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LARGE TIME STEP HLL AND HLLC SCHEMES *

MARIN PREBEG!*, TORE FLATTEN? AND BERNHARD MULLER!
)

Abstract. We present Large Time Step (LTS) extensions of the Harten-Lax-van Leer (HLL) and
Harten-Lax-van Leer-Contact (HLLC) schemes. Herein, LTS denotes a class of explicit methods stable
for Courant numbers greater than one. The original LTS method (R.J. LeVeque, STAM J. Numer.
Anal. 22 (1985) 1051-1073) was constructed as an extension of the Godunov scheme, and successive
versions have been developed in the framework of Roe’s approximate Riemann solver. In this paper, we
formulate the LTS extension of the HLL and HLLC schemes in conservation form. We provide explicit
expressions for the flux-difference splitting coefficients and the numerical viscosity coefficients of the
LTS-HLL scheme. We apply the new schemes to the one-dimensional Euler equations and compare
them to their non-LTS counterparts. As test cases, we consider the classical Sod shock tube problem
and the Woodward-Colella blast-wave problem. We numerically demonstrate that for the right choice
of wave velocity estimates both schemes calculate entropy satisfying solutions.
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1. INTRODUCTION
We consider the hyperbolic system of conservation laws:
U, +F(U), =0, (1.1a)
U(z,0) = Uy (), (1.1b)

where U € RY is the vector of conserved variables, F(U) is the flux function and Uy is the initial data. We are
interested in solving (1.1) with an explicit finite volume method not limited by the CFL (Courant-Friedrichs-
Lewy) condition.

A class of such methods has been proposed by LeVeque in a series of papers [13—15] in the 1980s. Therein,
the Godunov scheme was extended to the LTS-Godunov scheme and applied to the Euler equations. The CFL
condition is relaxed by allowing the waves from each Riemann problem to travel more than one cell during a
single time step. Each wave is treated as a discontinuity, and the interactions between the waves are assumed to

Keywords and phrases. Large Time Step, HLL, HLLC, euler equations, riemann solver.
* The authors were supported by the Research Council of Norway (234126/30) through the SIMCOFLOW project.

1 Department of Energy and Process Engineering, Norwegian University of Science and Technology, Kolbjgsrn Hejes vei 2,
NO-7491 Trondheim, Norway.

2 SINTEF Materials and Chemistry, P.O. Box 4760 Sluppen, NO-7465 Trondheim, Norway.
* Corresponding author: marin.prebeg@ntnu.no; marin.prebeg@gmail.com

Article published by EDP Sciences © EDP Sciences, SMAI 2018


https://doi.org/10.1051/m2an/2017051
http://www.esaim-m2an.org
http://www.edpsciences.org
mailto:marin.prebeg@ntnu.no
mailto:marin.prebeg@gmail.com

1240 M. PREBEG ET AL.

be linear. Through the years this idea has been used by a number of authors. For the shallow water equations,
Murillo, Morales-Herndndez and co-workers [23-27] applied the LTS-Roe scheme and Xu et al. [41] applied the
LTS-Godunov scheme. Further applications of the LTS-Godunov scheme include the 3D Euler equations by
Qian and Lee [31], high speed combustion waves by Tang et al. [35], and Maxwell’s equations by Makwana and
Chatterjee [21]. Lindqvist and Lund [19] and Prebeg et al. [30] applied the LTS-Roe scheme to two-phase flow
models. Lindqvist et al. [19] also studied the TVD properties of LTS methods and showed that the LTS-Roe
scheme and the LTS-Lax-Friedrichs scheme are the least and most diffusive TVD LTS methods, respectively.
All the methods discussed above share the feature of starting from a Godunov or Roe-type Riemann solver
and extending it to the LTS framework. The goal of this paper is to establish a more general platform for LTS
extensions of approximate Riemann solvers. In particular, we will construct the natural LTS extensions of the
HLL and HLLC schemes, and quantify their level of numerical diffusion.

The original HLL scheme, proposed by Harten, Lax and van Leer [9] in the 1980s, assumes a two-wave
structure of the solution and constructs the approximate Riemann solver by using estimates of the velocities
of the slowest and the fastest waves. The choice for these velocity estimates has been studied for instance by
Davis [4], Einfeldt and co-workers [5,6] and Batten et al. [1]. The original HLL solver may poorly resolve certain
physics in systems where the solution structure consists of more than two waves. For the Euler equations, Toro
et al. [39] proposed the HLLC solver in which the contact discontinuity is reconstructed by assuming a three-
wave structure of the solution. Today, HLL and HLLC solvers are widely used in a number of different fields,
such as multiphase flow modeling [2,3,20,28,36,37,42] and magnetohydrodynamics [12,22].

In this paper, we show how LeVeque’s approach [15] may be directly used to derive LTS extensions of the HLL
and HLLC schemes, denoted as LTS-HLL and LTS-HLLC, respectively. In Section 2 we present our basic model
and numerical framework. In Section 3 we present the standard HLL scheme and extend it to the LTS framework.
In particular, we write the scheme in numerical viscosity and flux-difference splitting form. Section 4 presents
the LTS extension of the HLLC scheme. In Section 5, we study in more detail the numerical diffusion of the
LTS-HLL scheme. We provide a direct proof that the numerical viscosity coefficients satisfy the TVD property
without any restriction on the time step. We also prove that for subsonic flows, the numerical diffusion for the
contact wave increases monotonically with the time step. This is in contrast with previously investigated LTS
methods [15,19,23], where the numerical diffusion will typically attain local minima for integer Courant numbers.
In Section 6 we present numerical investigations for the one-dimensional Euler equations. The resulting LTS-
HLL(C) schemes are seen to improve the efficiency of standard HLL(C) schemes while also providing improved
robustness compared to previously studied LTS methods. In Section 7 we close with conclusions.

