool to tackle a deconvolution problem is the Fourier transform. It
changes an additive convolution into a pointwise product of Fourier transforms. In this paper we use the Mellin
transform, which changes a multiplicative convolution into a pointwise product of Mellin transforms. The sought
for inequalities of stability and observability for model (1.5) is reduced to find lower and upper bounds in Lpq
spaces for the Mellin transform of suitable functions involving H1(c(t, x)). This study allows us to determine
the unique ion channels distribution from measurements of the transmembrane electric current. More precisely,
we prove the following theorem.

1Hjalmar Mellin (1854–1933), see [18] for a summary of his works, gave his name to the so-called Mellin transform, which
definition and some properties are recalled in Section 2.
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Theorem 1.1 (Existence and uniqueness of ρ). Let a > 0 and r < 1 be given. If I1 ∈ L2
(r−3)/2, I′1 ∈ L2

2+(r−3)/2
and a has a small enough value, then there exists a unique ρ ∈ L2

r which satisfies the following stability condition:

‖I1‖L2
(r−3)/2

+ ‖(I1)′‖L2
2+(r−3)/2

> C ‖ρ‖L2
r
,

where C > 0 depends only on a and r.

It is worth mentioning that since the original model (1.1) is also a Fredholm integral equation of the first
kind, it is natural to apply here, also, the Mellin transform. By doing this, interesting negative results can be
derived: neither an observability inequality nor a numerical reconstruction algorithm for ρ can be established.
However, an identifiability result holds true if the transmembrane electric current is measured over an open
time interval (see Prop. 4.11). More precisely, we establish the following result.

Proposition 1.2. Let r < 0 and ρ ∈ L1
r. We consider the operator I0[ρ] defined by (1.1), (1.2), (1.3). If there

exists a non empty open set U of (0,∞) such that:

∀t ∈ U I0[ρ](t) = 0,

then ρ = 0 a.e. on (0,∞).

1.3. Complementary results

Another natural way to tackle the ill-posedness of problem (1.1) was developed in [5]. Exploiting the fact
that the Hill function converges pointwise to a single step function as the exponent n goes to +∞, the method
used in [5] was to approximate H0 by a multiple step function. Precisely, let 0 < α1 < α2 < · · · < αm < c0 be
a sequence of real points and (ak)16k6m be m positive weights such that

∑m
j=1 aj = 1. Then, an approximate

transmembrane electrical current is introduced through the integral equation:

I2[ρ](t) :=

∫ L

0

ρ(x)H2(c(t, x)) dx, (1.6)

where the kernel H2 is defined as:

H2(c) :=

m∑
j=1

aj 1c>αj . (1.7)

Based in different assumptions on the spaces where the unknown ρ is sought, identifiability, stability and
reconstruction results were obtained using other than Mellin transform techniques. In this paper, we also revisit,
very briefly, an inverse problem associated to (1.6) under the perspective of the Mellin transform. Doing this,
we are able to improve the observability result obtained in [5] and recover the continuity of the solution with
respect to experimental data on the transduce electrical signal. Exactly, in Section 4 we prove Proposition 4.2,
which can be anticipated as follows.

Proposition 1.3. Let I2[ρ] be defined by (1.3), (1.7), (1.6). Suitable hypotheses on r imply the following results.

• There exist constants C,C ′ > 0 such that, for every ρ in L2
r, we have:

‖I2[ρ]‖L2
(r−3)/2

6 C ‖ρ‖L2
r
, and ‖(I2[ρ])′‖L2

(r+1)/2
6 C ′ ‖ρ‖L2

r
. (1.8)
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• There exists a constant C > 0 such that, for every (I2[ρ])′ in L2
(r+1)/2, we have:

‖(I2[ρ])′‖L2
(r+1)/2

> C ‖ρ‖L2
r
. (1.9)

1.4. Outline

The paper is organized as follows. Section 2 presents some definitions and results concerning the Mellin
transform. Section 3 introduces the main idea for using the Mellin transform to invert the integral opera-
tors I0, I1, I2. In Section 4, continuity and observability inequalities are stated and proved. For two different
approximations of the Hill function we obtain positive results and for the original Hill function we obtain an
identifiability result and a non observability result. The proof of the technical Lemma 4.10 is postponed up to
Appendix A. Section 5 presents some numerical simulations illustrating the theoretical results of Section 4, and
other simulations performed with modeled experimental data.

2. The Mellin transform

The construction of the Mellin transform on iR can be done in the general context of the Fourier transform
on a locally compact abelian group, we refer the reader to chapter 1 of [20]. Here we consider the multiplicative
abelian group G = (0,∞) (with unit 1), equipped with the topology inherited from R and with the Haar measure
dx
x (that is the unique measure on G, up to a positive multiplicative constant, which is translation-invariant).

It is easy to show that the dual group Γ of all the characters of G with the Gelfand topology is isomorphic
to iR with the topology inherited from C via iR → Γ it 7→ (x 7→ x−it). In this general context the L1 and
L2 theories can be built, with the same results, as the Fourier transform on the topological group (Rn,+, dx).
The extension of the Mellin transform to a vertical strip q + iR of the complex plane C is obtained by defining
Mf(q + it) =Mg(it) with g(x) = xqf(x).

Notation 2.1 (Pochhammer symbol). For a real number x and a non-negative integer n we write: (x)0 = 1

and (x)n = x · · · (x− n+ 1) =
∏n−1
j=0 (x− j) for n > 1.

Throughout this paper we also assume that the nullary product is one. For instance: ∀q ∈ R, k ∈ N (xq)
(k)

=
(q)k x

q−k.

Notation 2.2. For a function f : q + iR→ C we denote ‖f‖Lp(q+iR) =
(∫

R |f(q + it)|p dt
)1/p

. We also denote

Lp(q + iR) the Banach space Lp (q + iR, dx) with the norm ‖ ‖Lp(q+iR).

Definition 2.3. Let f be in L1
q. The Mellin transform of f is a complex valued function defined on the vertical

line q + 1 + iR by:

Mf(s) :=

∫ ∞
0

xsf(x)
dx

x
.

Theorem 2.4 (Riemann-Lebesgue). The Mellin transform is a linear continuous map of L1
q into C0(q + 1 +

iR) ⊂ L∞(q + 1 + iR), its operator norm is 1.

