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SPECTRAL METHODS FOR LANGEVIN DYNAMICS AND

ASSOCIATED ERROR ESTIMATES

Julien Roussel* and Gabriel Stoltz

Abstract. We prove the consistency of Galerkin methods to solve Poisson equations where the
differential operator under consideration is hypocoercive. We show in particular how the hypocoercive
nature of the generator associated with Langevin dynamics can be used at the discrete level to first
prove the invertibility of the rigidity matrix, and next provide error bounds on the approximation of
the solution of the Poisson equation. We present general convergence results in an abstract setting, as
well as explicit convergence rates for a simple example discretized using a tensor basis. Our theoretical
findings are illustrated by numerical simulations.
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1. Introduction

Statistical physics gives a theoretical framework to bridge the gap between microscopic and macroscopic
descriptions of matter [4]. This is done in practice with numerical methods known as molecular simulation
[2, 11, 21, 32]. Despite its intrinsic limitations on spatial and timescales, molecular simulation has been used
and developed over the past 50 years, and recently gained some recognition through the 2013 Chemistry Nobel
Prize. One important aim of molecular dynamics is to quantitatively evaluate macroscopic properties of interest,
obtained as averages of functions of the full microstate of the system (positions and velocities of all atoms in the
system) with respect to some probability measure, called thermodynamic ensemble. Some properties of interest
are static (a.k.a. thermodynamic properties): heat capacities; equations of state relating pressure, density and
temperature; etc. Other properties of interest include some dynamical information. This is the case for transport
coefficients (such as thermal conductivity, shear viscosity, etc.) or time-dependent dynamic properties such as
Arrhenius constants which parametrize chemical kinetics.

From a technical viewpoint, the computation of macroscopic properties requires in any case the sampling of
high-dimensional measures. We consider in this work the computation of properties in the canonical ensemble,
characterized by the Boltzmann–Gibbs measure, which models systems at constant temperature. One popular
way to sample the canonical ensemble is provided by the Langevin dynamics. Denoting by D the dimension of
the system, by q ∈ D the positions of the particles in the system and by p ∈ RD their momenta, the Langevin

Keywords and phrases: Langevin dynamics, spectral methods, Poisson equation, error estimates.
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dynamics reads 
dqt =

pt
m

dt,

dpt =
(
−∇V (qt)− γ

pt
m

)
dt+

√
2γ

β
dWt,

(1.1)

where β > 0 is proportional to the inverse temperature, m > 0 is the mass of the particles,1 γ > 0 is the friction
coefficient and Wt is a standard Brownian motion in dimension D. The potential energy V : D → R is supposed
to be a smooth function. In practice, D is either a compact domain with periodic boundary conditions, as for
example D = (aT)D where T = R/Z is the unit torus and a > 0 denotes the size of the simulation cell; or
the unbounded space D = RD. When e−βV is integrable, the Langevin dynamics admits as a unique invariant
measure the canonical measure

µ(dq dp) = Z−1β,µe−βH(q,p) dq dp, H(q, p) = V (q) +
|p|2

2m
, (1.2)

where the partition functions Zβ,µ is a normalization coefficient.
In several situations, one is interested in solutions of Poisson equations of the form

− LΦ = R− Eµ[R], (1.3)

where L denotes the generator of the Langevin dynamics (1.1). For instance, asymptotic variances of ergodic
averages or transport coefficients can be written as∫

D×RD
−L−1 (R− Eµ[R])S dµ (1.4)

for some functions R and S. For the asymptotic variance related to the time average of an observable R, one has
S = 2R. For transport coefficients, R would be the system response whereas S is the conjugate response (see
for instance the presentation in [23], Sect. 5). In practice, quantities such as (1.4) are evaluated by Monte Carlo
strategies, where the quantity of interest is rewritten as the integral of a time-dependent correlation function
(the famous Green–Kubo formula), which is approximated by independent realizations of the process. In some
cases however, spectral methods are used to solve the Poisson equation (1.3), see for instance [20, 25, 28, 29].

The error analysis associated with spectral Galerkin methods faces several difficulties. The most important
one probably is that the generator L of the Langevin dynamics is not an elliptic operator, and that it is
not naturally associated with a quadratic form. Many approximation results exist for elliptic operators, see
for instance [6]. In the context of molecular dynamics, elliptic operators correspond to overdamped Langevin
dynamics, which are effective dynamics on the positions only. A Lax-Milgram theorem holds for the quadratic
form associated with the generator of the overdamped Langevin dynamics, which makes it possible to quantify
the error on the solution of Poisson equations, as recently done in [1]. In contrast, the generator L of the
Langevin dynamics (1.1) is invertible but not coercive, so that a dedicated treatment is required to obtain error
estimates. This is done here by a perturbation of the proof of invertibility obtained as a corollary of the decay
estimates provided in [7, 8], which builds on the theory of hypocoercivity [33]. Note that this proof applies
to a large class of hypocoercive operators. In this work we restrict ourselves to the Langevin dynamics, the
proofs being directly transposable for operators satisfying the hypotheses presented in [8]. Let us also mention
previous results on the numerical analysis of hypocoercive operators, relying on finite element or finite difference
methods, and providing finite time estimates [10, 26].

1Our results can be extended to the case of any symmetric positive definite mass matrix M but we focus on the case when M
is proportional to the identity matrix for simplicity.
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This article is organized as follows. We first recall some fundamental properties of the Langevin dynamics in
Section 2, where we describe in particular the approach developed in [7, 8]. We next provide in Section 3 general
a priori error estimates for the solutions of Poisson equations (1.3). One of the key point to state such error
estimates is to prove the invertibility of the generator restricted to the Galerkin space, which can be shown by
adapting the hypocoercive approach of [7, 8]. We finally turn in Section 4 to an application to a simple, one-
dimensional setting, where explicit convergence rates can be obtained. Numerical simulations are also performed
to test the relevance of the bounds we provide. Some technical results are gathered in the appendices.

2. Convergence of the Langevin dynamics

We recall in this section useful theoretical results on exponential convergence rates for the semigroup etL

associated with the generator of the Langevin dynamics, following the methodology introduced in [7, 8] and
further made precise in [12] (note that the latter works rather considered the adjoint of the generator L, the
so-called Fokker–Planck operator, but this does not change the structure of the proof, see Rem. 2.3); see also [17]
for an application to Langevin dynamics. We formulate the result both for bounded and unbounded position
spaces.

In the following we consider all operators as defined on the Hilbert space L2(µ). The adjoint of a closed
operator T on L2(µ) is denoted by T ∗. The scalar product and norm on L2(µ) are respectively denoted by 〈·, ·〉
and ‖ · ‖. In fact, it is convenient in many cases to work in the subspace

L2
0(µ) =

{
ϕ ∈ L2(µ)

∣∣∣∣∫
D×RD

ϕdµ = 0

}
(2.1)

of L2(µ). The orthogonal projector onto L2
0(µ) is defined by

∀ϕ ∈ L2(µ), Π0ϕ = ϕ− Eµ(ϕ). (2.2)

Since (
etLϕ

)
(q, p) = E

(
ϕ(qt, pt)

∣∣∣ (q0, p0) = (q, p)
)

where the expectation is over all the realizations of the Brownian motion in (1.1), it is expected that etLϕ
converges to Eµ(ϕ). Therefore, etLϕ converges to 0 for ϕ ∈ L2

0(µ). In order to state a precise convergence result,
we need some conditions on the potential V , and on the marginal measure of µ in the position variable. The
marginal measures in the position and momentum variables are respectively

ν(dq) = Z−1β,νe−βV (q) dq, κ(dp) =

(
β

2πm

)D/2
e−β

|p|2
2m dp. (2.3)

We denote by Hs(ν) the weighted Sobolev spaces of index s ∈ N composed of functions ϕ(q) of the position
variables for which ∂αq ϕ ∈ L2(µ) for any multi-index α = (α1, . . . , αD) ∈ ND such that |α| = α1 + · · ·αD 6 s
(where ∂αq = ∂α1

q1 . . . ∂
αD
qD ). The spaces Hs(κ) and Hs(µ) are defined in a similar way.

