Large time step HLL and HLLC schemes
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1239-1260.

We present Large Time Step (LTS) extensions of the Harten-Lax-van Leer (HLL) and Harten-Lax-van Leer-Contact (HLLC) schemes. Herein, LTS denotes a class of explicit methods stable for Courant numbers greater than one. The original LTS method (R.J. LeVeque, SIAM J. Numer. Anal. 22 (1985) 1051–1073) was constructed as an extension of the Godunov scheme, and successive versions have been developed in the framework of Roe's approximate Riemann solver. In this paper, we formulate the LTS extension of the HLL and HLLC schemes in conservation form. We provide explicit expressions for the flux-difference splitting coefficients and the numerical viscosity coefficients of the LTS-HLL scheme. We apply the new schemes to the one-dimensional Euler equations and compare them to their non-LTS counterparts. As test cases, we consider the classical Sod shock tube problem and the Woodward-Colella blast-wave problem. We numerically demonstrate that for the right choice of wave velocity estimates both schemes calculate entropy satisfying solutions.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017051
Classification : 65M08, 35L65, 65Y20
Mots-clés : Large Time Step, HLL, HLLC, euler equations, riemann solver
Prebeg, Marin 1 ; Flåtten, Tore 2 ; Müller, Bernhard 1

1 Department of Energy and Process Engineering, Norwegian University of Science and Technology, Kolbjørn Hejes vei 2, NO-7491 Trondheim, Norway
2 SINTEF Materials and Chemistry, P.O. Box 4760 Sluppen, NO-7465 Trondheim, Norway
@article{M2AN_2018__52_4_1239_0,
     author = {Prebeg, Marin and Fl\r{a}tten, Tore and M\"uller, Bernhard},
     title = {Large time step {HLL} and {HLLC} schemes},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1239--1260},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {4},
     year = {2018},
     doi = {10.1051/m2an/2017051},
     mrnumber = {3875285},
     zbl = {1417.65160},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2017051/}
}
TY  - JOUR
AU  - Prebeg, Marin
AU  - Flåtten, Tore
AU  - Müller, Bernhard
TI  - Large time step HLL and HLLC schemes
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 1239
EP  - 1260
VL  - 52
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2017051/
DO  - 10.1051/m2an/2017051
LA  - en
ID  - M2AN_2018__52_4_1239_0
ER  - 
%0 Journal Article
%A Prebeg, Marin
%A Flåtten, Tore
%A Müller, Bernhard
%T Large time step HLL and HLLC schemes
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 1239-1260
%V 52
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2017051/
%R 10.1051/m2an/2017051
%G en
%F M2AN_2018__52_4_1239_0
Prebeg, Marin; Flåtten, Tore; Müller, Bernhard. Large time step HLL and HLLC schemes. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1239-1260. doi : 10.1051/m2an/2017051. http://www.numdam.org/articles/10.1051/m2an/2017051/

[1] P. Batten, N. Clarke, C. Lambert and D.M. Causon, On the choice of wavespeeds for the HLLC Riemann solver. SIAM J. Sci. Comput. 18 (1997) 1553–1570. | DOI | MR | Zbl

[2] F. Daude and P. Galon, On the computation of the Baer–Nunziato model using ALE formulation with HLL-and HLLC-type solvers towards fluid–structure interactions. J. Comput. Phys. 304 (2016) 189–230. | DOI | MR | Zbl

[3] F. Daude, P. Galon, Z. Gao and E. Blaud, Numerical experiments using a HLLC-type scheme with ALE formulation for compressible two-phase flows five-equation models with phase transition. Comput. Fluids 94 (2014) 112–138. | DOI | MR | Zbl

[4] S. F. Davis, Simplified second-order Godunov-type methods. SIAM J. Sci. Stat. Comput. 9 (1988) 445–473. | DOI | MR | Zbl