2. PRELIMINARIES

2.1. Problem outline

As a special example of (1.1) we consider the Euler equations where the vector of conserved variables U and
the flux function F(U) are defined as:

p pu
U=|pu]l, FU) =| pu*+p |, (2.1)
E uw(E +p)

where p,u, E,p denote the density, velocity, total energy density and pressure, respectively. The system is
closed by the relation for the total energy density, E = pe + pu?/2, and an equation of state for perfect gas,
e = p/(p(y — 1)). Throughout the paper we will use v = 1.4 for air. Alternatively, we can write (1.1) in a
quasilinear form as:

U, +AU)U, =0, A(U) =0F(U)/0U. (2.2)
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We assume that the system of equations (2.2) is hyperbolic, i.e. the Jacobian matrix A has real eigenvalues and
linearly independent eigenvectors. The eigenvalues of the Euler system (2.1) are:

AM=u—a, I=u, A3=u-+a, (2.3)
where a is the speed of sound.

2.2. Numerical methods
We discretize (1.1) by the explicit Euler method in time and the finite volume method in space:

At
+1 _ y1n n n
Uit =1y - (FjJrl/2 - Fj_l/g), (2.4)

where U is a plecewise constant approximation of U in the cell with center at x; at time level n and F? 112
is a numerical approximation of the flux function at the cell interface ;1,5 at time level n.

2.2.1. Standard 3-point methods

In the case that the numerical flux depends only on the neighboring cell values, we can with no loss of
generality write the scheme in the numerical viscosity form [7,34]:

Fj+1/2 =F (Uj’Uj+1) = 9 (Fj + Fj+1) - 5Qj+1/2 (Uj+1 - Uj), (2.5)
where F} = F (U}l) and Q;.‘ 12 is the numerical viscosity matrix. To simplify the notation, the time level n
will be implicitly assumed in the absence of a temporal index. The choice of the numerical viscosity matrix Q
determines the finite volume method we use, i.e. for the Lax-Friedrichs scheme Quxr = diag(Az/At), and for
the Roe scheme Qgroe = |A| where A is the Roe matrix [32]. A can be diagonalized as:

A =RAR!, (2.6)

where R is the matrix of right eigenvectors and A= diag(A1, ..., An) is the matrix of eigenvalues. We note
that in the Lax-Friedrichs and the Roe schemes, the numerical viscosity matrix Q acts independently on each
characteristic field. In that case, Q can be diagonalized as:

Q=ROR !, (2.7)
where Q = diag(wy,...,wy) is the matrix of eigenvalues of Q, and Q and A have the same eigenvectors. The
numerical viscosity matrices of the Lax-Friedrichs and the Roe scheme are then obtained by:

Az N
Quxr = EI’ Qroe = |A]. (2.8)

An alternative way to discretize (1.1) is with the flux-difference splitting:

n+l _ y1n _
U, =Uj

A
&

A;_—l/Q (U? B U;‘l—l) + Ag‘_+1/2 ( ?+1 - U?))? (2.9)
where A¥ represent a splitting of the Roe matrix (2.6) according to:
A* =RA*R. (2.10)

Herein, AE are obtained by transforming each diagonal entry of A:

1 A
Mg = 3 ()\ + Aj)’ )\ﬁoe = £+ max(0, £\). (2.11)
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For 3-point methods, the size of the time step in discretizations (2.5) and (2.9) is limited by the CFL condition:

At
= — < .
€ = max Dy (w,1)] 5 < 1, (2.12)

where ), are the eigenvalues of the Jacobian matrix A in (2.2). In this paper, we consider explicit methods that
are not limited by the constraint (2.12).

2.2.2. Large Time Step methods

The natural LTS extension of the numerical viscosity formulation (2.5) is (see [19]):

1 I o=
Fipip=5 (Fj+Fj) — 5 > QoAU 20, (2.13)

1=—00

and the natural LTS extension of the flux-difference splitting formulation (2.9) is (see [19]):

At X/ .
n+1 § : i i—
Uj+ = Uj — E (Ajt1/2_iAUj,1/2,i + Aj+1/2+iAUj+1/2+i> s (214)
=0

where we introduced the notation AUj;/, = Ujy1 — U;. We note that (2.13) differs from [19] in a sense
that we scale Q" with Axz/At. Herein, the upper indices denote the relative cell interface position. These will
be further clarified in Section 3.2. Lindqvist et al. [19] provided the partial viscosity coefficients Q and the
flux-difference splitting coefficients A‘* for the LTS-Godunov, LTS-Roe and LTS-Lax-Friedrichs schemes. For
the LTS-Roe scheme [19], the partial viscosity coefficients are defined through the eigenvalues of Q':

i _ (Roip-1
Qi1 = (ROR )j+1/2’ (2.15)
where the eigenvalues are defined as:
wl%oe = |>‘|7 (2163)
Fi Ax .
wheo = 2max | 0, £\ — Vs for i>0, (2.16Db)
and the flux-difference splitting coefficients are defined through the eigenvalues of Ai¥:
At _ (RAER-1
A%, = (RA™R )j+1/2 : (2.17)
where the eigenvalues are defined as:
A Ax Ax
it H Y
Aibe = T max (0, min (:I:)\ Ve At)) . (2.18)

In the following section we determine these coefficients for the LTS-HLL scheme.

3. LTS-HLL SCHEME

We start by presenting the standard HLL scheme of Harten et al. [9]. Then we formulate the natural LTS
extension of the HLL scheme and provide explicit expressions for the flux-difference splitting and the numerical
viscosity coefficients.
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3.1. The standard HLL scheme

We consider the cell interface Riemann problem:

{Uj if =<0,
U(x,0) = (3.1)

Uj+1 if x>0.