Assumption 2.1. The potential V is smooth, and the marginal measure ν satisfies a Poincaré inequality with
constant Cν > 0: for any function of the positions ϕ ∈ H1(ν),

∥∥∥∥ϕ− ∫
D
ϕdν

∥∥∥∥2
L2(ν)

6
1

Cν
‖∇qϕ‖2L2(ν). (2.4)
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Moreover, there exist c1 > 0, c2 ∈ [0, 1) and c3 > 0 such that V satisfies

∆V 6 c1 +
c2
2
|∇V |2, |∇2V | 6 c3 (1 + |∇V |) . (2.5)

Note that conditions (2.4) and (2.5) are automatically satisfied when D is compact. The Poincaré inequality
holds when there exists a ∈ (0, 1) such that (see [3])

lim inf
|q|→∞

aβ|∇V (q)|2 −∆V (q) > 0. (2.6)

The precise convergence result is then the following [7, 8] (the proof is recalled in Appendix A).

Theorem 2.2 (Hypocoercivity in L2(µ)). Suppose that Assumption 2.1 holds. Then there exist C > 0 and
λγ > 0 (which are explicitly computable in terms of the parameters of the dynamics, C being independent of
γ > 0) such that, for any initial datum ϕ ∈ L2

0(µ),

∀t > 0,
∥∥etLϕ

∥∥ 6 Ce−λγt‖ϕ‖. (2.7)

Moreover, the convergence rate is of order min(γ, γ−1): there exists λ > 0 such that

λγ > λmin(γ, γ−1).

Remark 2.3. Theorem 2.2 admits a dual version in terms of probability measures. Consider an initial condition
ψ0 ∈ L2(µ), which represents the density with respect to µ of a probability measure f0 = ψ0µ. In particular,

ψ0 > 0,

∫
D×RD

ψ0 dµ = 1.

Then the time-evolved probability measure ft = ψtµ with ψt = etL
∗
ψ0 converges exponentially fast to µ in the

following sense:

∀t > 0, ‖ψt − 1‖ 6 Ce−λγt‖ψ0‖. (2.8)

The convergence result (2.7) can be used to deduce that L is invertible on L2
0(µ). We denote by B(E) the

Banach space of bounded operators on a given Banach space E, endowed with the norm

‖T‖B(E) = sup
ϕ∈E\{0}

‖Tϕ‖E
‖ϕ‖E

.

We simply denote by ‖T‖ the operator norm on L2(µ).

Corollary 2.4. The operator L is invertible on L2
0(µ), with

L−1 = −
∫ ∞
0

etL dt, ‖L−1‖B(L2
0(µ))

6
C

λ
max(γ, γ−1).

The upper bound on the resolvent is sharp in terms of the scaling with respect to γ, as shown in [14] for
γ → 0 and [22] for γ → +∞; see also [19] for the case V = 0.

In particular, the Poisson problem (1.3) admits a unique solution Φ ∈ L2
0(µ) for any observable R ∈ L2(µ). In

order to capture the solution Φ of (1.3) numerically, one possibility is to discretize the operator L on a Galerkin
subspace of L2

0(µ). Section 3 proves the convergence of this method under appropriate assumptions.
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Let us conclude this section by highlighting some elements of the proof of Theorem 2.2, which will be needed to
establish a convergence result similar to (2.7) when a Galerkin discretization is considered. In order to formulate
the result more rigorously, we introduce the core C composed of all C∞ functions with compact support. The
first key element in the proof is to use a modified norm equivalent to the standard L2(µ) norm. To define this
norm, the generator L is decomposed into a symmetric part (corresponding to the fluctuation/dissipation) and
an anti-symmetric part (corresponding to Hamiltonian transport):

L = Lham + γLFD, with


Lham =

( p
m

)>
∇q −∇V >∇p,

LFD = −
( p
m

)>
∇p +

1

β
∆p.

(2.9)

With this notation, L∗ham = −Lham while L∗FD = LFD. In fact, since

∇∗p = −∇>p + β
p>

m
, ∇∗q = −∇>q + β∇V >,

the two parts of the generator L can be reformulated as

LFD = − 1

β
∇∗p∇p, Lham =

1

β

(
∇∗p∇q −∇∗q∇p

)
. (2.10)

We also need the orthogonal projector in L2
0(µ) on the subspace of functions depending only on positions:

∀ϕ ∈ L2(µ), (Πpϕ) (q) =

∫
RD

ϕ(q, p)κ(dp). (2.11)

Definition 2.5 (Modified squared L2(µ) norm). Fix ε ∈ (−1, 1). For any function ϕ ∈ C ,

H[ϕ] =
1

2
‖ϕ‖2 − ε 〈Aϕ,ϕ〉 , A =

(
1 + (LhamΠp)

∗(LhamΠp)
)−1

(LhamΠp)
∗. (2.12)

A more explicit expression of the operator A is provided in (A.9). Since this operator is used in the sequel to
state some conditions required for the error estimates, we gather some of its properties in the following lemma.
Lemma 2.6. It holds A = ΠpA(1−Πp). Moreover, for any ϕ ∈ L2(µ),

‖Aϕ‖ 6 1

2
‖(1−Πp)ϕ‖, ‖LhamAϕ‖ 6 ‖(1−Πp)ϕ‖.

In particular, the operator A is in fact bounded in L2(µ) with operator norm smaller than 1, so that
√
H is

a norm equivalent to the canonical norm of L2(µ) for −1 < ε < 1:

1− ε
2
‖ϕ‖2 6 H[ϕ] 6

1 + ε

2
‖ϕ‖2. (2.13)

The second key element is a coercivity property enjoyed by the time-derivative of the entropy functional.
Denoting by 〈〈·, ·〉〉 the scalar product associated by polarization with H, the following result can be proved.

Proposition 2.7. There exists ε ∈ (0, 1) and λ > 0, such that, by considering ε = εmin(γ, γ−1) in (2.12),

∀ϕ ∈ Π0C , D [ϕ] := 〈〈−Lϕ,ϕ〉〉 > λ̃γ‖ϕ‖2, (2.14)

with λ̃γ > λmin(γ, γ−1).
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This coercivity property and a Gronwall inequality then allow to conclude to the exponential convergence
to 0 of H[etLϕ], from which (2.7) follows by the norm equivalence of

√
H and ‖ · ‖.

3. General A PRIORI error estimates

In order to approximate the solution of the Poisson equation (1.3), we consider a Galerkin discretization
characterized by a finite dimensional subspace VM ⊂ L2(µ). We present the structure of the proof of error
estimates in the conformal case (i.e. VM ⊂ L2

0(µ)) for the sake of clarity. Results in the non-conformal case are
presented later on. Note that the results presented in this section for the Langevin generator can be generalized
to other hypocoercive generators satisfying the assumptions required in [7, 8]. For conformal discretization
spaces, the approximate solution ΦM is defined by the variational formulation

{
Find ΦM ∈ VM such that

∀ψ ∈ VM , −〈ψ,LΦM 〉 = 〈ψ,R〉 .
(3.1)

Note that Π0R can be replaced by R on the right-hand side since functions ψ ∈ VM have average 0 with
respect to µ. This coercivity property and a Gronwall inequality then allow to conclude to the exponential
convergence to 0 of H[etLϕ], for any smooth function ϕ with zero mean. Equation (2.7) follows by the norm
equivalence of

√
H and ‖ · ‖. Denoting by ΠM the projector onto VM , the variational formulation can be

rewritten as

−ΠMLΠMΦM = ΠMR.

We first prove in this section the existence and uniqueness of the solution ΦM of (3.1) by studying the discretized
operator −ΠMLΠM . A dedicated study is required since the generator L is invertible but not coercive on L2

0(µ),
so that the Lax-Milgram theorem cannot be applied. This is a major difference with overdamped Langevin
dynamics for which the discretized problem is automatically well posed when a Poincaré inequality holds true [1].
Note that there are scalar products for which the quadratic form induced by −L is coercive, for instance the
one induced by polarization from H or the scalar product on H1(µ) introduced in the hypocoercivity setting
considered in [14, 33]. These scalar products however depend on parameters which are not explicitly known and
on the friction γ, so that they cannot be considered for numerical simulations.

We study instead the existence and the uniqueness of the solution ΦM by a perturbation of the proof
of Theorem 2.2, in two settings: the conformal case VM ⊂ L2

0(µ) (see Sect. 3.1) and the non-conformal case
VM ⊂ L2(µ) but VM 6⊂ L2

0(µ) (the functions in the Galerkin basis are not of mean 0 with respect to µ, see
Sect. 3.2).