Proposition 2.5. If f is in L1
q for every real number q in (a, b) then its Mellin transform Mf is holomorphic

in the strip S = {s ∈ C | a+ 1 < Re s < b+ 1}.
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Proposition 2.6.

Function Mellin transform
f(at), a > 0 a−sMf(s)

f(ta), a 6= 0 |a|−1Mf(a−1s)

f (k)(t) (−1)k(s− k)kMf(s− k)

Examples.

• For erfc(z) = 2π−1/2
∫ +∞
z

exp(−t2) dt, one obtains, after integrating by parts, for Re s > 0 :

M erfc(s) =
1√
πs
Γ

(
s+ 1

2

)
.

• If H0 is the Hill function, then 1−H0(x) = f(K−n1/2x
n) with f(x) = 1

1+x . Using that Mf(s) = π
sin(πs) for

0 < Re s < 1 and Proposition 2.6, one obtains, for 0 < Re s < n:

M(1−H0)(s) = Ks
1/2

1

n
Mf

( s
n

)
=
π

n

Ks
1/2

sin πs
n

.

Theorem 2.7 (Inversion Theorem). If f is in L1
q and if ‖Mf‖L1(q+1+iR) is finite, then one can define

M−1q f(x) = (2π)−1
∫
R
f(q + it)x−(q+it) dt.

The Inversion Theorem states that:

f =M−1q+1(Mf) a.e. in (0,∞).

Definition 2.8. For two functions f, g we define the multiplicative convolution f ∗ g by:

(f ∗ g)(x) =

∫ ∞
0

f(y) g

(
x

y

)
dy

y
.

Proposition 2.9.

M(f ∗ g)(s) =Mf(s)Mg(s),

whenever this expression is well defined.

Proposition 2.10. For a function f in L1
q−1 ∩ L2

2q−1, we have:

‖f‖L2
2q−1

= (2π)−1/2 ‖Mf‖L2(q+iR) .

As the subspace L1
q−1 ∩ L2

2q−1 is dense in L2
2q−1 this identity allows us to extend the Mellin transform to

L2
2q−1.

Theorem 2.11 (Plancherel Transform). According to the previous formula the Mellin transform can be
extended, in a unique manner, to an isometry (up to the multiplicative constant (2π)−1/2) of L2

2q−1 onto
L2(q + iR).
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3. Application of the Mellin transform

In this section we use Mellin transform to study an integral equation of the same type as the three equa-
tions considered in the introduction, namely (1.1), (1.5), (1.6). Since all results are valid for all three models,
we momentarily unify the notation and simply write H for Hl, l = 0, 1, or 2, and I[ρ] the corresponding
transmembrane electrical current. Thus in this section we focus on the following generic equation:

∀t > 0 I[ρ](t) =

∫ L

0

ρ(x)H(c(t, x)) dx, (3.1)

where c(t, x) is still defined by (1.3). One key observation is that the kernel H(c(t, x)) in (3.1) can be written

as a function of z =
√
t
x . Indeed, let us introduce functions G and J defined by:

G(z) := H(c0 erfc(2−1D−1/2z−1)) and J(y) := H(c0 erfc(y)). (3.2)

Then (3.1) can be rewritten as follows:

∀t > 0 I[ρ](t) =

∫ L

0

ρ(x)G

(√
t

x

)
dx. (3.3)

As we see right away, this latter expression allows us to rewrite the integral equation (3.1) as a multiplicative
convolution equation with respect to the Mellin transform. But to achieve this, it is necessary to change the
time scale t to t2 and the unknown ρ(x) to xρ(x). Precisely, by virtue of Definition 2.8, the following formal
identity holds:

I[ρ](t2) =

∫ ∞
0

xρ(x)1x∈[0,L]G

(
t

x

)
dx

x
=
(
xρ(x)1x∈[0,L]

)
∗G, (3.4)

where ∗ is the multiplicative convolution. For the sake of simplicity, in all the sequel, we denote ρ(x) =
ρ(x)1x∈[0,L], i.e. the function ρ is extended by 0 on [L,∞).

Taking the Mellin transform of this identity we obtain:

MG(s)Mρ(s+ 1) =MG(s)M (xρ(x)) (s)

=M
(
I[ρ](t2)

)
(s) =

1

2
M I[ρ](s/2).

(3.5)

Proposition 2.6 shows that the functions G and J and their Mellin transforms are linked by the following
relations:

G(x) = J(2−1D−1/2x−1) and MG(s) = 2−sD−s/2MJ(−s). (3.6)

Thus, we obtain, formally

Mρ(s+ 1) = 2s−1Ds/2M I[ρ] (s/2)

MJ(−s)
. (3.7)

Therefore, finding continuity or observability inequalities for the operator I[ρ] is reduced to boundingMJ(s)
from above or from below respectively, on the vertical line on which the inverse Mellin transform is taken. The
following lemma makes this link precise.
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Lemma 3.1. Let k ∈ N, r ∈ R and let us consider the operators I, G, J defined by (3.3), (3.2). We have the
following bounds:

Cl ‖ρ‖L2
r
6
∥∥∥(I[ρ])(k)

∥∥∥
L2

2k+ r−3
2

6 Cu ‖ρ‖L2
r
, (3.8)

where

Cl = 21/2 inf
s∈ r−1

2 +iR

∣∣∣(s
2

)
k
MG(s)

∣∣∣ , Cu = 21/2 sup
s∈ r−1

2 +iR

∣∣∣(s
2

)
k
MG(s)

∣∣∣ ,
do not depend on ρ in L2

r.

It is worth noting that Cu and Cl can range from 0 to +∞.

Proof of Lemma 3.1. The proof consists in taking the equation (3.5), making computations in the Mellin vari-
ables, and coming back to the real variables, using twice the isometry induced by the Mellin transform on L2

spaces, see Theorem 2.11.