The original HLL scheme by Harten et al. [9] solves the Riemann problem approximately by assuming a single
state between the left and right states:

U, if x< St
Ua/t) = ¢ UL, if Spt < < St (3.2)

Uj+1 if x> SRL

where Sy, and Sg are approximations of the smallest and the largest wave velocities at the interface z;1/0. As
for now, we leave these unspecified and return to them in Section 6. The intermediate state Ugj{‘ﬂ is defined
such that the Riemann solver is consistent with the integral form of the conservation law (1.1), see [5,9]:

an _ OrRUjp1 —SLU; +F —Fjpq

Uit = Sk — S (3.3)
Next, we use U?jf/Q to determine the flux function F;, /5. This is defined as:
Fj if 0< Sy,
Fj+1/2 = F?flL/2 if St <0< Sk, (34)
Fj+1 if 0 > Sg.
In the interesting case, St, < 0 < Sg, the flux function has the form [38]:
Fill, =Fj+ 5. (U?f%/z - Uj) ; (3.5)
Fils = Fi + Sr (U?H/z - Uj+1> : (3.6)
These two equations are equivalent and by using (3.3) in any of them we obtain:
puiL _ SrFj — SiFj1 + SuSk (Ujen — Uj). (37)
Jj+1/2 Sk — SL :
Further, the equations (3.4) and (3.7) can be written more compactly as:
SgF; — Sy Fjp1 + Sp S (Ujer — Uj
Fj+1/2 _ YR7J L Fj+1 + 5L Or ( Jj+1 ]) (3.8)

SE—Sp ’

where S; = min(S,0) and S§ = max(Sg,0). Equation (3.8) is then used in (2.4). For more information

and more detailed derivation we refer to [1,4,5,9,38]. Einfeldt [5] showed that the numerical flux (3.8) can be

recovered from the numerical viscosity framework (2.5) by setting:

St +Sp . S; Sg
REOLA 9 PLOR gy

Sg — S Sg — S

Qurr = (3.9)
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Following the framework introduced in (2.8), we define the HLL scheme through the diagonal entries of € as:

Sa (A= Sp) =S (S = A) _ ISRl (A= S1) + [St[ (Sr = A) |
St —Sp Sk — SL

WHLL = (310)

The HLL scheme can also be written in the flux-difference splitting framework (2.11) by modifying the diagonal
entries of A* as:

A — S A—Sp Sk — A

Mg, = 8 = St S+ 3.11
HLL S+ Si SR_SL R+SR—SL Lo ( )
_ SE—XN - A=SL .. Sr—A\ __

A S- = S S 3.12
M S T B s R e (312

3.2. The LTS-HLL scheme

We want to construct the LTS extension of the numerical flux function (3.8). Consider the Figure la and
the Riemann problem at the interface /5. First, we consider the wave structure when C' < 1, denoted in
Figure 1b as At*™LTS In this case, the Riemann problem at Tj11/2 is completely defined by U;, U;,; and
velocities St j11/2 and Sg ;41,2 being emitted from the interface ;. /2, see (3.2)-(3.8). Next, we consider the
case when C' > 1, denoted in Figure 1b as At¥TS. For this case, the wave emitted from the interface xj_1/2 and
associated with velocity Sy j_1/2 passes through the interface ;1 /s.

This wave violates the CFL condition (2.12) since we allowed the wave to travel more than one cell during
a single time step. However, we may relax the CFL condition (2.12) if we modify (3.8) by taking into account
this additional contribution. We start by assuming that the interactions between the waves are linear and we
note that:

e The flux function (3.8) at the interface x;,;/, is increased by the contribution from the jump 2 moving to
the right with the velocity Sg j_1/2-

e The contribution from the jump 2 does not start passing through the interface x;, 1/, immediately, i.e. it has
to travel through the cell z; before it starts to pass through the interface ;5.

Based on this, we modify (3.8) as
LTS-HLL HLL
Fj+1/2 Fg+1/2 + SRJ 1/2 (UJ 1/2 — Uj) ) (3.13)
where we denoted (3.8) as F? 11/2, and:

Az
Spjo1y2 = Skj-12 = A (3.14)

The purpose of this modification is to take into the account the fact that the wave has to travel one cell before
it starts contributing to the flux function (3.13). In the general case, we allow for an arbitrarily large time step
size At, therefore allowing the waves to travel several cells during a single time step. In addition, we note that
each interface may emit waves where each of the local wave speeds Si, and Sy may be either negative, zero or
positive. Therefore, the general formula for the flux function of the LTS-HLL scheme has the form:

LTS-HLL _
FJ+1/2 J+1/2 + ZFJ+1/2 T ZFJ+1/2+17 (3.15)

where the additional terms under the sum signs represent the information reaching the interface z; /5 from
neighboring Riemann problems on the left and on the right, respectively. The newly introduced terms in (3.15)
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U
Ujfl
U;
Ujt1
X
Tj—3/2 Tj—1/2 Tj4+1/2 Tj+3/2
(A) Riemann problems at x;_1 /5 and ;1 /2
T t
SL,j—1/2 SL,j+1/2 SR,j—1/2 SR,j+1/2 ALTS
—r T \__________________\ '''''''''''''''' e ______7 '''''''''''''''
7
7
// Atnon—LTS
X
Tj—3/2 Tj—1/2 Tj+1/2 Tj+3/2
(B) Characteristics with slopes dz(t)/dt = SL r at xj+1/2
U
Ujfl
—_ Uil ,
ey H 1 J HLL
Jump @ ump @ T2 ____|Yitie U
1
X
Tj—3/2 Tj—1/2 Tj4+1/2 Tj+3/2
) Approximate solutions of Riemann problems at x; with HLL scheme
JF1/2
FIGURE 1. Wave structure in the LTS-HLL scheme.
are:
—i _ a—i HLL ] ] —i ~_ yrHLL
F oo = SR 412 <Uj+1/2—i - UJ+1—1) + 5L 4172 (U]_l Uj+1/2—i) ; (3.16)
+i _ qti HLL o +i ) __ y7HLL
Fj+1/2+i - SL,j+1/2+i (Uj+1/2+i - UJ+Z> + R,j+1/2+i (UJHH Uj+1/2+i> ) (3.17)
where the modified wave velocities are:
i Az
[ TR],j+1/2—i = max (S[L,R]’j+1/2i A 0), (3.18a)
. Az
+12 _ . .
SILiR)g+1/24i = WD (S[L,R],j+1/2+z' ti 0> : (3.18D)

Equation (3.15) is then used in (2.4).
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3.2.1. The LTS-HLL scheme in numerical viscosity form

We can now write the LTS-HLL scheme in the numerical viscosity form (2.13).