In a second step, we prove a priori error estimates. To this end, we decompose the difference between ΦM
and the solution Φ of the equation (1.3) as the sum of two terms:

ΦM − Φ = (ΦM −ΠMΦ)− (1−ΠM )Φ. (3.2)

The second term on the right-hand side is the approximation error (1 − ΠM )Φ, which depends only on the
Galerkin space. We therefore postpone the study of this error to specific models (see Sect. 4.2). The first term is

related to the consistency error ηM = ΠMLΠMΦ+ΠMR since ΦM −ΠMΦ = (−ΠMLΠM )
−1
ηM . We provide

general error estimates on ΦM −ΠMΦ in Section 3.3. They can be made more precise in specific contexts, with
explicit convergence rates; see Section 4.3.

We conclude the section with a practical reformulation of the variational problem (3.1) in a form more
amenable to numerical computations (see Sect. 3.4).
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3.1. Conformal case

In this section we suppose that VM ⊂ L2
0(µ). The following theorem states that if the additional terms arising

from the discretization in the expression of the entropy dissipation are sufficiently small, then hypocoercivity
holds on the subspace VM , and the exponential rate of convergence to 0 of the semigroup associated with
ΠMLΠM is uniform in M .

Theorem 3.1 (Discrete hypocoercivity). Fix γ > 0. Assume that the Galerkin space is composed of functions
with mean 0 with respect to µ ( i.e.VM ⊂ L2

0(µ)) and that

‖(A+A∗)(1−ΠM )LΠM‖ −−−−→
M→∞

0. (3.3)

Then there exist C > 1 (independent of M,γ) and M0 ∈ N such that, for any M > M0, there is λγ,M > 0 for
which

∀ϕ ∈ VM , ∀t > 0,
∥∥etΠMLΠMϕ

∥∥ 6 Ce−λγ,M t‖ϕ‖. (3.4)

Moreover, λγ,M −−−−→
M→∞

λγ where λγ > 0 is introduced in (2.7).

If in addition LFD stabilizes VM (in the sense that ΠMLFD = LFDΠM ), then there exist M∗ > 1 (independent
of γ) such that, for any M >M∗, the following uniform bound holds:

∀γ > 0, λγ,M > λM min(γ, γ−1), (3.5)

with λM −−−−→
M→∞

λ where λ > 0 is introduced in Proposition 2.7.

Let us emphasize that the condition (3.3) should be checked for the specific model under consideration; see
Appendix B for an example. Note that the left hand side of (3.3) is constituted of a regularization operator
A+A∗ applied to a residual off diagonal part of the operator L. It is therefore expected that the norm of this
operator goes to zero.

The stability of VM by LFD is automatically ensured when the basis functions are tensor products of functions
of the positions and eigenfunctions of LFD for the momentum part. The latter eigenfunctions turn out to be
analytically known (they are in fact appropriately scaled Hermite functions, see Sect. 4.1), which makes it easy
to conclude to (3.5).

Proof. Fix ϕ0 ∈ VM and γ > 0, and consider ε = εmin(γ, γ−1) as in Proposition 2.7. Introduce ϕM (t) =
exp(tΠMLΠM )ϕ0 and HM (t) = H[ϕM (t)]. Note that the discretized generator ΠMLΠM stabilizes the Galerkin
space VM ⊂ L2

0(µ). In particular, ϕM (t) ∈ VM ⊂ L2
0(µ) for all t > 0 when ϕ0 ∈ VM . The time-derivative of the

entropy functional is H ′
M (t) = −DM [ϕM (t)], where DM is similar to the entropy dissipation defined in (2.14)

apart from two additional terms arising from the discretization. More precisely, for ϕ ∈ VM ,

DM [ϕ] = −〈ϕ,ΠMLΠMϕ〉 − ε 〈AΠMLΠMϕ,ϕ〉 − ε 〈Aϕ,ΠMLΠMϕ〉
= −〈ϕ,Lϕ〉 − ε 〈AΠMLϕ,ϕ〉 − ε 〈ϕ,A∗ΠMLϕ〉
= D [ϕ] + ε 〈A(1−ΠM )Lϕ,ϕ〉+ ε 〈ϕ,A∗(1−ΠM )Lϕ〉
> D [ϕ]− ε‖(A+A∗)(1−ΠM )LΠMϕ‖ ‖ϕ‖

>
(
λ̃γ − ε‖(A+A∗)(1−ΠM )LΠM‖

)
‖ϕ‖2, (3.6)

where the last inequality follows from Proposition 2.7. The conclusion then follows from the same reasoning as
the one used at the end of Appendix A to prove Theorem 2.2, with an exponential convergence rate which is
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degraded uniformly in M :

λγ,M = λγ −
ε

1 + ε
‖(A+A∗)(1−ΠM )LΠM‖ > 0 (3.7)

for M large enough.
Assume now that

LFDΠM = ΠMLFD (3.8)

so that (1−ΠM )LΠM = (1−ΠM )LhamΠM does not depend on γ. The only γ-dependence on the right-hand
side of (3.7) therefore arises from ε = εmin(γ, γ−1). We then deduce the following lower bound from (2.7):

λγ,M >
(
λ− ε‖(A+A∗)(1−ΠM )LhamΠM‖

)
min(γ, γ−1),

which implies (3.5).

Remark 3.2. Another way to prove the hypocoercivity of the discretized generator on L2(µ) would be to
first prove this property on H1(µ) (as in [33]), and then use hypoelliptic regularization [15]. This program is
performed for Langevin dynamics in [14], with an emphasis on the Hamiltonian limit γ → 0 (see also [23],
Sections 2.3.3 and 2.3.4 for a careful analysis of the two limiting regimes γ → 0 and γ → +∞). This approach
introduces scalar products on H1(µ) depending on three coefficients a, b, c ∈ R. The corresponding proofs are
therefore more involved than the approach described here, and, more importantly, the conditions for H1(µ)
hypocoercivity are incompatible with the conditions for L2(µ) regularization for the Galerkin space proposed
in Section 4; see [30] for further precisions.

An immediate consequence of the convergence result stated in Theorem 3.1 is the following corollary. It
states that the discrete operator has a spectral gap, which does not vanish when the size of the Galerkin basis
increases.

Corollary 3.3 (Discrete invertibility). For any M > M0, the operator ΠMLΠM is invertible on VM and the
following equality holds on B(VM ):

(ΠMLΠM )−1 = −
∫ ∞
0

etΠMLΠMdt.

Moreover,

∥∥(ΠMLΠM )−1
∥∥
B(VM )

6
C

λγ,M
.

In particular, when LFD stabilizes VM , the dependence on γ of the resolvent bound can be made explicit
thanks to (3.5). Corollary 3.3 shows that the Galerkin problem (3.1) admits a unique solution, denoted by

ΦM = − (ΠMLΠM )
−1
ΠMR.

3.2. Non-conformal case

In practice the assumption VM ⊂ L2
0(µ) is constraining since it may not be convenient to construct a basis

of L2
0(µ) which is orthogonal for the associated scalar product. It seems easier in many situations to consider

bases which are orthonormal on L2(µ) rather than L2
0(µ) (as we do here for the application treated in Sect. 4).

Moreover, it may be preferable in practice to create bases adapted to the operators ∇q, ∇∗q , ∇p and ∇∗q in order
to simplify the algebra involved in the computation of the elements of the rigidity matrix. For these two reasons
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basis functions are rarely of mean 0 with respect to µ in the literature, see for instance [1, 20, 28] for recent
examples. We therefore need to extend the results of Section 3 to the non-conformal case VM 6⊂ L2

0(µ).
Now, the generator L is invertible on L2

0(µ) (by Cor. 2.4) but not on L2(µ) since L1 = 0. The purpose of this
subsection is to show how this degeneracy can be dealt with by introducing a Lagrangian formulation. We start
by applying Theorem 3.1 to the Galerkin space VM,0 = VM ∩ L2

0(µ), whose associated orthogonal projector we
denote by ΠM,0. The issue is to control the solution in the direction associated with the function

uM =
ΠM1

‖ΠM1‖
∈ VM , (3.9)

which is not of zero mean. In this setting the approximate solution ΦM is defined by the variational formulation{
Find ΦM ∈ VM,0 such that

∀ψ ∈ VM,0, −〈ψ,LΦM 〉 = 〈ψ,R〉 ,
(3.10)

which can be rewritten as

−ΠM,0LΠM,0ΦM = ΠM,0R.

The precise result is the following.