The equality (3.5) leads to:

M I[ρ](s) = 2MG(2s)Mρ(2s+ 1)

(s− k)kM I[ρ](s− k) = 2(s− k)kMG(2(s− k))Mρ(2(s− k) + 1).
(3.9)

As the Mellin transform is an isometry (up to the factor (2π)−1/2) of L2
2q−1 onto L2 (q + iR) (see Thrm. 2.11),

for s in q + iR the previous relation (3.9) yields:∥∥∥(I[ρ])(k)
∥∥∥
L2
2q−1

= (2π)−1/2
∥∥(−1)k(s− k)kM I[ρ](s− k)

∥∥
L2(q+iR)

= 2 (2π)−1/2 ‖(s− k)kMG(2(s− k))Mρ(2(s− k) + 1)‖L2(q+iR)

= 2 (2π)−1/2 ‖(s)kMG(2s)Mρ(2s+ 1)‖L2(q−k+iR)

= 2 (2π)−1/22−1/2
∥∥∥(s

2

)
k
MG(s)Mρ(s+ 1)

∥∥∥
L2(2(q−k)+iR)

.

(3.10)

As M is an isometry of L2 (2(q − k) + 1 + iR) onto L2
4(q−k)+1, we have:

‖Mρ(s+ 1)‖L2(2(q−k)+iR) = ‖Mρ(s)‖L2(2(q−k)+1+iR) = (2π)1/2 ‖ρ‖L2
4(q−k)+1

. (3.11)

Thanks to (3.10), (3.11) and the definitions of Cl, Cu, we obtain:

Cl ‖ρ‖L2
4(q−k)+1

6
∥∥∥(I[ρ])(k)

∥∥∥
L2
2q−1

6 Cu ‖ρ‖L2
4(q−k)+1

.

Taking r = 4(q − k) + 1, that is q = k + r−1
4 , provides the result.

Lemma 3.2. Let k ∈ N, r ∈ R and let us consider the operators I, G, J defined by (3.3), (3.2). We have the
following results:
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a) Assume that there exists a constant C > 0 such that:∣∣∣∣∣∣
k−1∏
j=0

(s+ 2j)MJ(s)

∣∣∣∣∣∣ 6 C on
1− r

2
+ iR.

Then, there exists a constant C̃u, such that, for every ρ in L2
r, we have:∥∥∥(I[ρ])(k)

∥∥∥
L2

2k+ r−3
2

6 C̃u ‖ρ‖L2
r
.

b) For the reverse inequality, assume that there exists a constant C > 0 such that:∣∣∣∣∣∣
k−1∏
j=0

(s+ 2j)MJ(s)

∣∣∣∣∣∣ > C on
1− r

2
+ iR.

Then there exists a constant C̃l, such that, for every ρ in L2
r, we have:∥∥∥(I[ρ])(k)

∥∥∥
L2

2k+ r−3
2

> C̃l ‖ρ‖L2
r
.

Proof. It is a direct consequence of Lemma 3.1, rewriting the constants Cl, Cu appearing in this lemma in terms

of
∣∣∣∏k−1

j=0 (s+ 2j)MJ(s)
∣∣∣.

Using the relation between MG and MJ given by (3.6), we have:

Cl =21/2 inf
s∈ r−1

2 +iR

∣∣∣(s
2

)
k
MG(s)

∣∣∣ = 21/2 inf
s∈ r−1

2 +iR

∣∣∣(s
2

)
k

2−sD−s/2MJ(−s)
∣∣∣

=21−r/2D(1−r)/4 inf
s∈ r−1

2 +iR

∣∣∣(s
2

)
k
MJ(−s)

∣∣∣ = 21−r/2D(1−r)/4 inf
s∈ 1−r

2 +iR

∣∣∣∣(−s2
)
k

MJ(s)

∣∣∣∣ . (3.12)

The functions J0 and J1, defined by (1.2), (1.4), (3.2), are shown in Figure 2.
As:

(
−s
2

)
k

=

k−1∏
j=0

(
−s

2
− j
)

= (−1)k2−k
k−1∏
j=0

(s+ 2j),

we obtain:

Cl = 21−k−r/2D(1−r)/4 inf
s∈ 1−r

2 +iR

∣∣∣∣∣∣
k−1∏
j=0

(s+ 2j)MJ(s)

∣∣∣∣∣∣ ,
This concludes the proof taking C̃l = 21−k−r/2D(1−r)/4C. The proof is analoguous for the upper bound

C̃u.
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Figure 2. The function J0, defined by (1.2), (3.2), and its disruptive version J1 (dashed line)
defined by (1.4), (3.2), for a = 0.157.

As a consequence of formula (3.7) and of Lemma 3.2, the strategy to prove continuity/observability results
for the operators I, in a weighted L2 space, is to find an integer power k ∈ N such that

∣∣skMJ(s)
∣∣ is bounded

from above/below on a vertical line, whose abscissa depends on the weight of the L2 space.

4. Proofs of the main results

This section is devoted to the application of the results of Section 3 to each particular case in which the
kernel H is either H1, H2 or H0. To do so, it is worth noticing that for the current operators I1 and I2 the
integer k appearing in Lemma 3.2 can be taken to be 1 (see Lem. 4.1 and Cor. 4.5), whereas for the original
current operator I0, MJ0(s) decays faster than any power function sk (see Lems. 4.9 and 4.10). The converse
of Lemma 3.2 is true and implies that no observability inequality of the previous type holds for the original
operator I0. We now state the results for each case.

First, let us consider the approximation I2[ρ] of the operator I0[ρ]. In this case the Mellin transform MJ2
can be computed explicitly and Lemma 4.1 provides explicit bounds. To do so let us define:

βj = erfc−1
(
αj
c0

)
, (4.1)

where the numbers aj , αj were defined in (1.7).

Lemma 4.1. Let the βk’s be defined by (4.1), (1.7) and let J2 be defined by (1.7), (3.2). For s = q + it with
q > 0, the Mellin transform of J2 is given by:

MJ2(s) =
1

s

m∑
j=1

ajβ
s
j .

And there exists q1 with q1 > 0, such that:

∀q > q1 ∃C > 0 ∀s ∈ q + iR : |sMJ2(s)| > C.
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Proof of Lemma 4.1. As erfc is a decreasing function, we have:

J2(x) = H2(c0 erfc(x)) =

m∑
j=1

aj 1c0 erfc(x)>αj
=

m∑
j=1

aj 1x6βj
.

The explicit formula for MJ2 is then a consequence of the linearity of M and of:

M(106x6a)(s) =
1

s
as for Re s > 0.

As aj > 0 and 0 < α1 < · · · < αm < c0, the βk’s are decreasing, i.e. 0 < βm < · · · < β1 <∞.
Given q > 0, we have: ∣∣∣∣∣∣

m∑
j=1

ajβ
q+it
j

∣∣∣∣∣∣ > a1β
q
1 −

m∑
j=2

ajβ
q
j > βq1

a1 − (β2
β1

)q m∑
j=2

aj

 .