[5] B. Einfeldt, On Godunov-type methods for gas dynamics. SIAM J. Numer. Anal. 25 (1988) 294–318. | DOI | MR | Zbl

[6] B. Einfeldt, Munz, C.-D. Roe, P.L. and B. Sjögreen, On Godunov-type methods near low densities. J. Comput. Phys. 92 (1991) 273–295. | DOI | MR | Zbl

[7] A. Harten, High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49 (1983) 357–393. | DOI | MR | Zbl

[8] A. Harten, On a Large Time–Step high resolution scheme. Math. Comput. 46 (1986) 379–399. | DOI | MR | Zbl

[9] A. Harten, P.D. Lax and B. Van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25 (1983) 35–61. | DOI | MR | Zbl

[10] A. Jameson and P.D. Lax, Conditions for the construction of multi-point total variationl diminishing difference schemes. Appl. Numer. Math. 2 (1986) 335–345. | DOI | MR | Zbl

[11] A. Jameson and P.D. Lax, Corrigendum: “Conditions for the construction of multi-point total variation diminishing difference schemes”. Appl. Numer. Math. 3 (1987) 289. | DOI | MR | Zbl

[12] P. Janhunen, A positive conservative method for magnetohydrodynamics based on HLL and Roe methods. J. Comput. Phys. 160 (2000) 649–661. | DOI | MR | Zbl

[13] R.J. Leveque, Large time step shock-capturing techniques for scalar conservation laws. SIAM J. Numer. Anal. 19 (1982) 1091–1109. | DOI | MR | Zbl

[14] R.J. Leveque, Convergence of a large time step generalization of Godunov’s method for conservation laws. Commut. Pure Appl. Math. 37 (1984) 463–477. | DOI | MR | Zbl

[15] R.J. Leveque, A large time step generalization of Godunov’s method for systems of conservation laws. SIAM J. Numer. Anal. 22 (1985) 1051–1073. | DOI | MR | Zbl

[16] R.J. Leveque, High resolution finite volume methods on arbitrary grids via wave propagation. J. Comput. Phys. 78 (1988) 36–63. | DOI | MR | Zbl

[17] R.J. Leveque, Finite Volume Methods for Hyperbolic Problems, 1st Edition, Book 31 of Cambridge Texts in Applied Mathematics. Cambridge University Press (2002). | MR | Zbl

[18] S. Lindqvist, P. Aursand, T. Flåtten and A.A. Solberg, Large Time Step TVD schemes for hyperbolic conservation laws. SIAM J. Numer. Anal. 54 (2016) 2775–2798. | DOI | MR | Zbl

[19] S. Lindqvist and H. Lund, A Large Time Step Roe scheme applied to two-phase flow. In VII European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS (Crete Island, Greece, 2016). Edited by M. Papadrakakis, V. Papadopoulos, G. Stefanou and V. Plevris, (2016). | DOI

[20] H. Lochon, F. Daude, P. Galon and J.-M. Hérard, HLLC-type Riemann solver with approximated two-phase contact for the computation of the Baer–Nunziato two-fluid model. J. Comput. Phys. 326 (2016) 733–762. | DOI | MR | Zbl

[21] N.N. Makwana and A. Chatterjee, Fast solution of time domain Maxwell’s equations using large time steps. In 2015 IEEE Inter. Confer. Comput. Electrom (ICCEM 2015) (Hong Kong, China, 2015), Institute of Electrical and Electronics Engineers (2015) 330–332.