Proposition 3.1. Given the Roe matrix:

A1 = (RAR%)]_H/Q v, (3.19)

where A is the diagonal matriz of eigenvalues, the LTS-HLL scheme defined by (3.13)~(3.18) can be written in
the numerical viscosity form (2.13) with coefficients:

i _ (hoin-1
Q= (RQ R )j+1/2, (3.20)
where Ql(A SL, Sr) is the diagonal matrixz with entries given by:
Sr|(A—51) + |SL| (Sg — A
PR TS IS ) o1
i A — SL A.’L‘ SR - A Ax .
wi:ILL = 2m max <0 :l:SR At) + 2m max (0 ZlZSL - ZAt) f07" 1 > 0. (321b)

Proof. The coefficient Q" has already been determined by (3.9). We obtain the coefficients Q¢ for i # 0 by
equalizing (2.13) and (3.15), while using the Roe condition [32]:

Aji1ys (Usn = Uj) = F(Uj10) — F(U). (3.22)

O

We point out the similarity of the LTS-HLL partial viscosity coefficients (3.21) to the partial viscosity coefficients
of the LTS-Roe scheme (2.16).

3.2.2. The LTS-HLL scheme in fluz-difference splitting form

We have built the LTS-HLL scheme by heuristic arguments as an extension of the standard HLL scheme,
following LeVeque’s general approach of treating all wave interactions as linear [15]. We now derive the flux-
difference splitting formulation in a more formal way, starting with LeVeque’s general updating formula [15]:

Ut = _Z / ‘1 e — 3 Uy, (3.23)

1=—0Q0
where ijH/g,i(Q) is the solution to the Riemann problem at x;,;/,_;. Herein:

T—=Tj41/2—i

3.24
t—tn (3.24)

G =
Proposition 3.2. Given the Roe matrix:

Ajpije= (RAR*)J,+1 P (3.25)

where A is the diagonal matriz of eigenvalues, the LTS-HLL scheme can be written in the fluz-difference splitting
form (2.14) with coefficients:

Az:t

= (RA&R”) (3.26)

j+1/2°
where Aii(.&, SL, Sr) is the diagonal matrixz with entries given by:

it A—SL . Ax Ax SR — A . Ax Ax
gL =f5——o [ max <O,m1n (:I:SRzAt,At)> :I:mmax ((),Inln (iSLZAt’At)>. (3.27)
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Proof. The HLL Riemann solver (3.2) can be written as:
Uj41/2(0) = U + H(C — Sv) (U?J£1L/2 - Uj) + H(¢ — Sr) (Uj+1 - U?f%/z) (3.28a)
= Uy~ H(SL —0) (U, = U) = H(Sn— Q) (Uj1 - U, (3.28b)

where H is the Heaviside function. Using (3.3) we can rewrite this as:

ﬁj+1/2(<) = Uj + (]1;(15_55)(81{ — A) + %(A — SL)) (Uj+1 — UJ) (329&)
=Ujp - (M(SR —A)+ %(A - SL)> (Ujs1 —U;j), (3.29b)

where Sp, = SpI and Sg = SrI. We then use (3.29a) in (3.23) and note that for ¢ < 0 we can write:
(ol Ax
/(, 14 Ujiry2-i(G) A6 = — Ui A§+1)/2 i (Ui = Uj), (3.30)
=) ary
where: = o
A =RA"R™, (3.31)
and A" is the diagonal matrix with values:

i A—=SL Ax Az SR — A . Ax Az
A SR — SL <0 max (SR + ZE, At)) + m min <O7maX (SL + ZE, At)) (332)

Similarly, we use (3.29b) in (3.23) and note that for ¢ > 1 we can write:
K- _ Az (i—-1)+
/(i_ " Ujr/2-i(G) 4G = — Ujra— — Al ir1jo—i Uit = Uj—i), (3.33)
where: N o
A" =RATR™, (3.34)
and A" is the diagonal matrix with values:
) A— 5L . Axr Ax SR — A . Axr Ax
Nt =——— —i== == PRTA 0 [ i B .
SR_SLmaX(O,mln(SR ZAt’At>>+SR—SLmaX< ,mln( L ZAt’At)) (3.35)
Substituting (3.30) and (3.33) into (3.23) we recover the LTS flux-difference splitting equation (2.14). O

We point out the similarity of the LTS-HLL flux-difference splitting coefficients (3.27) to the flux-difference
splitting coefficients of the LTS-Roe scheme (2.18).

Proposition 3.3. The fluz-difference splitting formulation (3.26)—(3.27) and the numerical viscosity formula-
tion (3.20)—(3.21) are equivalent.

Proof. Lindqvist et al. [19] derived the following one-to-one mapping between the numerical viscosity and flux-
difference splitting coeflicients:

AO:i: _ % (A + QO T Q:Fl) , Ai:l: _ :‘:% (Q:FZ _ Q:F(i+1)) ) (336)

By using(3.20)—(3.21) in (3.36) we obtain (3.26)—(3.27). O
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4. LTS-HLLC SCHEME

In this section we propose a direct extension from the HLLC scheme to the LTS-HLLC scheme, following the
approaches from Section 3.

4.1. Standard HLLC scheme

We recall that the standard HLL scheme assumes a two wave structure of the solution with a single, uniform
state UHLL between the waves. This is a correct assumption for hyperbolic systems consisting of only two equa-
tions (such as the one-dimensional shallow water equations). However, for the Euler equations this assumption
leads to neglecting the contact discontinuity. The approach to recover the missing contact discontinuity was
first presented by Toro et al. [39]. Herein, we outline an approach to reconstruct the missing wave following the
approach described by Toro in [38].