Thus we can take:

q1 = max

{
ln(a1)− ln(

∑m
j=2 aj)

ln(β2)− ln(β1)
, 0

}
.

Therefore, we get that |sMJ2(s)| is bounded from below when q > q1.

Lemma 4.1 allows us to establish Proposition 4.2.

Proposition 4.2. Let I2[ρ] be defined by (1.3), (1.7), (1.6).

• Let r < 1. There exist constants C,C ′ > 0 such that, for every ρ in L2
r, we have:

‖I2[ρ]‖L2
r−3
2

6 C ‖ρ‖L2
r

and ‖(I2[ρ])′‖L2
r+1
2

6 C ′ ‖ρ‖L2
r
. (4.2)

• Let q1 given by Lemma 4.1 and let r < 1− 2q1. There exists a constant C > 0 such that, for every (I2[ρ])′

in L2
r+1
2

, we have:

‖(I2[ρ])′‖L2
r+1
2

> C ‖ρ‖L2
r
. (4.3)

Proof of Proposition 4.2.

• Let q > 0, s ∈ q + iR, for k = 0 or 1. The explicit formula of Lemma 4.1 implies that:

∣∣skMJ2(s)
∣∣ 6 |s|k−1 m∑

j=1

ajβ
q
j 6 C |s|k−1 6 C. (4.4)

Now let r < 1, that is q = 1−r
2 > 0. Using (4.4) and applying Lemma 3.2 for k = 0, 1 on the vertical line

1−r
2 + iR leads to the continuity inequalities (4.2).
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Figure 3. The Mellin transform |MJ1(s)|, with s = q + it, for some values of q (left panel)

and
∣∣skMJ1(s)

∣∣, for some values of k (right panel), for s ∈ 1 + iR, a = 0.1573, K =
cn0

Kn
1/2

+cn0
.

For small values of a the function
∣∣skMJ1(s)

∣∣ is bounded from below for k > 1, see Proposition
4.3 and Corollary 4.5.

• Let q > q1, with s ∈ q + iR, k > 1. The explicit formula of Lemma 4.1 leads to the following bounds:

∣∣skMJ2(s)
∣∣ > |s|k−1 βq1

a1 − (β2
β1

)q m∑
j=2

aj

 > C > 0.

Now let r < 1 − 2q1, that is 1−r
2 > q1. Applying Lemma 3.2 for k = 1 on the vertical line 1−r

2 + iR we
obtain (4.3).

Second, let us consider the non linear approximation I1[ρ] of the operator I0[ρ]. In this case the computations
are no longer explicit. Nevertheless an argument in the spirit of the stationary phase method proves thatMJ1(s)
has the same behavior as MJ2(s), if the real number a involved in the definition of H1 has a small enough
value. This is illustrated in Figure 3. This idea allows us to establish Proposition 4.3.

Proposition 4.3. Let a > 0 and I1[ρ] be defined by (1.3), (1.4), (1.5). Let r < 1.

• There exists a constant C > 0 such that, for every ρ in L2
r, we have:

‖I1[ρ]‖L2
r−3
2

6 C ‖ρ‖L2
r
.

• If a has a small enough value, then there exists a constant C > 0 such that, for every ρ in L2
r, we have:∥∥(I1[ρ])

′∥∥
L2

r+1
2

6 C ′ ‖ρ‖L2
r
.

• If a has a small enough value, then there exists a constant C > 0 such that, for every (I1[ρ])
′

in L2
r+1
2

, we

have: ∥∥(I1[ρ])
′∥∥

L2
r+1
2

> C ‖ρ‖L2
r
.
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The proof of Proposition 4.3 is based on two technical lemmas.

Lemma 4.4. Let A and B be two elements of [0,∞], k ∈ N an integer and f a function such that f (j) is in
L1
j (A,B) for every j = 0, . . . , k. For every real number t, we have:

∫ B

A

f(x)xit dx =

k−1∑
j=0

(−1)jQj(t)
[
xj+1f (j)(x)xit

]B
A

+ (−1)kQk−1(t)

∫ B

A

xkf (k)(x)xit dx,

where Qj(t) =
(∏j

l=0(1 + l + it)
)−1

.

Proof. The proof is by induction on k ∈ N. For k = 0, using Q−1 = 1, there is nothing to prove. We assume
that the formula is true for an integer k ∈ N. As (k + 1 + it)Qk = Qk−1 it remains to be proved that:

(k + 1 + it)

∫ B

A

xkf (k)(x)xit dx =
[
xk+1f (k)(x)xit

]B
A
−
∫ B

A

xk+1f (k+1)(x)xit dx.

As d
dxx

it = it
x x

it, the previous relation follows by integration by parts:

it

∫ B

A

xkf (k)(x)xit dx =

∫ B

A

xk+1f (k)(x)(xit)′ dx

=
[
xk+1f (k)(x)xit

]B
A
− (k + 1)

∫ B

A

xkf (k)(x)xit dx−
∫ B

A

xk+1f (k+1)(x)xit dx.

Corollary 4.5. Let f : [A,B] → R with A,B ∈ [0,∞] be a piecewise C1 function. If f is non-negative, f ′ is
non-positive, f ∈ L1(A,B), f ′ ∈ L1

1(A,B) and for all t ∈ R: [xf(x)xit]BA = 0, then:

〈t〉

∣∣∣∣∣
∫ B

A

f(x)xit dx

∣∣∣∣∣ 6
∫ B

A

f(x) dx,

where 〈t〉 = (1 + t2)1/2.

Proof. From Lemma 4.4 with k = 1 one obtains:

∀t ∈ R (1 + it)

∫ B

A

f(x)xit dx = −
∫ B

A

xf ′(x)xit dx.

As A,B > 0 and f ′ 6 0, using this identity twice, for t 6= 0 and for t = 0, we get

〈t〉

∣∣∣∣∣
∫ B

A

f(x)xit dx

∣∣∣∣∣ 6
∫ B

A

|xf ′(x)| dx =

∫ B

A

f(x) dx.