Corollary 3.4 (Non-conformal Galerkin method). Assume that the Galerkin space VM is such that (3.3) holds
and additionally that

‖L∗uM‖ −−−−→
M→∞

0. (3.11)

Then there exist C > 1 (independent of M,γ) and M0 > 1 such that, for any M >M0, the operator ΠM,0LΠM,0

is invertible on VM and there is λ̂γ,M > 0 for which

∥∥∥(ΠM,0LΠM,0)
−1
∥∥∥
B(VM,0)

6
C

λ̂γ,M
,

with λ̂γ,M −−−−→
M→∞

λγ > 0 where λγ > 0 is introduced in (2.7).

If in addition LFD stabilizes VM , then there exist M∗ > 1 (independent of γ) such that, for any M > M∗,
the following uniform bound holds:

∀γ > 0, λ̂γ,M > λM min(γ, γ−1),

with λM −−−−→
M→∞

λ where λ > 0 is introduced in Proposition 2.7.

Proof. Let us first decompose VM as an orthogonal direct sum:

VM = VM,0 ⊕ RuM .

Denoting by ΠuM the orthogonal projection onto RuM , it then holds ΠM = ΠM,0 + ΠuM . We can now show
how the hypotheses on ΠM allow to apply Theorem 3.1 on the Galerkin space VM,0. We follow the proof
of Theorem 3.1 until (3.6), replacing ΠM with ΠM,0. It then suffices to prove that the following term is of
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order ‖ϕ‖2 for any ϕ ∈ VM,0:

〈(A+A∗)(1−ΠM,0)Lϕ,ϕ〉 = 〈(A+A∗)(1−ΠM )Lϕ,ϕ〉+ 〈(A+A∗)ΠuMLϕ,ϕ〉 .

The first term on the right-hand side can be dealt with as in the proof of Theorem 3.1, making use of (3.3). For
the second one, we remark that

〈(A+A∗)ΠuMLϕ,ϕ〉 = 〈Lϕ, uM 〉 〈(A+A∗)uM , ϕ〉 ,

so that, using ‖A‖ = ‖A∗‖ 6 1/2 (from Lem. 2.6):

|〈(A+A∗)ΠuMLϕ,ϕ〉| 6 ‖ϕ‖ ‖L∗uM‖ ‖(A+A∗)uM‖ ‖ϕ‖ 6 ‖L∗uM‖ ‖ϕ‖2. (3.12)

Plugging this additional term into the bound (3.6) obtained in the conformal case, it follows

DM [ϕ] >
(
λ̃γ − ε ‖(A+A∗)(1−ΠM )LΠM‖ − ε‖L∗uM‖

)
‖ϕ‖2.

We can then conclude to the exponential convergence of the semi-group, with rate

λ̂γ,M = λγ −
ε

1 + ε

(
‖(A+A∗)(1−ΠM )LΠM‖+ ‖L∗uM‖

)
> 0, (3.13)

when M is sufficiently large. The remainder of the proof follows the lines of the end of the proof of Theorem 3.1.

Corollary 3.4 implies that the following saddle-point formulation is well-posed.

Proposition 3.5 (Saddle-point formulation). Assume that (3.3) and (3.11) hold. Then, for any R ∈ L2(µ),
there exist a unique ΦM ∈ VM and a unique αM ∈ R such that{

−ΠMLΠMΦM + αMuM = ΠMR,

〈ΦM , uM 〉 = 0.
(3.14)

Note that the unique solution ΦM in fact belongs to VM,0 since 〈ΦM , uM 〉 = 0. Moreover, R does not need to
be of mean 0 with respect to µ thanks to the term αMuM on the left-hand side of the first equality in (3.14).
We show in the next subsection that ΦM actually converges to the solution of the Poisson equation (1.3) with
right-hand side Π0R.

Proof. Consider R ∈ L2(µ). In view of Corollary 3.4, there exists a unique ΦM ∈ VM,0 such that

−ΠM,0LΦM = ΠM,0R.

Recalling that ΠM,0 = ΠM −ΠuM it follows that

−ΠMLΠMΦM +ΠuM (LΠMΦM +R) = ΠMR,

which leads to the saddle-point formulation (3.14) upon introducing the Lagrange multiplier αM =
〈uM ,LΠMΦM +R〉 (which is uniquely defined).
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The system (3.14) can be reformulated as

L̃M
(
ΦM
αM

)
=

(
ΠMR

0

)
, (3.15)

where the Lagrangian operator L̃M on VM × R reads

L̃M
(
ϕ
α

)
=

(
−ΠMLΠMϕ+ αuM

〈ϕ, uM 〉

)
. (3.16)

Let us conclude this section by providing an estimate on the resolvent bound of L̃M . This estimate is used in
Section 3.4 to show that the matrix reformulation of (3.14) is well-posed, and in fact enjoys a good conditioning.

Let us first prove that the Lagrangian operator L̃M is invertible on VM × R for M >M0 (with M0 the integer

considered in Cor. 3.4). This is done by proving that the equation L̃M (ϕ, α) = (ψ, s) admits a unique solution
for an arbitrary element (ψ, s) ∈ VM × R. Note that

L̃M
(
ϕ
α

)
=

(
ψ
s

)
(3.17)

is equivalent to

L̃M
(
ϕ− s uM

α

)
=

(
ψ − sΠMLuM

0

)
.

For the latter equality to hold true, the function φs,M = ϕ− suM must satisfy the Poisson equation

−ΠMLΠMφs,M = ψ − sΠMLuM − αuM , 〈φs,M , uM 〉 = 0. (3.18)

Then, φs,M ∈ VM,0 so that ΠMLΠMφs,M = ΠMLΠM,0φs,M = ΠM,0LΠM,0φs,M + 〈Lφs,M , uM 〉uM . Therefore,
(3.18) can be reformulated as

−ΠM,0LΠM,0φs,M = ψ − sΠMLuM + (〈Lφs,M , uM 〉uM − α)uM , 〈φs,M , uM 〉 = 0.

Since ΠM,0LΠM,0 is invertible on VM,0, the equation (3.18) admits a unique solution in VM,0 if and only if the
right-hand side of the above Poisson equation is in VM,0, which is the case if and only if

α = 〈uM ,LΠM (ϕ− suM ) + (ψ − sΠMLuM )〉 . (3.19)

This proves the existence and uniqueness of the solution to (3.17) since α and φs,M are completely identified
through (3.19) and

ϕ = suM + (−ΠM,0LΠM,0)
−1
ΠM,0 (ψ − sΠMLuM ) . (3.20)

This allows to conclude that L̃M is invertible on VM × R. Moreover, using Corollary 3.4,

‖ϕ‖2 6 s2 +

(
C

λ̂γ,M

)2

(‖ψ‖+ ‖LuM‖ |s|)2 ,
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and, in view of (3.19)–(3.20),

|α| 6

(
1 + ‖L∗uM‖

C

λ̂γ,M

)
(‖ψ‖+ ‖LuM‖ |s|) . (3.21)

Therefore, endowing VM ×R with the norm associated with the canonical scalar product, the following resolvent
bound holds:

∥∥∥L̃−1M ∥∥∥2B(VM×R) 6 1 +

( C

λ̂γ,M

)2

+

(
1 +

C

λ̂γ,M
‖L∗uM‖

)2
 (1 + ‖LuM‖2). (3.22)

In fact, the operators L̃−1M are bounded uniformly in M >M0, since the upper bound on
∥∥∥L̃−1M ∥∥∥B(VM×R) tends

to
√

2 + (C/λγ)2 as M → +∞.

3.3. Consistency error

We study in this section the error ‖ΦM −ΠM,0Φ‖ associated to the consistency error ηM,0 = ΠM,0LΦM +
ΠM,0R, sticking to the non-conformal case since this setting is the most appropriate for actual applications.
With some abuse of terminology, we simply call ‖ΦM −ΠM,0Φ‖ the consistency error.

As in (3.2), the error can be decomposed as

ΦM − Φ = (ΦM −ΠM,0Φ)− (1−ΠM,0)Φ. (3.23)

Very similar results are obtained in the conformal case upon replacing ΠM,0 with ΠM . Moreover, we do not
suppose in this section that R has mean 0 with respect to µ, but consider the Poisson problem (1.3) with R
replaced by Π0R:

− LΦ = Π0R. (3.24)

The solution Φ is approximated by the solution of the Poisson equation

−ΠM,0LΠM,0Φ = ΠM,0R. (3.25)

which is well-posed in view of Corollary 3.4.