The standard HLLC scheme is given in the form similar to the HLL scheme defined by equations (3.2)
and (3.4), but with the state UMM being split into two states separated by a contact discontinuity:

U, if z< St

_ UHLLC if  S1t <o < Set,

U(x/t) = 4.1
@/ UELLC if Sct <x < Sgt, (4.1)

Uj+1 if x> Sgt.

Based on this, the numerical flux function is defined as:

Fj if 0< 5,
Fhq,, i Sp <0< Se,
Fjt12= 7 (4.2)
it/ HLLC
FRJJFI/2 if Sg<0< SR’
Fiy1  if 0> Sk
In the interesting case, S;, < 0 < Sg, the numerical flux function has the form:
FIhS, =F;+ 50 (UEIJES/Q - Uj) ; (4.3)
FRS s =Fip1 + Sk (Ug,leﬁ/z - Uj+1) ) (4.4)
where the intermediate states are determined according to [38]:
1
UL = gy (2 Sc (45)
K SK o SC ) .
E
s (S0 — k) (e + g

where index K denotes left (L) or right (R) state in (4.1). The contact discontinuity velocity is given by [38]:

_PrR—pL+F prLur(SL — uL) — prUR (SR — UR)
pL(SL — uL) — pr(SR — uR) '

Sc (4.6)

For details on the derivation of these formulae we refer to the book by Toro [38].
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4.2. LTS-HLLC scheme
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Following the approaches of Section 3, we obtain the following expression for the numerical flux to be used

n (2.4):
Proposition 4.1. The numerical flux of the LTS-HLLC scheme (4.2) is:

LTS—HLLC O
Fj+1/2 ]+1/2+ZF3+1/2 ’L+ZF]+1/2+’L7

where F?+1/2 is the standard HLLC flux given by (4.2), and the additional terms are:

Fl o = Shiiya (Ug,Ljﬁ-?/Q—i - Uj+1—i)
+ 851 /a (U%«Lf/zq - Ug,Lji?mfi)
+ SL JH1/2—i (Uj*i - Uf,?ilc/zﬂ) )
FJ-il/Z—H S ,1]+1/2+z (Ug,?ilc/uz‘ - Uj+i)
+ SC]+1/2+7, (UHL+1/2+1 UHL+1/2+1>
+ SEY 1 /am (Uj+1+i - UR,Ljif/zﬂ) :
Herein, the modified velocities are:

—1 AZL’
S|L.C,R) j+1/2—i = Max (S[L,c,R],jH/z—z‘ - zAt,O) ;

7 . . AI
S[JE C,R),j+1/2+i — M (S[L,C,R],j+1/2+i + AL 0) .
Proof. The HLLC Riemann solver (4.1) can be written as:

INJ;‘-H/Q(C) =U; + H(¢—5L) (UELLC -Uy)

+ H(¢ - S¢) (UELLC _ UELLC) + H(¢ — Sgr) (Uj+1 _ UELLC) ’

or equivalently:

Uj11/2(¢) = Uy — H(SL - ¢) (UPHLC —Uy)

— H(Sc — ¢) (URMC = U™ C) — H(Sr — ¢) (Uj31 —

(4.7)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

where H is the Heaviside function and ( is given by (3.24). We then use (4.12) in (3.23) and note that for ¢ < 0

we can write:

(=l Az Az
Ujt1/2-i(G) dG = —=Uji (min (O,SL —(i— 1)) — min (0 SL—
/( . 7 At Y At

i-1)4s

t)) wie g, )

+ (min <0, Sc— (i — 1)3:;) — min (() Sc — 3?)) (UELLC _ UELLC)

Ax A
+ <min (0, Sr — (i — 1)A> — min (O SR — Af)) (Ujs1-i — UELLC) .

(4.14)
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Similarly, we use (4.13) in (3.23) and note that for ¢ > 1 we can write:

T 5 Ax
/(, . Uji2-4(G)dG = EUjﬂﬂ'
At

i—

+ (max <O, St — (i — 1)) — max (0, St — 1

Az Az
At At)) (UL -1U;)

+ <max (0, Sc — (i — 1)3?) — max (0, S — ,ij)) (UELLC _ UELLC)
A A

+ <max <0, Sr — (1 — 1)Aﬂtc) — max <0, Sk — ZA?:)) (Ujp1-i — UELLC) .

(4.15)

Herein, the index ;,;/5_; is implicitly assumed on the parameters S, ¢ r) and UELI%]C Using (4.14) and (4.15)
in (3.23) we can write the LTS-HLLC scheme as:

At
Uyt = Uy - G (BN - BT (19

O
We note that (4.8) and (4.9) are very similar to the corresponding numerical flux functions for the LTS-HLL
scheme, (3.16) and (3.17), but with the addition of the middle wave associated with Sc.

5. TVD ANALYSIS AND MODIFIED EQUATION

We interpret the LTS-HLL scheme as a numerical method for the scalar conservation law and we show that
the LTS-HLL scheme is TVD. Next, we employ the modified equation analysis and use the results of Lindqvist
et al. [19] and Prebeg [29] to study the numerical diffusion of the LTS-HLL scheme.

5.1. TVD analysis

The original HLL scheme [9] and the HLLC scheme [39] have been constructed as approximate Riemann
solvers for hyperbolic systems of conservation laws. However, we may interpret the standard HLL and the LTS-
HLL scheme as a numerical method for scalar conservation laws with two input parameters St and Sg. This
allows us to perform the TVD analysis of the scheme.

For the standard HLL scheme Einfeldt [5] showed that the HLL scheme satisfies the TVD-type condition if
the eigenvalues wyry, of the numerical viscosity matrix Qury, satisfy:

|ApRoe| < wp HLL, (5.1)

for each characteristic field p. The set of TVD conditions for LTS methods for scalar conservation laws was
determined by Jameson and Lax [10,11] (see also Lindqvist et al. [19]).