Lemma 4.6. Let n,K > 0, q ∈ R and f = erfcn

erfcn +K . There exists xq > 0 such that the function gq : x ∈
[xq,∞) 7→ f(x)xq−1 is decreasing. Let q̃ = inf Eq where Eq = {c > 0 | g′q(x) < 0∀x > c}. The function q 7→ q̃ is

increasing and q̃ = (q/(2n))1/2 + o
(
q1/2

)
as q →∞.
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Proof. As f > 0, the inequality g′q(x) 6 0 is equivalent to:

f ′(x)

f(x)
6 −q − 1

x
. (4.5)

Let us compute f ′

f . To do so, let u = erfcn, so that: f = u
u+K . We have:

f ′

f
=
u′

u

K

u+K
= n

erfc′

erfc

K

u+K
. (4.6)

The derivative of erfc is given by: erfc′(x) = −2π−1/2e−x
2

. And, as x tends to +∞: erfc(x) = π−1/2x−1e−x
2

+

o
(
x−1e−x

2
)

. Thus, as x tends to +∞:

f ′(x)

f(x)
= n

erfc′(x)

erfc(x)
(1 + o(1)) = −2nx+ o(x). (4.7)

This asymptotics proves that the inequality (4.5) is satisfied for large enough values of x. As a consequence for
every q in R the set Eq is not empty, which justifies the definition of q̃. Note that the definition of q̃ implies:

g′q(q̃) = 0, that is: f ′(q̃)
f(q̃) = − q−1q̃ , using (4.5).

Let q1 > q2 be two real numbers. In order to show that q̃2 6 q̃1, it is enough to prove that g′q1(q̃2) > 0. This
holds because:

g′q1(q̃2) = q̃2
q1−2(f ′(q̃2)q̃2 + f(q̃2)(q1 − 1)) > q̃2

q1−2(f ′(q̃2)q̃2 + f(q̃2)(q2 − 1)) = q̃2
q1−q2g′q2(q̃2) = 0.

To find the asymptotics on q̃, let us recall a lower bound on erfc(x) for x > 0:

1

x+ (x2 + 2)1/2
6

1

2
π1/2 exp(x2) erfc(x).

As the function u = erfcn takes its values in (0, 1], we have: nK
1+K 6 nK

u+K 6 n. Consequently, thanks to (4.6):

− n
(
x+ (x2 + 2)1/2

)
6
f ′(x)

f(x)
. (4.8)

Let q > 1 and set xq = q−1
(2n)1/2(n+q−1)1/2 . The inequality − q−1x 6 −n

(
x+ (x2 + 2)1/2

)
is equivalent to

x
(
x+ (x2 + 2)1/2

)
6 q−1

n . A simple computation shows that this inequality is satisfied for x = xq (and becomes

and equality). Thanks to (4.8), we conclude that xq satisfies:
f ′(xq)
f(xq)

> − q−1xq
, which leads to q̃ > xq, by defini-

tion of q̃ and by (4.5). This last inequality implies that q̃ tends to +∞ as q tends to +∞. Finally we get the
asymptotics for q̃, using (4.7):

−2nq̃ + o(q̃) =
f ′(q̃)

f(q̃)
= −q − 1

q̃
.

Now, we are in position to prove Proposition 4.3.
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Proof of Proposition 4.3. The function J1 is written:

J1(x) = H1(c0 erfc(x)) = f(x)1x>α +K 10<x<α,

with: f(x) = erfc(x)n

erfc(x)n+c−n
0 Kn

1/2

and α = erfc−1 (a/c0).

From the estimate for erfc at +∞, given in the proof of Lemma 4.6, the function J2 is in L1
k for every k > −1.

Thus MJ1 is holomorphic on the right half-plane, see Proposition 2.5. Using Lemma 3.2 on the vertical line
1−r
2 + iR with 1−r

2 > 0, as for the proof of Proposition 4.2, it amounts to bounding |sMJ1(s)|, from above or
from below, on the vertical lines q + iR, for q > 0.

Then the Mellin transform of J1 at s = q + it is given by:

MJ1(s) = K

∫ α

0

xs−1 dx+ cn0

∫ +∞

α

f(x)xs−1 dx = K
αs

s
+ cn0

∫ +∞

α

f(x)xq−1xit dx.

For any a > 0, q > 0 and s ∈ q + iR we have:

|MJ1(s)| 6 K
αq

q
+ cn0

∫ +∞

α

f(x)xq−1 dx,

which is finite.

Let q > 0. According to Lemma 4.6 the function x 7→ f(x)xq−1 is decreasing for x > x0. Let a < c0 erfc(x0)
so that α = erfc−1 (a/c0) > x0. Let g(x) = f(x)xq−1 1x>α. For every t ∈ R :

[
f(x)xit

]∞
x0

= 0 because f vanishes

for x 6 α and x0 6 α, and g(x) = π−n/2x−n+q−1e−nx
2

+ o
(
x−n+q−1e−nx

2
)

. Then Corollary 4.5 can be applied

to the function g, with A = α,B = +∞, for s ∈ q + iR, to give:

|sMJ1(s)| 6 K |αs|+ cn0
|s|
〈t〉
〈t〉
∣∣∣∣∫ ∞
α

f(x) xs−1 dx

∣∣∣∣
6 Kαq + cn0 max(1, q)

∫ ∞
α

f(x)xq−1 dx <∞,

because: |s|〈t〉 ∈ [q, 1] ∪ [1, q], either q 6 1 or q > 1.

For small values of a, the first term dominates the second one. The same calculation as above leads to:

|sMJ1(s)| > Kαq − cn0 max(1, q)

∫ ∞
α

f(x)xq−1 dx,

This latter expression is equivalent to Kαq as α tends to +∞, therefore, it is positive for large values of α.

The smallness condition on a is needed for the observability inequality to be true. Indeed, for a = c0 we
have H1 = H0 so that J1 = J0 and no inequality of the last type holds. This assertion is a consequence of
Theorem 4.7.

Third and finally, let us consider the case of the Hill function H0 defined by (1.2). First, explicitly computing
the derivatives of J0 shows that the Mellin transform MJ0 has a fast decay on vertical lines. Consequently on
vertical lines of the right half-plane, and for any k ∈ N, the function

∣∣skMJ0(s)
∣∣ is bounded from above and
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Figure 4. The Mellin transform |MJ0(s)|, with s = q + it, for some values of q (left panel)
and

∣∣skMJ0(s)
∣∣, for some values of k (right panel), for s ∈ 1 + iR. The functions are bounded

from above but decay faster than any power function, see Theorem 4.7 and Lemmas 4.9, 4.10.

is not bounded from below. This is illustrated in Figure 4. As a consequence, no observability inequality of the
previous type holds. Second, we prove an identifiability result for the operator I0 based on these estimates.