Theorem 3.6. Assume that (3.3) and (3.11) hold. Then the consistency error between the unique solution
Φ ∈ L2

0(µ) of (3.24) and the approximate solution ΦM ∈ VM,0 of (3.25) can be bounded by

‖ΦM −ΠM,0Φ‖ 6
C

λ̂γ,M
(‖ΠML(1−ΠM )Φ‖+ ‖LuM‖‖Φ‖) , (3.26)

where C, λ̂γ,M are the constants introduced in Corollary 3.4.

The extra term ‖LuM‖‖Φ‖ on the right-hand side of (3.26) arises from the fact that the Galerkin space is
not conformal. It would not be present for conformal spaces.

Proof. Upon applying ΠM,0 to both sides of (3.24), it holds

−ΠM,0LΠM,0Φ = ΠM,0R+ΠM,0L(1−ΠM,0)Φ.
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After subtraction with (3.25), it follows

ΠM,0LΠM,0(ΦM −ΠM,0Φ) = ΠM,0L(1−ΠM,0)Φ. (3.27)

Therefore, using Corollary 3.4,

‖ΦM −ΠM,0Φ‖L2(µ) =
∥∥(ΠM,0LΠM,0)−1ΠM,0L(1−ΠM,0)Φ

∥∥
L2(µ)

6
∥∥(ΠM,0LΠM,0)−1

∥∥
B(VM,0)

‖ΠM,0L(1−ΠM,0)Φ‖L2(µ)

6
C

λ̂γ,M
‖ΠM,0L(1−ΠM,0)Φ‖L2(µ) . (3.28)

Moreover

‖ΠM,0L(1−ΠM,0)Φ‖L2(µ) 6 ‖ΠML(1−ΠM +ΠuM )Φ‖L2(µ)

6 ‖ΠML(1−ΠM )Φ‖L2(µ) + ‖ΠMLΠuMΦ‖L2(µ)

6 ‖ΠML(1−ΠM )Φ‖L2(µ) + ‖ΠMLuM‖L2(µ) |〈Φ, uM 〉| , (3.29)

which allows to conclude.

There are several ways to bound the right-hand side of (3.26). It is difficult to state general results, and the
strategy to be used depends on the model under consideration. One straightforward manner is to write

‖ΠML(1−ΠM )Φ‖L2(µ) 6 ‖ΠML(1−ΠM )‖B(H2(µ),L2(µ)) ‖(1−ΠM )Φ‖H2(µ) ,

and make use of the following (possible quite crude) bound which is independent of M :

‖ΠML(1−ΠM )‖B(H2(µ),L2(µ)) 6 ‖L‖B(H2(µ),L2(µ)) .

It remains then to show that the approximation error measured in the H2(µ) norm goes to zero. Possibly sharper
estimates can be obtained by writing that

‖ΠML(1−ΠM )Φ‖L2(µ) 6 ‖ΠML(1−ΠM )‖B(L2(µ)) ‖(1−ΠM )Φ‖L2(µ) , (3.30)

and showing that ‖ΠML(1−ΠM )‖B(L2(µ)) does not go too fast to infinity as M goes to infinity. We can then

conclude in the case when the approximation error vanishes sufficiently fast in L2(µ). This is the path we follow
in Appendix B.

Remark 3.7. We expect the operator ΠM,0LΠM,0 to be larger in a certain sense than ΠM,0L(1 −ΠM,0) in
L2(µ), so that (3.27) suggests that the consistency error is smaller than the approximation error ‖(1−ΠM )Φ‖.
This is indeed what we observe in the numerical experiments we present in Figure 1. This shows that the way
we bound the consistency error is probably not as sharp as it could be.

3.4. Matrix conditioning and linear systems

We introduce in this section the linear system associated with the practical implementation of either the
Galerkin formulation (3.1) in the conformal case VM ⊂ L2

0(µ), or of (3.14) in the non-conformal case VM ⊂ L2(µ)
but VM 6⊂ L2

0(µ). In any case, we denote by (ej)16j6M an orthogonal basis of the Galerkin space VM , assumed
to be of dimension M .
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3.4.1. Conformal case.

The weak formulation (3.1) can be equivalently reformulated as the linear system

LMXM = YM , (3.31)

where

∀1 6 i, j 6M, (LM )i,j = 〈ei,−Lej〉 , (XM )i = 〈ΦM , ei〉 , (YM )i = 〈R, ei〉 .

When the assumptions of Theorem 3.1 hold, (3.31) admits a unique solution, so that LM is invertible. Moreover
‖L−1M ‖ 6 C/λγ,M is bounded uniformly in M for M >M0. The linear system is therefore well-conditioned, and
can be solved efficiently using any solver adapted to non-symmetric problems.

3.4.2. Non-conformal case.

We suppose that the assumptions of Corollary 3.4 hold. Let us introduce the vector UM ∈ RM corresponding
to uM ∈ VM :

∀1 6 i 6M, (UM )i = 〈uM , ei〉 =
〈1, ei〉
‖ΠM1‖

.

Then the saddle-point problem (3.15) is equivalent to{
LMXM + λUM = YM ,

U>MXM = 0,

with the same definition for LM and YM as in the conformal case. With

L̂M =

 LM UM

U>M 0

 , X̂M =

XM

λ

 , ŶM =

YM

0

 , (3.32)

the saddle-point problem can finally be rewritten as

L̂MX̂M = ŶM .

Proposition 3.5 and (3.22) imply that L̂M is invertible, with
∥∥∥L̂−1M ∥∥∥ uniformly bounded in M for M >M0. This

proves that the matrix L̂M does not have vanishing eigenvalues, in contrast to LM (since LMUM −−−−→
M→∞

0).

Therefore the linear system L̂MX̂M = ŶM can be solved as efficiently as in the conformal case. In the following
we choose to use a sparse LU factorization.

Remark 3.8. Let us conclude this section with some criteria discriminating a good Galerkin space, and more
generally a good function basis. Anticipating on the analysis of Section 4.1, a standard choice is to use tensorized
bases. The difficult part is to find a basis to describe the position dependence of the function of consideration.
This requires considering the following points:

– approximation errors and consistency errors should be small. It should be checked in particular that
condition (3.3) holds and that the norm of the operator ΠML(1−ΠM ) does not grow too fast;
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– the implementation is easier if the space is conformal, since it avoids the computation of UM using integral
quadratures;

– when the basis is non-orthogonal, the Gram matrix should be inverted. The latter can be ill conditioned,
leading to numerically instability, specifically for unbounded position spaces.

4. Application to a simple one-dimensional system

We present in this section an application of the theory developed in Section 3 to a specific example, described
in Section 4.1 together with the Galerkin basis used to discretize the generator. This allows us to prove explicit
convergence rates for the approximation error (Sect. 4.2) and the consistency error (Sect. 4.3). For the latter
error, we have to further specify the potential in order to check the assumptions ensuring the hypocoercivity
of the discretized generator. The final, global error estimate is summarized in (4.11). The technical proofs of
some claims and bounds are postponed to Appendix B. We finally present in Section 4.4 some numerical results
illustrating the predicted error bounds.

4.1. Description of the system and the Galerkin space

We consider a single particle in a one-dimensional periodic potential: D = 1, m = 1 and D = 2πT = R/2πZ.
The Galerkin space is constructed using the spectral tensor basis

ek,`(q, p) = Gk(q)H`(p),

where 0 6 k < 2K − 1 and 0 6 ` < L. Compared to the notation of Section 3, the basis size M = (2K − 1)L
depends on two parameters K,L, which both have to go to infinity for the convergence results to hold. In this
section we prefer the index KL instead of M , denoting thus VKL, ΠKL, ΦKL,... In the remainder of this section
we describe our choices for Gk and H`.

Note that the size of the matrix, namely the number of tensorized basis elements, increases exponentially
with the dimension of the system. In larger dimension one could consider resorting to tensor formats [13], as is
done for the high-dimensional Schrödinger equation in [34], carefully making use of the symmetries and of the
structure of the equation.

4.1.1. Weighted Fourier basis (Gk).

Fourier modes provide a natural basis to approximate periodic functions, such as functions of the positions
here. Since the measure appearing in the scalar product is ν, we consider in fact the following L2(ν)-orthonormal
modes:

G0(q) =

√
Zβ,ν
2π

eβV (q)/2,

G2k(q) =

√
Zβ,ν
π

cos(kq) eβV (q)/2, k > 1,

G2k−1(q) =

√
Zβ,ν
π

sin(kq) eβV (q)/2, k > 1. (4.1)

Note that the functions Gk for k > 1 do not have mean 0 with respect to ν (except for very specific potentials
such as V = 0). The spanned discretization space is thus non-conformal: VKL 6⊂ L2

0(µ).
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4.1.2. Hermite functions basis (H`).