Lemma 5.1. A multipoint conservative scheme in the form (2.13) is unconditionally TVD if and only if:

2(Aw/At) = 2Q% 15 + QL1 + Qjriye 20, (5.2a)
Q?+1/2 - 2jS_:1/2 + Q;tfl/g + Aj-|—1/2 > Oa (52b)

+i E(i+1) | HE(+2) :
Qi =205, T Q512 20 ¥V ix>1, (5.2¢)

for all j, where Q are the numerical viscosity coefficients.
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By interpreting the numerical viscosity coefficients of the LTS-HLL scheme (3.21) as the numerical viscosity
coefficients ) of the numerical method for the scalar conservation law we may show that:

Proposition 5.2. The LTS-HLL scheme is TVD under the condition:
S, <A < Sg. (5:3)

Proof. By substituting (3.21) in (5.2) the TVD conditions become:

Ax ) Ax
()\ — SL) (At — min ('SR s At))
Ax Ax
_ = mi = > .
+(Sr — ) (At min (|SL A )) >0, (5.4a)
. Az
(A = Sp) max | 0, min | 2S5, 4E F 2SR
. Ax
+ (Sgr — A) max | 0, min | £25,, 4Kt F 251, >0, (5.4b)
. Az Az
(A — Sp) max <O,m1n (iSR i TSR + v + 2))
A A
4 (Sr — A)max {0,min [ £Sy, —i=0 FSL +ios +2)) >0 V i>1, (5.4¢)
At At
which are always satisfied under the condition (5.3). O

In the limit A = S;, = Sgr, we recover the LT'S-Roe scheme which is well established to be TVD [15,19].

5.2. Modified equation analysis

Once we have obtained the partial viscosity coefficients Q°, we may use them to compare the amount of the
numerical diffusion between different schemes. One way of doing this is by employing the modified equation
analysis.

Lindqvist et al. [19] showed that for the scalar conservation law the LTS scheme (2.13) and (2.14) gives a
second-order accurate approximation to the equation:

k-1
At~
( Ax <= CQ) Uw] , o
i=1—k .

where Q' = Q° (u, .. .,u) is the numerical viscosity coefficient of the (2k+1)-point scheme, and ¢ = f’(u)At/Ax.
We distinguish between the numerical diffusion inherent to the scheme:

B 1 Az?

ug + f(u)e = 3 At

D(u) = Z Zin -, (5.6)

and the total numerical diffusion v:
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Lindqvist et al. [19] determined D(u) for the LTS-Roe and LTS-Lax-Friedrichs scheme as:

Drrs-roe = ([lef] = lef) (1 + |e| = Tle[1), (5-8)
Dyrs.Lur = k2 — ¢, (5.9)
where [¢] = min{n € Z|n > ¢} is the ceiling function. By using the numerical viscosity coefficients (3.21)

in (5.6), Prebeg [29] determined D(u) for the LTS-HLL scheme as:

Dirsnis = ;‘f; (TNewl] = lerl) (0 + ler| = Terl])
B (MNew = lewl) (1 + fen] - [lewl])
CR L
+ (¢c—cL) (cr —©), (5.10)

where ¢f, = S, At/Ax and cg = SgAt/Ax. We use equations (5.8)—(5.10) to investigate the numerical diffusion
of the LTS-Roe, LTS-Lax-Friedrichs and LTS-HLL schemes.

We consider the Euler equations and investigate the numerical diffusion at a Riemann problem with subsonic
flow conditions and the Roe eigenvalues defined as:

A =-05, A=0.25 A3=1. (5.11)
Figure 2 shows D,, and v, for the p-th characteristic field as a function of the global Courant number ¢. We use
the global Courant number as an input variable and determine the time step from it as:
cAzx

Ata = :
max (|A1], |A2|, | As])

(5.12)

Then the numerical diffusion D, and v, are determined as functions of the local eigenvalue )\, and the global
time step size Atg:
D, = D (A, Atz, Az), v, =v (), A, Az), (5.13)

where we note that for the Figure 2 we use S;, = A\; and Sg = A3, and we assume that Az = 1.

We observe that the area between LTS-Roe and LTS-Lax-Friedrichs curves (including the curves) is the
TVD-type region. This follows from the result in [19] where it is shown that the LTS-Roe is the least diffusive
and that the LTS-Lax-Friedrichs is the most diffusive TVD scheme. The range of numerical diffusion that can be
achieved by the LTS-HLL scheme is hatched. Einfeldt [5] showed that for subsonic flow conditions, the standard
HLL scheme can reproduce the full span of numerical diffusion between the Roe and Lax-Friedrichs schemes in
the 1st and 3rd characteristic field corresponding to either shock or rarefaction. The amount of diffusion in 2nd
characteristic field (contact discontinuity) is always higher than in the Roe scheme.

We may show that in the subsonic case, the numerical diffusion of the LTS-HLL scheme in the 2nd character-
istic field is always bigger than the numerical diffusion of the LTS-Roe scheme and that it is always increasing
with the time step.

Proposition 5.3. The numerical diffusion of the LTS-HLL scheme in the 2nd characteristic field:

ca—c CR—C
Do 11s-HLL = 2y (Jer|) + U (Jew]) + (c2 —cL) (er — ¢2), (5.14)
CR — CR — C1,
where we define:
Cc,=C —0, CrR=C+o0, (5.15)
with: At At
— — g= 1
C2 ZAa:’ o ana (5.16)
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FIGURE 2. Numerical diffusion D(u) and v(u) in characteristic fields of the Euler equa-
tions for (5.11). LTS-Roe (blue-squares), LTS-Lax-Friedrichs (red-circles), LTS-HLL (black-
diamonds). Hatched region (dark green-lines) is the range of numerical diffusion that can be
achieved by the LTS-HLL scheme by varying St, and Sg.

and where:

and:

H(lz|) = |=1 + 22|21 = Jo] = |2 = []21%,

St < 0 < |A2| < Sg,

18 a monotone function of the time step At.