Theorem 4.7. Let r < 1.

• There exists C > 0 such that, for every ρ in L2
r, we have:

‖I0[ρ]‖L2
r−3
2

6 C ‖ρ‖L2
r
.

• Let k ∈ N. There exists no constant C > 0 such that the observability inequality:∥∥∥(I0[ρ])(k)
∥∥∥
L2

2k+ r−3
2

> C ‖ρ‖L2
r
,

holds for every function ρ ∈ L2
r.

To prove Theorem 4.7 we show that the function MJ0 decays faster than polynomially on vertical lines by
proving that J0 belongs to some Schwartz space.

Definition 4.8. Let S[0,∞) be the space of functions f in C∞ ([0,∞),C) which satisfy:

∀j ∈ N, k ∈ N lim
x→∞

f (j)(x)xk = 0.

If f is a function of the Schwartz space S(R) then f 1x>0 is in S[0,∞) (the converse is also true thanks to
Borel’s lemma).

Lemma 4.9. Let f ∈ S[0,∞). Its Mellin transform Mf is holomorphic on the right half-plane, and:

∀q > 0 ∀k ∈ N ∃C > 0 ∀t ∈ R : |Mf(q + it)| 6 C〈t〉−k,

where 〈t〉 = (1 + t2)1/2.

Proof of Lemma 4.9. Let f ∈ S[0,∞), q > 0. By the definition of S[0,∞) for every l in N and k > −1, the
function x 7→ xkf (l)(x) is in L1. Proposition 2.5 implies that Mf is holomorphic on the right half-plane.



2100 T. BOURGERON ET AL.

Lemma 4.4 with g(x) = f(x)xq−1 yields:

Mf(q + it) =

∫ ∞
0

f(x)xq−1xit dx =

k−1∑
j=0

(−1)jQj(t)
[
xj+1g(j)xit

]∞
0

+ (−1)kQk−1(t)

∫ ∞
0

xkg(k)(x)xit dx,

where Qj(t) =
(∏j

l=0(1 + l + it)
)−1

.

To prove this lemma it is enough to show that the terms between brackets vanish and that the last integral
is finite.

Let l, k ∈ N. By the Leibniz rule, we have:

xlg(k)(x) =

k∑
j=0

(
k

j

)
f (k−j)(x)(xq−1)(j)xl =

k∑
j=0

(
k

j

)
(q − 1)jf

(k−j)(x) xq+l−1−j .

For l = k + 1 and for x = 0 this expression vanishes because f (k−j)(0) is finite and: q + k − j > q > 0. As x
tends to ∞ the expression tends to 0 as: f (k−j)(x) xq+k−j → 0.

For l = k this expression shows that the integral
∫∞
0
xk
∣∣g(k)(x)

∣∣ dx is finite because for every j ∈ {0, . . . , k}:
x 7→ xq−1+jf (j)(x) is in L1 because q − 1 + j > q − 1 > −1. Then:

|Mf(q + it)| 6 C |Qk−1(t)| = C〈t〉−k + o
(
〈t〉−k

)
.

Assuming that J0 belongs to S[0,∞), which is the main statement in Lemma 4.10, we are in a position to
prove Theorem 4.7.

Lemma 4.10. Let n > 0 and J0 be the function defined by (1.2), (3.2). The function J0 is in S[0,∞).

The proof of Lemma 4.10 is given in Appendix A.

Proof of Theorem 4.7. As in the proof of Lemma 3.2, thanks to (3.10), (3.11), the inequalities:∥∥∥(I0[ρ])(k)
∥∥∥
L2

2k+ r−3
2

> C ‖ρ‖L2
r

(4.9)

and

‖(s)kMJ0(−2s)Mρ(2s+ 1)‖L2( r−1
4 +iR) > C ‖Mρ(2s+ 1)‖L2( r−1

4 +iR) (4.10)

are equivalent (up to some explicit constants depending on q, k). As in the proof of Lemma 3.2, the same
equivalence is true changing all > signs to 6 signs.

Lemmas 4.9, 4.10 imply that |MJ0| is bounded from above on 1−r
2 + iR so that (4.10), with 6 instead of >,

holds, which concludes the proof of the first statement.

We suppose that the second statement of the theorem is false so that there exists a constant C > 0 such that
the inequality (4.10) holds for every ρ ∈ L2

r. Let s0 ∈ r−1
4 + iR and δ > 0. As the map L2

r 3 ρ 7→ Mρ(2s+ 1) ∈
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L2
(
r−1
4 + iR

)
is onto (in fact it is an isometry up to a multiplicative constant), we can find ρ ∈ L2

r such that
Mρ(2s+ 1) = 1s0+i[−δ,δ](s). For this choice of ρ, (4.10) is localized:

1

2δ

∫ s0+iδ

s0−iδ
|MJ0(−2s)|2 |(s)k|2 ds > C.

Thanks to Lemmas 4.9, 4.10 the function J0 belongs to L2
q for every q > −1, thus,MJ0 ∈ L2(q̃+ iR) for q̃ > 0

(cf. Thrm. 2.11). In particular |MJ0(−2s)|2 |(s)k|2 is in L1
loc, so, making δ → 0, the Lebesgue differentiation

theorem shows that at almost every point s0:

|MJ0(−2s0)| |(s0)k| > C.

In other words |MJ0| has at most a polynomial decay on vertical lines 1−r
2 + iR, which is a contradiction

with Lemmas 4.9, 4.10. This concludes the proof.

Proposition 4.11. Let r < 0 and ρ ∈ L1
r. We consider the operator I0[ρ] defined by (1.1), (1.2), (1.3). If there

exists a non empty open set U of (0,∞) such that:

∀t ∈ U I0[ρ](t) = 0,

then ρ = 0 a.e. on (0,∞).