Since the marginal measure κ in the momentum variables is Gaussian with variance β−1, we consider the
following orthonormal Hermite modes for ` ∈ N:

H`(p) =
1√
`!
H̃`

(√
βp
)
, H̃`(y) = (−1)`e

y2

2
d`

dy`

(
e−

y2

2

)
.

They are well suited to our problem since they are the eigenfunctions of the symmetric part LFD = −β−1∂∗p∂p
of the generator. Indeed,

∀` ∈ N, ∂pH` =
√
β`H`−1 and ∂∗pH` =

√
β(`+ 1)H`+1, (4.2)

so that

∀` ∈ N, LFDH` = −`H`. (4.3)

Remark 4.1. The basis we consider is similar to the one used in [25, 29], where the modes in position are the
standard Fourier modes. The latter modes are orthogonal for the uniform measure on the compact position space
D rather than on L2(ν). Therefore, the scalar product used in Section 3.4 should be replaced with the scalar
product associated with the measure µ̃(dq dp) = |D|−1κ(dp) dq. The results of Section 3 could be adapted to this
scalar product since the measures µ and µ̃ are equivalent. Note that the discretization based on the standard
Fourier modes is a conformal one since one of the tensorized modes is proportional to 1, which simplifies the
implementation. It is however not generalizable to unbounded position spaces because the uniform measure is
not normalizable. An interesting question, not considered in this work, is to quantify the relative performances
of the approaches based on orthonormal bases either on L2(µ) or L2(µ̃).

4.1.3. Rigidity matrix.

In order to give the expression of the rigidity matrix, we introduce, for a Fourier basis of 2K − 1 weighted
Fourier modes, the matrix Q with entries

Qk,k′ = 〈Gk, ∂qGk′〉L2(ν) , (4.4)

and, for L Hermite modes, the matrix P with entries

P`,`′ = 〈H`, ∂pH`′〉L2(κ) =
〈
H`,

√
β`′H`′−1

〉
L2(κ)

=
√
β`′δ`,`′−1. (4.5)

Note that P is sparse in view of (4.2). The matrix Q is, on the other hand, dense in general, except when V is a
trigonometric polynomial. In the following, we choose V (q) = 1− cos(q) in order for Q to be tridiagonal. For a
general, smooth potential V , Q would be dense but with coefficients which decay fast away from the diagonal.

The rigidity matrix which appears on the left-hand side of (3.31) has entries (for 0 6 k 6 2K − 2 and
0 6 ` 6 L− 1)

Lk`,k′`′ = 〈ek`,−Lek′`′〉
= −β−1

[〈
GkH`, ∂q∂

∗
pGk′H`′

〉
−
〈
GkH`, ∂

∗
q∂pGk′H`′

〉
− γ

〈
GkH`, ∂

∗
p∂pGk′H`′

〉]
= −β−1Qk,k′P`′,` + β−1Qk′,kP`,`′ + γIk,k′N`,`′ ,

where Ik,k′ = δk,k′ and N`,`′ = ` δ`,`′ . In practice we transform these tensors into matrices by a hashing function
ζ : (k, `)→ ζ(k, `) ∈ N. The matrix L is then of size (2K − 1)L.
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4.2. Approximation error for the tensor basis

We define the projectors Πq
K and Πp

L by

Πq
Kϕ =

2K−2∑
k=0

〈ϕ,Gk〉Gk, Πp
Lϕ =

L−1∑
`=0

〈ϕ,H`〉H`.

Their complements are Πq⊥
K = 1−Πq

K and Πp⊥
L = 1−Πp

L. With this notation, the projector onto the Galerkin
space is ΠKL = Πq

KΠ
p
L. The study of the approximation error (1−ΠKL)Φ is performed by first estimating the

error arising from the projection Πq
K (see Lem. 4.2), and then the error arising from Πp

L (see Lem. 4.3). The
conclusion follows by remarking that

0 6 1−ΠKL = 1−Πq
K +Πq

K(1−Πp
L) 6 Πq⊥

K +Πp⊥
L , (4.6)

see Proposition 4.4.

Lemma 4.2. Assume that V is smooth. Then, for any s ∈ N, there exists Ms ∈ R+ such that

∀ϕ ∈ Hs(ν), ∀K > 1, ‖ϕ−Πq
Kϕ‖L2(ν) 6

Ms

Ks
‖ϕ‖Hs(ν).

Proof. For ϕ ∈ Hs(ν), we introduce ϕ̃ = Z
−1/2
β,ν e−βV/2ϕ ∈ L2(dq), as well as the flat Fourier basis G̃k =

Z
−1/2
β,ν e−βV/2Gk which is orthonormal on L2([0, 2π]). Since D = 2πT is compact, Hs(ν) = Hs(dq) for any s ∈ N

and there exists Ms ∈ R+ such that

‖∂sqϕ‖L2(dq) 6Ms‖ϕ‖Hs(ν). (4.7)

By the Bessel-Parseval inequality,

‖ϕ−Πq
Kϕ‖

2
L2(ν) =

∑
k>2K−1

〈ϕ,Gk〉2 =
∑

k>2K−1

(∫ 2π

0

ϕ̃ G̃k dq

)2

=
1

π

∑
k>K

(∫ 2π

0

ϕ̃(q) cos(kq) dq

)2

+

(∫ 2π

0

ϕ̃(q) sin(kq) dq

)2

6
1

π

∑
k>K

(∫ 2π

0

ϕ̃(q)
ks

Ks
cos(kq) dq

)2

+

(∫ 2π

0

ϕ̃(q)
ks

Ks
sin(kq) dq

)2

=
1

πK2s

∑
k>K

(∫ 2π

0

ϕ̃(q) ∂sq cos(kq) dq

)2

+

(∫ 2π

0

ϕ̃(q) ∂sq sin(kq) dq

)2

6
1

K2s
‖∂sq ϕ̃‖2L2(dq),

which allows to conclude with (4.7).

Lemma 4.3. For any s ∈ N and ϕ ∈ Hs(κ), it holds

∀L > s, ‖ϕ−Πp
Lϕ‖L2(κ) 6 [β(L− s+ 1)]

−s/2 ‖∂spϕ‖L2(κ).
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Proof. Fix L > s. In view of (4.2), it holds(
∂∗p
)s
H`−s = βs/2

√
(`− s+ 1) · · · `H`,

with
√

(`− s+ 1) . . . ` > (L− s+ 1)s/2 when ` > L. Therefore,

‖ϕ−Πp
Lϕ‖

2
L2(κ) =

∑
`>L

〈ϕ,H`〉2

6
∑
`>L

〈
ϕ,

√
(`− s+ 1) . . . `

(L− s+ 1)s/2
H`

〉2

= [β(L− s+ 1)]
−s∑

`>L

〈
ϕ, (∂∗p)sH`−s

〉2
6 [β(L− s+ 1)]

−s ‖∂spϕ‖2L2(κ),

from which the conclusion follows.

The following approximation result is then directly deduced from the previous lemmas and (4.6).

Proposition 4.4. Assume that V is smooth. Then, for any s ∈ N, there exists As ∈ R+ such that

∀ϕ ∈ Hs(µ), ∀K > 1, L > s, ‖ϕ−ΠKLϕ‖L2(µ) 6 As

(
1

Ks
+

1

Ls/2

)
‖ϕ‖Hs(µ).

The approximation error ‖(1 − ΠKL)Φ‖ thus depends on the regularity of the solution Φ of the Poisson
problem. Now, the operator L−1 is a bounded operator on Hs(µ) ∩ L2

0(µ) for any s > 0 by the results of ([31],
Sect. 3.2) and [18], (see also [9, 16]). Therefore, when R ∈ Hs(µ)∩L2

0(µ), the solution Φ belongs to Hs(µ)∩L2
0(µ),

and there is Ãs ∈ R+ such that

‖Φ−ΠKLΦ‖L2(µ) 6 ‖Φ−Πq
KΦ‖L2(µ) + ‖Φ−Πp

LΦ‖L2(µ) 6 Ãs

(
1

Ks
+

1

Ls/2

)
‖R‖Hs(µ). (4.8)

Remark 4.5. In fact, it can be expected that the operator L−1 further regularizes in the momentum variable;
more precisely that ∂pΦ ∈ Hs(µ) when R ∈ Hs(µ). This is consistent with what we observe in the numerical
simulations reported in Section 4.4. Note also that the estimates provided by [9, 16, 18, 31] are obtained for a
fixed friction γ > 0. Some additional work is needed to carefully quantify their dependence upon γ, although we
expect that the bounds on L−1 considered as an operator on Hs(µ) ∩ L2

0(µ) should still scale as max(γ, γ−1).