Proof. By using (5.15), we can rewrite (5.14) as:

1 1
D> 11s-HLL = 57'((|CR|) + 57'[ (lew]) + 0.

We introduce the dimensionless parameter z:

At
At

Zz =

1253

(5.17)

(5.18)

(5.19)

(5.20)

and note that showing that (5.19) is a monotonically increasing function of At, is equivalent to showing that:

D(z)

1 1
SH(zlenl) + SR (2 |ew) + 2202,

(5.21)

is a monotonically increasing function of z. We note that H is a continuous function of z, hence D(z) is also a
continuous function of z. Therefore D(z) is monotonically increasing if the first derivative is always positive. In
other words, we need to show:

dD(z)

dz

1
= ler| ([2]enl] = zlenl) + lec| (T2]ec]] = zlev]) = 5 (len] + ler]) + 220% > 0 ¥z > 0.

(5.22)
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We define the maximum Courant number:
Cmax = max (|zep |, |zer]) , (5.23)

and consider the cases cmax < 1 and cpax > 1.

Case Cpmax > 1:

The first two terms in (5.22) are non-negative, so it is sufficient to show that:

1
—3 (len| + |er]) + 2202 > 0. (5.24)
For subsonic flows we have that: 1 )
5 (lew| + [er|) = 5 (cr —cL) = 0. (5.25)
Hence (5.24) becomes:
1
By using (5.16) we have that:
At,
a Ax > 5, (527)

which always holds for subsonic flows when cpax > 1.

Case Cpmax < 1:

For ¢pax < 1 the equation (5.22) becomes:

dD(z)
dz

=(ca+0)(1 —zco — 20) — (cg — 0)(1 + z¢g — 20) — 0 + 220% > 0, (5.28)

which simplifies to:
dD(z)
dz
We have already proved that the expression is positive for z > 1/(20), in the opposite case the lowest value
of (5.29) is attained for:

=0 —2(c)’ 2> 0. (5.29)

1
= 5.30
N 20’ ( )
giving:
dD(z) (02)2 1
_ _ L 31
P o . . (0 —c2) (o +ca), (5.31)
which is always positive for subsonic flows. O
6. RESULTS

In this section we compare the new schemes with their non-LTS counterparts and the LTS-Roe scheme. Until
now, we did not discuss how to choose the wave velocity estimates for Sy, and Sg in the HLL and HLLC schemes
and their LTS extensions. For our investigations, the choice of wave velocity estimates for Sy, and Sg is made
according to Einfeldt [5]:

SL,j+1/2 = min (/\1(Uj)’ /\l(ﬁj+1/2)) ; (6.1a)

SR,j+1/2 = Max <)\3(ﬁj+1/2), )\3(Uj+1)) , (6.1b)
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where U denotes the Roe average of conserved variables. For the Euler equations, the eigenvalues are defined
as A} = u—a and A\3 = u+ a, where u and a are the velocity and speed of sound, respectively. We note that the
choice of wave velocity estimates is not a trivial matter and refer to Davis [4], Einfeldt [5] and Toro et al. [39]
for detailed discussions about a number of different estimates and their properties. Herein, we choose (6.1)
based on our own experience, where this choice yielded very good results, especially when it came to calculating
entropy satisfying solutions. A more rigorous comparison between different wave velocity estimates in the LTS
framework may be very fruitful, but at the moment it remains outside the scope of this paper.

In all the numerical experiments below, the input discretization parameters were the Courant number C
and Az. Then, the time step At was evaluated at each time step according to:

Ao CAr 6.2)
max |, (2, )]
b,z

where A, are the eigenvalues of the Jacobian matrix A in (2.2).

6.1. Sod shock tube

As a first test case we consider the classic Sod shock tube problem [33], with initial data V(z,0) = (p,u,p)":

vz, 0) (1,0,1)T it z<0, 63)
z,0) = .
(0.125,0,0.)T  if 2 >0,

where the solution is evaluated at ¢ = 0.4 on a grid with 100 cells. Figure 3 shows the results obtained with
HLL(C) and LTS-HLL(C) schemes with C = 1 and C' = 3. We observe that the LTS-HLL scheme (Fig. 3a)
increases the accuracy of the shock and the left going part of the rarefaction wave, while increasing the diffusion
of the contact discontinuity. This is in agreement with the results from Section 5.2 and it is due to the fact that
the standard HLL scheme assumes a two wave structure of the solution and neglects the contact discontinuity,
leading to excessive diffusion. Since the LTS-HLL scheme maintains the two wave assumption, it can be seen
that the increase in the time step leads to further smearing of the contact discontinuity. The LTS-HLLC scheme
(Fig. 3b) also improves the accuracy of the shock and the rarefaction wave. In addition, the LTS-HLLC scheme
also improves the accuracy of the contact discontinuity, because the HLLC scheme resolves the wave missing
in the HLL scheme. The velocity profiles show that the LTS-HLLC scheme produces more spurious oscillations
than the LTS-HLL scheme.

Next, we compare the performance of the LTS methods to each other. We consider the same test case and also
include the results obtained with the LTS-Roe scheme [19]. Figure 4 shows that the LTS-Roe scheme produces
spurious oscillations in both density and internal energy. Further, we observe that the LTS-Roe scheme violates
the entropy condition, while both LTS-HLL and LTS-HLLC schemes produce entropy satisfying solutions. We
note that for this test case, the standard Roe scheme does not lead to an entropy violation because there is
no sonic point across the rarefaction wave. Lindqvist et al. [19] showed how the LTS-Roe scheme can lead to
an entropy violation even if there is no sonic point across the rarefaction wave. Such an LTS-related entropy
violation cannot be fixed with standard entropy fixes developed for the Roe scheme, but it can be fixed by
splitting the rarefaction wave into several expansion shocks [13,15,23,31,41] or by varying the time step [18,19].
Prebeg [29] showed that the LTS-HLL scheme with the wave velocity estimates (6.1) always produces entropy
satisfying solutions.