Proof of Proposition 4.11. Lebesgue’s dominated convergence theorem for analytic functions implies that I0[ρ]
is an analytic function on (0,∞). For every x ∈ [0,∞), the function ρ(x)H0(c(·, x)) is analytic as erfc and
power functions are analytic. For the domination part let η > 0. As for t > η: ∀x > 0 ρ(x)H0(c(t, x)) 6
ρ(x)H0(c(η, x)), it remains to show that ρH0(c(η, ·)) is an L1 function. At +∞, we have: H0(c(η, x)) =

π−n/22nDn/2ηn/2x−n exp(− nx2

4Dη ) + o
(
x−n exp(− nx2

4Dη )
)

, so that
∫∞
1
ρ(x)H0(c(η, x)) dx is finite because ρ ∈ L1

r.

At 0 we have: H0(c(η, 0)) = (1 + c−n0 Kn
1/2)−1 > 0, and, as r 6 1:

∫ 1

0
ρ(x) dx 6

∫ 1

0
ρ(x)xr−1 dx is finite so that∫ 1

0
ρ(x)H0(c(η, x)) dx is also finite.

As I0[ρ] vanishes on U , the principle of permanence implies that it vanishes on the connected set (0,∞):

∀t ∈ (0,∞) I0[ρ](t) = 0.

Taking the Mellin transform of this relation, using Definition (3.2), we obtain:

∀s ∈ r + iR 2−sD−s/2MJ0(−s)Mρ(s+ 1) = 0.

Thanks to Lemmas 4.10, 4.9, the function MJ0 is holomorphic on the right half-plane, which contains the
line −r + iR, because r < 0. The function MJ0 is not identically zero so MJ0 can vanish only on a set −Z
having no accumulation point. The previous relation implies that Mρ = 0 on r + 1 + iR \ (1 + Z). As ρ ∈ L1

r

the functionMρ is continuous on the vertical line r+ 1 + iR, so thatMρ is identically zero on r+ 1 + iR. The
Inversion Theorem 2.7 provides the result.

5. Numerical illustration

In this section we present some numerical simulations based in modeled current representing experimental
data. The parameters in equations (1.1), (1.2), (1.3) have been experimentally estimated to be n = 1.7, K1/2 =
0.17 [µM] (see [2, 10] and the references therein). The value of the diffusion coefficient D > 0 does not play
any important role in our analysis, so that it has been arbitrarily set to D = 1 [m2 s−1]. On the other hand,
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Figure 5. Model function of the total current Isgm (left panel), defined by (5.1), and its Mellin
transform t 7→ |M Isgm(−q + it)| for some values of q (right panel).

the reference value for the initial concentration c0 has been fixed to c0 = 1 [µM], to show clearly the important
behaviors in the figures.

As already mentioned in the Introduction, the experimental procedures developed by S.J. Kleene allow the
current generated by depolarization to be measured. The profiles founded in some laboratory applications (see
[4, 8] or [17]) are very similar to a delayed sigmoidal function (Fig. 5 (left)). Thus, in order to contrast numerical
experiences with experimental data, in what follows, the total measured current is modeled by the function

Isgm(t) =

0 if t 6 tD

Imax

[
1 +

(
KI

t−tD

)nI
]−1

if t > tD
. (5.1)

In view of this way of modeling the total measured current, the results obtained in Propositions 4.2, 4.3 can be
rephrased as follows: if the measured current Isgm is in some well-defined weighted L2 space, then the distribution
ρ of the CNG channels is uniquely defined (in another, well-determined, weighted L2 space) by (3.7).

In the sequel we consider the following model for the experimentally observed current (see [10] and the
references therein):

The values used as parameters in the different numerical experiences are: Imax = 150 [pA], nI = 2.2, KI = 100
[ms], tD = 30 [ms]. The function Isgm is shown in Figure 5 (left).

Note that the derivative of Isgm is in L2
q, for some q < 0 so Proposition 4.3 (or Prop. 4.2) can be applied

directly. If the data were noisy, a standard regularization method for an inverse problem with a finite degree of
ill-posedness (see [6] for instance) could be applied to the data before applying Proposition 4.3. In this extend
our numerical method consisting of Proposition 4.3 can be applied to any noisy experimental data. For the
approximated operator I1[ρ] the distribution ρ can be found from the current Isgm, as shown in Figure 6 if a
has a small enough value.

For the operator I0[ρ] the distribution ρ cannot be found from the current Isgm, even after a regularization,
as shown in Figure 7. This is consistent with Theorem 4.7, which states that no observability inequality can be
found for I0 in some weighted L2

q spaces.

Technical aspects. As seen in the previous sections, the functions MJ0,MJ1,MJ2 are holomorphic on the
right half-plane. As tD > 0, nI > 0, Isgm is in L1

k for every k < −1, then,M Isgm is holomorphic on the left half-

plane. Therefore the quotient
M Isgm(s/2)
MJl(−s) is meromorphic on the left half-plane. The inverse Mellin transform

of this function has been computed on different vertical lines, whose abscissas are q < 0.
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Figure 6. (left panel) Function in Mellin variables to be inverted to reconstruct the density
ρrcn using the approximated Hill function H1 given by (1.4). (right panel) The corresponding
reconstructed CNG channels distribution ρrcn, for the largest value of a, a = 0.1573, for which

Proposition 4.3 holds. The computed density ρrcn =M−1q
(
M Isgm(s/2)
MJ1(−s)

)
∈ L2

q does not depend

on the weight q ∈ [−4,−2]: the curves are superimposed.

Figure 7. (left panel) Function in Mellin variables to be inverted to reconstruct the density
ρrcn using the exact Hill function. (right panel) The corresponding CNG channels distribution
ρrcn cannot be reconstructed, see Theorem 4.7.

As the quotient
M Isgm(s/2)
MJ1(−s) does not vanish in the left half-plane, the distribution ρ does not depend on q < 0.

More details regarding this kind of results can be found in [3] for instance. Figure 6 illustrates Proposition 4.3.
For the numerical simulations, the parameter a is taken to be the biggest for which the quotient defined above
does not vanish in the strip {x+ it | x ∈ [−4,−2], t ∈ R}, that is a = 0.1573.

In previous works [9, 10, 11], as ρ stands for a density, a penalization method is introduced to ensure ρ > 0.
Note that, if the negative part of ρrcn is removed then its profile is similar to the one exhibited in these works.

6. Conclusions

We focussed on the problem of finding the spatial distribution of CNG ion channels from the experimental
current data, following [2, 5, 9, 10, 11]. The self-similar structure of the integral inverse problem (1.1), (1.2),
(1.3) allowed us to use the Mellin transform, and to obtain a thorough comprehension of it. It permitted us to
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reduce its study to estimating some Mellin transform, on vertical lines of the complex plane. To do so, explicit
computations were carried out using techniques inspired by the stationary phase method.

