We prove the consistency of Galerkin methods to solve Poisson equations where the differential operator under consideration is hypocoercive. We show in particular how the hypocoercive nature of the generator associated with Langevin dynamics can be used at the discrete level to first prove the invertibility of the rigidity matrix, and next provide error bounds on the approximation of the solution of the Poisson equation. We present general convergence results in an abstract setting, as well as explicit convergence rates for a simple example discretized using a tensor basis. Our theoretical findings are illustrated by numerical simulations.
Accepté le :
DOI : 10.1051/m2an/2017044
Mots clés : Langevin dynamics, spectral methods, Poisson equation, error estimates.
@article{M2AN_2018__52_3_1051_0, author = {Roussel, Julien and Stoltz, Gabriel}, title = {Spectral methods for {Langevin} dynamics and associated error estimates}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1051--1083}, publisher = {EDP-Sciences}, volume = {52}, number = {3}, year = {2018}, doi = {10.1051/m2an/2017044}, mrnumber = {3865558}, zbl = {1404.82050}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2017044/} }
TY - JOUR AU - Roussel, Julien AU - Stoltz, Gabriel TI - Spectral methods for Langevin dynamics and associated error estimates JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2018 SP - 1051 EP - 1083 VL - 52 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2017044/ DO - 10.1051/m2an/2017044 LA - en ID - M2AN_2018__52_3_1051_0 ER -
%0 Journal Article %A Roussel, Julien %A Stoltz, Gabriel %T Spectral methods for Langevin dynamics and associated error estimates %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2018 %P 1051-1083 %V 52 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2017044/ %R 10.1051/m2an/2017044 %G en %F M2AN_2018__52_3_1051_0
Roussel, Julien; Stoltz, Gabriel. Spectral methods for Langevin dynamics and associated error estimates. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 3, pp. 1051-1083. doi : 10.1051/m2an/2017044. http://www.numdam.org/articles/10.1051/m2an/2017044/
[1] Spectral methods for multiscale stochastic differential equations. SIAM/ASA J. Uncertain. Quantif. 5 (2017) 720–761. | DOI | MR | Zbl
, and ,[2] Computer Simulation of Liquids. Oxford Science Publications (1987). | Zbl
and ,[3] A simple proof of the Poincaré inequality for a large class of probability measures including the log-concave case. Electron. Commun. Probab. 13 (2008) 60–66. | DOI | MR | Zbl
, , and ,[4] From Microphysics to Macrophysics: Methods and Applications of Statistical Physics, Vol. 1 and 2. Springer (2007). | MR | Zbl
,[5] A generalized Poincaré inequality for Gaussian measures. Proc. Am. Math. Soc. 105 (1989) 397–400. | MR | Zbl
,[6] Spectral Approximation of Linear Operators. Vol. 65 of Classics in Applied Mathematics. SIAM (2011). | MR | Zbl
,[7] Hypocoercivity for kinetic equations with linear relaxation terms. C. R. Math. Acad. Sci. Paris 347 (2009) 511–516. | DOI | MR | Zbl
, and ,[8] Hypocoercivity for linear kinetic equations conserving mass. Trans. AMS 367 (2015) 3807–3828. | DOI | MR | Zbl
, and ,[9] Spectral properties of hypoelliptic operators. Commun. Math. Phys. 235 (2003) 233–253. | DOI | MR | Zbl
and ,[10] A structure preserving scheme for the Kolmogorov-Fokker-Planck equation. J. Comput. Phys. 330 (2017) 319–339. | DOI | MR | Zbl
, and ,[11] Understanding Molecular Simulation: From Algorithms to Applications. Academic Press (2002). | Zbl
and ,[12] Hypocoercivity for Kolmogorov backward evolution equations and applications. J. Funct. Anal. 267 (2014) 3515–3556. | DOI | MR | Zbl
and ,[13] Tensor Spaces and Numerical Tensor Calculus, 235 Springer Science & Business Media (2012). | DOI | MR | Zbl
,[14] From ballistic to diffusive behavior in periodic potentials. J. Stat. Phys. 131 (2008) 175–202. | DOI | MR | Zbl
and ,[15] Short and long time behavior of the Fokker-Planck equation in a confining potential and applications. J. Funct. Anal. 244 (2007) 95–118. | DOI | MR | Zbl
,[16] Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential. Arch. Ration. Mech. Anal. 171 (2004) 151–218. | DOI | MR | Zbl
and ,[17] Convergence rates for nonequilibrium Langevin dynamics. To appear in: Ann. Math. Québec DOI: (2017). | DOI | MR | Zbl
, and ,[18] Weak backward error analysis for Langevin process. BIT 55 (2015) 1057–1103. | DOI | MR | Zbl
,[19] Effective diffusion in the Fokker-Planck equation. Math. Notes 45 (1989) 360–368. | DOI | MR | Zbl
,[20] Corrections to Einstein’s relation for Brownian motion in a tilted periodic potential. J. Stat. Phys. 150 (2013) 776–803. | DOI | MR | Zbl
, and ,[21] Molecular Dynamics. Springer (2015). | DOI | MR
and ,[22] The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics. IMA J. Numer. Anal. 36 (2016) 13–79. | MR | Zbl
, and ,[23] Partial differential equations and stochastic methods in molecular dynamics. Acta Numer. 25 (2016) 681–880. | DOI | MR | Zbl
and ,[24] Multiscale Methods: Averaging and Homogenization. Springer Science & Business Media (2008). | MR | Zbl
and ,[25] Diffusive transport in periodic potentials: underdamped dynamics. Fluct. Noise Lett. 8 (2008) L155–L173. | DOI | MR
and ,[26] Numerical hypocoercivity for the Kolmogorov equation. Math. Comp. 86 (2017) 97–119. | DOI | MR | Zbl
and ,[27] Some simple estimates for singular values of a matrix. Linear Algebra Appl. 56 (1984) 105–119. | DOI | MR | Zbl
,[28] Error analysis of modified Langevin dynamics. J. Stat. Phys. 164 (2016) 735–771. | DOI | MR | Zbl
, and ,[29] The Fokker-Planck Equation: Methods of Solution and Applications. Springer Series in Synergetics. Springer Berlin Heidelberg (1996). | MR | Zbl
,[30] Variance Reduction for Nonequilibrium Systems. Ph.D. thesis, Université Paris-Est (2018).
,[31] Stochastic Hamiltonian systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme. Markov Proc. Rel. Fields 8 (2002) 163–198. | MR | Zbl
,[32] Statistical Mechanics: Theory and Molecular Simulation. Oxford University Press (2010). | MR | Zbl
,[33] Hypocoercivity, Vol. 202. American Mathematical Society (2009). | MR | Zbl
,[34] Regularity and Approximability of Electronic Wave Functions. Vol. 2000 of Lecture Notes in Mathematics. Springer (2010). | MR | Zbl
,Cité par Sources :