Last, we investigate the computational times for the LTS-HLL(C) schemes at different Courant numbers and
different grids, see Figure 5. We observe that for any grid, the CPU time decreases as we increase the Courant
number. However, by looking at the CPU time required to reach the same error we observe that the HLL scheme
tends to be more efficient than the LTS-HLL scheme, and that the LTS-HLLC scheme tends to be more efficient
than the HLLC scheme.
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FIGURE 3. Comparison between the standard HLL(C) and the LTS-HLL(C) schemes for the
problem (6.3).

Remark 6.1. The CPU times are obtained with the MATLAB tic-toc function and averaged over a number of
simulations. The computational times in Figure 5 correspond to implementation in the framework (2.5) with the
numerical flux functions evaluated with (3.15) for the LTS-HLL and (4.7) for the LTS-HLLC scheme. We note
that for the LT'S-HLL scheme the similar computational efficiency trends are observed for implementations in the
numerical viscosity framework (2.13) with (3.21), and the flux-difference splitting framework (2.14) with (3.27).
Similar computational efficiency trends were reported by Lindqvist and Lund [19] and Prebeg et al. [30].

6.2. Woodward-Colella blast-wave problem

We consider the Woodward-Colella blast-wave problem [40]. The initial data is given by uniform density
p(z,0) = 1, uniform velocity u(x,0) = 0, and two discontinuities in the pressure:

1000 if 0<x<0.1,
p(x,0)=¢ 001 if 01<z<0.9, (6.4)
100 if 09<ax<1.

The solution is evaluated at ¢ = 0.038 on a grid with 500 cells. The solution consists of contact discontinuities
at © = 0.6, z = 0.76 and = = 0.8 and shock waves at x = 0.65 and « = 0.87, see [17]. The boundary walls at
z =0 and = = 1 are modeled as reflective boundary condition. The reference solution was obtained by the Roe
scheme with the superbee wave limiter on the grid with 16 000 cells.
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FIcure 5. Computational time vs. error estimate £ for density with the LTS-HLL(C) schemes
for the problem (6.3) with 100, 200, 400, 800, 1600 and 3200 cells.

Figure 6 shows the results obtained with the standard HLLC scheme at C' = 1 and different LTS methods
at C' = 5. We observe that both LTS-Roe and LTS-HLLC schemes are more accurate than the standard HLLC
scheme. Next, we observe that all schemes correctly capture the positions of both shocks and contact discon-
tinuities. As expected, all schemes resolve the shocks much more accurately than the contact discontinuities,
especially the LTS-HLL scheme which introduces very strong diffusion at the contact discontinuities.

Last, we investigate the computational time for the LTS-HLL(C) schemes at different Courant numbers and
different grids, see Figure 7. We observe that for any grid, the CPU time decreases as we increase the Courant
number. For the LTS-HLL scheme, the optimal choice of the Courant number depends on the grid size. The
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FIGURE 6. Comparison between the standard HLLC and different LTS methods for problem (6.4).
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FIGURE 7. Computational time vs. error estimate & for density with the LTS-HLL(C) schemes
for the problem (6.4) with 100, 200, 400, 800, 1600 and 3200 cells.

LTS-HLLC scheme is always more efficient than the HLLC scheme. The observations made in Remark 6.1 also
apply for Figure 7.

7. CONCLUSIONS

Following LeVeque [15], previous works on Large Time Step (LTS) explicit methods have focused on the
LTS-Roe and LTS-Godunov Riemann solvers. Aiming to achieve a more general platform for LTS methods,
we have here formulated LTS versions of the HLL and HLLC approximate Riemann solvers. In particular, we
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have determined the explicit expressions for the flux-difference splitting coefficients and the numerical viscosity
coefficients of the LTS-HLL scheme through our Propositions 3.2 and 3.3.

Through a modified equation analysis, we are able to precisely quantify the numerical diffusion associated
with LTS approximate Riemann solvers. So far, the lack of a controlled mechanism for introducing stabilizing
numerical diffusion has been a drawback for LTS methods [41]. In this respect, our Proposition 5.3 may be of
interest, as it allows for interpreting St, and Sg as parameters for smoothly controlling the numerical diffusion
within the TVD region.

We applied the LTS-HLL(C) schemes to one-dimensional test cases for the Euler equations. At moderate
Courant numbers the LTS-HLL scheme leads to increased accuracy of shocks and rarefaction waves compared
to the standard HLL scheme. The stabilizing excessive diffusion on the contact wave is evident. For moderate
Courant numbers, the LTS-HLLC scheme leads to an increased accuracy of shocks, rarefaction waves and
contact discontinuities compared to the standard HLLC scheme. It also shows potential for increased robustness
compared to the previously investigated LTS-Roe scheme [15,19,31]. We observe that for the Einfeldt’s [5] choice
of velocity estimates, both the LTS-HLL and LTS-HLLC schemes calculate entropy satisfying solutions. This is
in agreement with a recent result by Prebeg [29] where the modified equation analysis was used to show that
the LTS-HLL scheme with Einfeldt’s choice of velocity estimates yields entropy satisfying solutions. This is a
notable improvement compared to the existing LTS-Roe scheme for which entropy violations are observed for
even more cases than with the standard Roe scheme [19,23,31]. For moderate Courant numbers, the LTS-HLLC
scheme tends to be more efficient than the standard HLLC scheme in achieving a giving accuracy. For larger
Courant numbers, both the LTS-HLL and LTS-HLLC schemes produced spurious oscillations and the accuracy
decreased.

Further investigations are needed for robust higher order extensions of LTS methods, which were already
considered by LeVeque [16] and Harten [8]. Moreover, conditions for preservation of positivity should be explored
for LTS methods.
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