[22] T. Miyoshi and K. Kusano, A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics. J. Comput. Phys. 208 (2005) 315–344. | DOI | MR | Zbl

[23] M. Morales–Hernández, P. García–Navarro and J. Murillo, A large time step 1D upwind explicit scheme (CFL>1): Application to shallow water equations. J. Comput. Phys. 231 (2012) 6532–6557. | DOI | MR | Zbl

[24] M. Morales–Hernández, M.E. Hubbard and P. García–Navarro, A 2D extension of a Large Time Step explicit scheme (CFL>1) for unsteady problems with wet/dry boundaries. J. Comput. Phys. 263 (2014) 303–327. | DOI | MR | Zbl

[25] M. Morales-Hernández, A. Lacasta, J. Murillo and P. García-Navarro, A Large Time Step explicit scheme (CFL>1) on unstructured grids for 2D conservation laws: Application to the homogeneous shallow water equations. Appl. Math. Model. 47 (2017) 294–317. | DOI | MR | Zbl

[26] M. Morales-Hernández, J. Murillo, P. García-Navarro and J. Burguete, A large time step upwind scheme for the shallow water equations with source terms. In Numerical Methods for Hyperbolic Equations, edited by E.V. Cendón, A. Hidalgo, P. García–Navarro and L. Cea. CRC Press, (2012) 141–148. | DOI | MR

[27] J. Murillo, P. García-Navarro, P. Brufau and J. Burguete, Extension of an explicit finite volume method to large time steps (CFL>1): Application to shallow water flows. Int. J. Numer. Meth. Fluids 50 (2006) 63–102. | DOI | MR | Zbl

[28] M. Pelanti and K.-M. Shyue, A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation waves. J. Comput. Phys. 259 (2014) 331–357. | DOI | MR | Zbl

[29] M. Prebeg, Numerical viscosity in Large Time Step HLL-type schemes. In Proc. of the Sixteenth International Conference on Hyperbolic Problems, HYP2016 (Aachen, Germany, 2017), edited by C. Klingenberg and M. Westdickenberg. Springer (2018) 479–490. | MR | Zbl

[30] M. Prebeg, T. Flåtten and B. Müller, Large Time Step Roe scheme for a common 1D two-fluid model. Appl. Math. Model. 44 (2017) 124–142. | DOI | MR | Zbl

[31] Z. Qian and C.-H. Lee, A class of large time step Godunov schemes for hyperbolic conservation laws and applications. J. Comput. Phys. 230 (2011) 7418–7440. | DOI | MR | Zbl

[32] P. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43 (1981) 357–372. | DOI | MR | Zbl

[33] G.A. Sod, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27 (1978) 1–31. | DOI | MR | Zbl

[34] E. Tadmor, Numerical viscosity and the entropy condition for conservative difference schemes. Math. Comput. 43 (1984) 369–381. | DOI | MR | Zbl

[35] K. Tang, A. Beccantini and C. Corre, Combining Discrete Equations Method and upwind downwind-controlled splitting for non-reacting and reacting two-fluid computations: One dimensional case. Comput. Fluids 93 (2014) 74–90. | DOI | MR | Zbl

[36] B. Tian, E.F. Toro, and C.E. Castro, A path-conservative method for a five-equation model of two-phase flow with an HLLC-type Riemann solver. Comput. Fluids 46 (2011) 122–132. | DOI | MR | Zbl

[37] S.A. Tokareva and E.F. Toro, HLLC-type Riemann solver for Baer–Nunziato equations of compressible two-phase flow. J. Comput. Phys. 229 (2010) 3573–3604. | DOI | MR | Zbl

[38] E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd edition. Springer–Verlag Berlin Heidelberg (2009). | DOI | MR

[39] E.F. Toro, M. Spruce and W. Speares, Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4 (1994) 25–34. | DOI | Zbl

[40] P. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54 (1984) 115–173. | DOI | MR | Zbl

[41] R. Xu, D. Zhong, B. Wu, X. Fu and R. Miao, A large time step Godunov scheme for free-surface shallow water equations. Chinese Sci. Bull. 59 (2014) 2534–2540. | DOI

[42] G.-S. Yeom and K.-S. Chang, Two-dimensional two-fluid two-phase flow simulation using an approximate Jacobian matrix for HLL scheme. Numer. Heat Tran. B 56 (2010) 72–392.

Cité par Sources :