Let us conclude this section by an approximation result involving ΠKL,0 rather than ΠKL (see the
decomposition (3.23), to be compared with (3.2)).

Corollary 4.6. Assume that V is smooth. Then, for any s ∈ N, there exists As ∈ R+ such that

∀ϕ ∈ Hs(µ) ∩ L2
0(µ), ∀K > 1, L > s, ‖ϕ−ΠKL,0ϕ‖L2(µ) 6 As

(
1

Ks
+

1

Ls/2

)
‖ϕ‖Hs(µ).

Proof. Note first that 〈H`,1〉 = δ`,0, so that ΠKL1 = Πq
K1 and uK = Πq

K1/‖Πq
K1‖ depends only on the position

variables for L > 1. Next, in view of the computations performed in the proof of Corollary 3.4,

ΠKL,0ϕ = ΠKLϕ−
〈

Πq
K1

‖Πq
K1‖

, ϕ

〉
uK ,
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where ‖uK‖ = 1. Since ϕ ∈ L2
0(µ), it holds in fact〈

Πq
K1

‖Πq
K1‖

, ϕ

〉
=

〈
(1−Πq

K)1

‖Πq
K1‖

, ϕ

〉
,

which converges to 0 faster than any polynomial in K in view of Proposition 4.4.

4.3. Consistency error

In order to simplify the computations (in particular to have some simple structure on the derivatives of the
Fourier modes) we consider the following potential:

V (q) = 1− cos(q).

In this case, using the trigonometric identities

2 cos(kq) sin(q) = sin((k + 1)q)− sin((k − 1)q)

2 sin(kq) sin(q) = − cos((k + 1)q) + cos((k − 1)q),

a straightforward computation shows that the derivatives of the basis functions satisfy

∂qG0 =
β

2
√

2
G1, ∂qG1 =

β

2
√

2
G0 +G2 −

β

4
G4,

∂qG2k = −β
4
G2k−3 − kG2k−1 +

β

4
G2k+1, ∂qG2k−1 =

β

4
G2k−2 + kG2k −

β

4
G2k+2, (4.9)

where by convention G−1 = 0. The matrix Q defined in (4.4) is therefore a band matrix with width 4.
The well-posedness of the variational formulation associated with the Galerkin space is given by the following

result.

Proposition 4.7. The matrix L̂KL defined in (3.32) is invertible for K,L sufficiently large. More precisely the
resolvent bound satisfies

λ̂γ,KL > λγ −
ε

1 + ε

[
(1 +

√
2)β

2K
+
β3

16

‖(1−Πq
K−1)1‖2

1− ‖(1−Πq
K)1‖2

]
. (4.10)

In practice the term ‖(1−Πq
K−1)1‖ is very small (it decays faster than any polynomial in K by Lemma 4.2),

so that the difference between the two estimates λγ − λ̂γ,KL scales as 1/K and in particular it does not depend
on L. The proof presented in Appendix B consists in showing that the assumptions of Corollary 3.4 hold. Recall
also that ε, λγ ∼ min(γ, γ−1) by Proposition 2.7, so that the error term on the right-hand side of (4.10) is
uniformly bounded with respect to λγ . This suggests that the relative error on the spectral gap is uniformly
bounded with respect to γ > 0.

According to Theorem 3.6 and (B.5) the following rate of convergence can be deduced for the error ΦM −
ΠKL,0Φ (which is related to the consistency error ΠKL,0LΠKL,0Φ+ΠKL,0R).

Proposition 4.8. The error ‖ΦKL −ΠKL,0Φ‖ is bounded by the approximation error as

‖ΦKL −ΠKL,0Φ‖L2(µ) 6
C

λ̂γ,KL

[√
L

β
(K − 1 + β) ‖(1−ΠKL)Φ‖L2(µ) + ‖LuK‖‖Φ‖L2(µ)

]
.
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where ‖LuK‖ decays faster than any polynomial (see (B.2) for an explicit computation). Therefore, for any
s > 1, there exists Aγ,s ∈ R+ such that, for all R ∈ Hs(µ) and Φ = −L−1Π0R,

‖ΦKL −ΠKL,0Φ‖L2(µ) 6 Aγ,sK
√
L

(
1

Ks
+

1

Ls/2

)
‖R‖Hs(µ).

The second statement follows from the bounds on the approximation error ‖Φ−ΠKL,0Φ‖L2(µ) provided by
Proposition 4.4, together with the fact that L−1 is a bounded operator on Hs(µ) ∩ L2

0(µ) (see the discussion at
the end of Sect. 4.2). The total error can thus be bounded as

‖ΦKL − Φ‖ 6 ‖ΦKL −ΠKL,0Φ‖+ ‖Φ−ΠKL,0Φ‖

6 Aγ,sK
√
L

(
1

Ks
+

1

Ls/2

)
‖R‖Hs(µ) + Ãs

(
1

Ks
+

1

Ls/2

)
‖R‖Hs(µ)

6 Âγ,sK
√
L

(
1

Ks
+

1

Ls/2

)
‖R‖Hs(µ). (4.11)

4.4. Numerical results

In this section we call for simplicity consistency error the quantity ‖ΦKL − ΠKLΦ‖. In order to validate
the results of Section 3 in the non-conformal case studied here, we compute the consistency error and the
approximation error ‖Φ − ΠKLΦ‖ as a function of the number K,L of modes and of the friction coefficient
γ. We start by considering an observable which is not very regular; and then turn our attention to the case
when R(q, p) = p (which belongs to Hs(µ) for any s ∈ N). Solving the Poisson equation associated with this
observable allows to predict the self-diffusion coefficient, which can be seen as the magnitude of the effective
Brownian motion describing Langevin dynamics over diffusive timescales [24]. In all this section we set β = 1
and m = 1.

As a sanity check we also verified in the case V = 0 that the eigenvalues of the rigidity matrix L converge to
their analytical expressions provided in [29].

4.4.1. Observable nearly in H2(µ).

Fix γ = 1 and consider the observable

R =
∑

k∈N,`∈N
rk`GkH`, rk` = max(1, k)−5/2 max(1, `)−3/2.

Note that

‖R‖2 =
∑

k∈N,`∈N
|rk`|2 < +∞.

Using (4.9) and (4.2) it can be shown that R is in H1(µ) but fails to be in H2(µ) (the exponents in rk` are
critical). Note also that R does not have mean 0 with respect to µ, so that the solution of the saddle point
problem (3.14) converges to the solution of the Poisson problem with Π0R on the right-hand side. A very
accurate approximation of the solution Φ, which serves as a reference value, is computed by setting K = 100
and L = 1000. The errors are plotted in Figure 1.

The polynomial power of the numerically observed decay of the approximation error is directly linked to the
regularity of the solution Φ. Here the scalings K−3 and L−2 suggest that Φ, ∂pΦ ∈ H3(µ), meaning that in this
particular case L−1 regularizes one derivative of R in position and two in momenta, which is the most that
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Figure 1. Approximation and consistency errors as a function of the number of modes. Left :
Varying number of Fourier modes for a large number of Hermite modes; the approximation
error scales as K−3 while the consistency error scales as K−7/2. Right : Varying number of
Hermite modes for a large number of Fourier modes; the approximation error scales as L−2

while the consistency error scales as L−3.

Figure 2. Approximation error, consistency error and error on the mobility as a function of the
number of Fourier modes (left) or Hermite modes (right) for γ = 1. Logarithmic units are used
on the ordinate axis. When the number of Hermite modes is large, the error on the mobility
scales as 10−2.5K , while the approximation and consistency errors both scale as 10−K . When
the number of Fourier modes is large, the error on the mobility scales as 10−1.25L, while the
approximation and consistency errors both scale as 10−0.2L.

Figure 3. Self-diffusion as a function of the friction γ. It scales as γ−1 both for small γ (with
prefactor 0.15) and large γ (with prefactor 0.6).
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Figure 4. Error on the spectral gap as a function of the size of the basis in three cases for
γ = 1. For a large number of Hermite modes the error scales approximatively as 10−1.2(2K−1)

(top left); for a large number of Fourier modes it scales approximatively as 10−0.32L (top right);
and for L = 2(2K − 1) it scales approximatively as 10−3.8L (bottom).

could be expected. Note that the approximation error is therefore much smaller than predicted in (4.8), where
we only stated that Φ is at least as regular as R. Moreover, we observe that the consistency error decays faster
than the approximation error, as anticipated in Remark 3.7.