As a result the inverse problem studied has been shown not to be controllable in some weighted L2 spaces.
The kernel of the integral operator is smooth and the associated inverse problem has an infinite degree of ill-
posedness. This conclusion could probably be linked to the fact that for the original problem, introduced in [11],
certain numerical computations indicate that it is ill-conditioned. We also introduced a better approximation
than the one already studied, for which we performed numerical simulations and provided estimates. In this
case the kernel of the integral operator is at most continuous and the associated inverse problem has a finite
degree of ill-posedness (which is 1). The profiles obtained from the experimental current data consolidate the
ones obtained in [9, 10, 11].

For a kernel obtained by linear interpolation from cAMP concentration versus current data functions instead
of H0, see [13], which is thus continuous but not smooth, our method could be applied but no new kind of
mathematical result is expected.

To go further, one could study the inverse problem (1.1), (1.2) where c is defined as the solution of the linear
heat equation: 

∂t c−D∂xx c = 0, t > 0, x ∈ (0, L),
c(t, 0) = c0, t > 0,
∂xc(t, L) = 0, t > 0,
c(0, x) = 0, x ∈ (0, L).

If the Hill function (1.2) is changed into its Taylor polynomial extension around c0, and if this polynomial has
a degree m 6 8, then [5] proves that the resulting integral operator I is identifiable in L2. To go further, a first
step, could, be to study this problem without approximating the Hill function. Studying the complete inverse
problem for the original model could be a further step. It would seem that these two problems cannot be solved
using the Mellin transform technique alone, as no self-similar structure is directly involved.

Appendix A. Proof of Lemma 4.10

We recall the Faà di Bruno formula, first proved by L.F.A. Arbogast see [1]:

(f ◦ g)(k) =
∑

(m1,...,mk)∈Nk∑k
j=1 jmj=k

k!∏k
j=1mj ! j!mj

f(
∑k

j=1mj) ◦ g
k∏
j=1

(
g(j)
)mj

.

This formula allows us to make explicit computations, to prove that the functions appearing in Lemmas 4.10
are in S[0,∞).

Lemma A.1. The function erfc is of the class C∞ on [0,∞). For every k ∈ N∗:

erfc(k)(x) = Pk(x) exp(−x2),

where Pk is a polynomial which has a degree of k − 1 whose leading coefficient is π−1/2(−2)k. In particular, as
x tends to ∞ :

erfc(k)(x) = π−1/2(−2)kxk−1e−x
2

+ o
(
xk−1e−x

2
)
.
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Proof. The proof is by induction on k ∈ N∗. By the definition of erfc: erfc′(x) = −2π−1/2 exp(−x2) and with
simple calculations we have:

Pk+1 = −2XPk + P ′k.

Lemma A.2. The function H defined by (1.2) is of the class C∞ on [0,∞). For n > 0 it satisfies for every
k ∈ N∗:

H
(k)
0 (x) =

Pk(x)

(xn +Kn
1/2)k+1

,

where Pk(x) = (−1)k−1(n− k − 1)kK
n
1/2 x

(n−1)k + · · ·+ (n)kK
nk
1/2 x

n−k.

In particular:

H
(k)
0 (x) = Knk

1/2(n)k x
n−k + o

(
xn−k

)
.

Proof. The proof is by induction on k ∈ N∗. Simple calculations lead to: P1(x) = nKn
1/2x

n−1 and:

Pk+1(x) = xnP ′k(x)− (k + 1)nxn−1Pk(x) +Kn
1/2P

′
k(x).

It follows that the leading term in Pk(x) as x tends to +∞ is of the form akx
(n−1)k where ak satisfies:

a1 = nKn
1/2, ak+1 = ak((n− 1)k − n(k + 1)) = −ak(n+ k).

As n > 0, the leading term in Pk(x) as x tends to 0 is of the form bkx
n−k where bk satisfies:

b1 = nKn
1/2, bk+1 = bk(n− k)Kn

1/2.

Lemma A.3. For n > 0, the function J0 defined by (1.2), (1.3), (3.2) is in S[0,∞).

Proof. The function is of the class C∞(0,+∞) because erfc is of this class and n > 0. For every integer k ∈ N,

H(k)(c0) and erfc(k)(0) are finite, thus for every k ∈ N, J
(k)
0 (0) is finite.

Applying the Faà di Bruno formula one gets, for x > 0:

J
(k)
0 (x) =

∑
(m1,...,mk)∈Nk∑k

j=1 jmj=k

k!∏k
j=1mj ! j!mj

H(
∑k

j=1mj)(c0 erfc(x))

k∏
j=1

(
c0 erfc(j)(x)

)mj

.

As x tends to +∞, from the previous lemmas, we have, for S =
∑k
j=1mj :

H(S)(c0 erfc(x)) = K−n1/2(n)S(c0 erfc(x))n−S(1 + o(1)) = K−n1/2(n)S(c0π
−1/2x−1 exp(−x2))n−S(1 + o(1)).
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Then, for
∑k
j=1 jmj = k and

∑k
j=1mj = S:

H(
∑k

j=1mj)(c0 erfc(x))
∏k
j=1

(
c0 erfc(j)(x)

)mj

= KnS
1/2(n)S(c0π

−1/2x−1 exp(−x2))n−S
∏k
j=1 c

mj

0 (π−1/2(−2)jxj−1 exp(−x2))mj (1 + o(1))

= (−2)kKnS
1/2(n)Sc

n
0π
−n/2xk−n exp(−nx2)

Let us denote:

C(n, k) = (−2)kk!cn0π
−n/2

∑
(m1,...,mk)∈Nk∑k

j=1 jmj=k

(n)∑k
j=1mj

K
n
∑k

j=1mj

1/2

 k∏
j=1

mj ! j!
mj

−1 .

If C(n, k) 6= 0, the previous calculations lead to:

J
(k)
0 (x) = C(n, k)xk−n exp(−nx2)(1 + o(1)).

If C(n, k) = 0: J
(k)
0 (x) = o

(
xk−n exp(−nx2)

)
. In both cases, for every j ∈ N: (J1)

(k)
= o(xj), which concludes

the proof.
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