4.4.2. Velocity observable.

The self-diffusion of a particle subjected to Langevin dynamics in dimension 1 is (see for instance [23], Sect. 5
for further background)

D =

∫ ∞
0

E (ptp0) dt =
〈
−L−1p, p

〉
, (4.12)

where the expectation is taken over all initial conditions (q0, p0) ∼ µ and for all realizations of the Brownian
motion in (1.1). This transport coefficient can be computed by approximating Φ = L−1p with the Galerkin
method described in this article. The accurate reference is here computed by setting K = 50 and L = 100. We
plot on Figure 2 the approximation error and the consistency error obtained for the observable R(q, p) = p.
They decay faster than any polynomial since p ∈ Hs(µ) for any s ∈ N. They are in fact observed to decay
exponentially fast with the number of modes. The error on the self-diffusion coefficient therefore also decays
faster than any polynomial, in fact exponentially.

As an illustration of our approach, we plot the value of the self-diffusion as a function of γ in Figure 3, as
already done in [24] using Monte-Carlo techniques and in [25] using a very similar spectral method. We indeed
retrieve the scaling D ∼ γ−1 proved in [24]. This computation can be done in a matter of seconds as it involves a
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Figure 5. Left Spectral gap as a function of the friction γ. Right : Relative error on the
spectral gap as a function of γ for several couples K,L. Note that the curve corresponding to
K = 3, L = 8 coincides with K = 5, L = 8 for γ small and with K = 3, L = 20 for γ large.

single inversion of a sparse matrix of size KL = 5000 for each value of the friction γ. It is thus much faster that
a standard Monte-Carlo simulation. This approach however becomes intractable when the dimension increases.

4.4.3. Estimates on the spectral gap.

In order to illustrate the statements of Proposition 4.7, we compute the relative error between the spectral gap
of L (approximated using a very large discretization basis) and the spectral gap of the matrix L̂; see Figure 5.
The spectral gap is close to the value min(γ, γ−1) obtained when V = 0 (see [19]), with deviations essentially
around γ = 1. Note on Figure 4 that the relative error on the spectral gap decays exponentially with K and L.
Let us also emphasize that, as suggested by (3.5), the relative error on the spectral gap is bounded uniformly
with respect to γ for any K,L. We also observe that in the overdamped limit γ →∞ the relative error depends
only on the discretization accuracy in the position variable. This is due to the fact that the resolvent L−1
converges in this regime to an operator acting only on the position variables [22].

Appendix A. Proof of Theorem 2.2 (L2(µ) hypocoercivity)

We recall in this section the proof of Theorem 2.2, as presented in [7, 8]. We start with the proofs of the
technical results presented at the end of Section 2.

Proof of Lemma 2.6. Consider ϕ ∈ C ∩ L2
0(µ). A simple computation shows that

LhamΠp =
1

β
∇q∇∗pΠp =

( p
m

)>
∇qΠp, (A.1)

which immediately implies that LhamΠpϕ has average 0 with respect to κ(dp) for any q ∈ D. Therefore,
ΠpLhamΠp = 0, which implies A = A(1−Πp).

By definition of the operator A, it also holds

Aϕ+ (LhamΠp)
∗(LhamΠp)Aϕ = (LhamΠp)

∗ϕ.
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This identity immediately implies that ΠpA = A. Taking the scalar product with Aϕ, we obtain, using LhamA =
LhamΠpA = (1−Πp)LhamA:

‖Aϕ‖2 + ‖LhamAϕ‖2 = 〈LhamAϕ,ϕ〉 = 〈LhamAϕ, (1−Πp)ϕ〉
6 ‖(1−Πp)ϕ‖ ‖LhamAϕ‖

6
1

4
‖(1−Πp)ϕ‖2 + ‖LhamAϕ‖2.

(A.2)

The last inequality gives ‖Aϕ‖ 6 ‖(1−Π)ϕ‖/2, while the second one implies that ‖LhamAϕ‖ 6 ‖(1−Πp)ϕ‖.
The conclusion is finally obtained by density of C in L2(µ).

The key element to prove Proposition 2.7 is the following coercivity estimates, respectively called
“microscopic” and “macroscopic” coercivity in [7, 8].

Proposition A.1 (Coercivity properties). The operators LFD and LhamΠp satisfy the following coercivity
properties:

∀ϕ ∈ C , −〈LFDϕ,ϕ〉 >
1

m
‖(1−Πp)ϕ‖2, (A.3)

∀ϕ ∈ C ∩ L2
0(µ), ‖LhamΠpϕ‖2 >

Cν
βm
‖Πpϕ‖2, (A.4)

where Cν is defined in (2.4). As a corollary, the following inequality holds in the sense of symmetric operators
on L2

0(µ):

ALhamΠp > λhamΠp, λham = 1−
(

1 +
Cν
βm

)−1
> 0. (A.5)

Proof. The inequality (A.3) directly results from a Poincaré inequality for the Gaussian measure κ (see [5]), the
position q being seen as a parameter. Indeed, for a given ϕ ∈ C ,

∀q ∈ D,
∫
RD
|∇pϕ(q, p)|2 κ(dp) >

β

m

∫
RD
|(1−Πp)ϕ(q, p)|2 κ(dp) (A.6)

Integrating against ν and noting that −〈LFDϕ,ϕ〉 = β−1‖∇pϕ‖2 leads to the desired inequality.
To prove (A.4), we use (A.1), which leads to

‖LhamΠpϕ‖2L(µ) =
1

βm
‖∇qΠpϕ‖2L(ν). (A.7)

The conclusion then follows from the Poincaré inequality (2.4), since, for ϕ ∈ C ∩ L2
0(µ), the function Πpϕ has

average 0 with respect to ν (namely, Eν [Πpϕ] = Eµ[ϕ] = 0).
The macroscopic coercivity (A.4) allows to write (LhamΠp)

∗(LhamΠp) > Cν
βmΠp in the sense of symmetric

operators on L2
0(µ). Moreover,

ALhamΠp = [1 + (LhamΠp)
∗(LhamΠp)]

−1
(LhamΠp)

∗(LhamΠp).

Since (LhamΠp)
∗(LhamΠp) is self-adjoint and the function x 7→ x/(1 + x) = 1 − 1/(1 + x) is increasing, the

inequality (A.5) follows by spectral calculus.
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Another technical argument is the boundedness of certain operators, which appear in the proof of
Proposition 2.7.

Lemma A.2. For any ` ∈ N∗, i ∈ {1, 2, . . . , D} and ϕ ∈ L2(µ),

‖Πp∂
`
piϕ‖L2(ν) 6

√(
β

m

)`
`! ‖(1−Πp)ϕ‖.

In particular,
∥∥Πp∂

`
pi

∥∥ =
∥∥∥(∂∗pi)`Πp

∥∥∥ 6
√
β``!.

Proof. Fix ϕ ∈ C . For q ∈ D,

(
Πp∂

n
piϕ
)

(q) =

∫
RD

(
∂npi(1−Πp)ϕ

)
(q, p)κ(dp) =

∫
RD

(1−Πp)ϕ(q, p) (∂∗pi)
n1κ(dp).

Denoting by H`(pi) = (m/β)`/2`!−1/2(∂∗pi)
`1 the Hermite polynomials in the variable pi (which, we recall, are

such that ‖H`‖L2(κ) = 1), a Cauchy–Schwarz inequality shows that

‖Πp∂
`
piϕ‖

2
L2(ν) 6

∫
D

∫
RD
|(1−Πp)ϕ(q, p)|

∣∣∣∣∣∣
√(

β

m

)`
`!H`(pi)

∣∣∣∣∣∣κ(dp)

2

ν(dq)

6

(
β

m

)`
`!

∫
D
‖(1−Πp)ϕ(q, ·)‖2L2(κ)‖H`‖2L2(κ)ν(dq) =

(
β

m

)`
`!‖(1−Πp)ϕ‖2,

which gives the claimed result.

Proposition A.3 (Boundedness of auxiliary operators). There exist Rham > 0 such that

∀ϕ ∈ C ,

‖ALham(1−Πp)ϕ‖ 6 Rham‖(1−Πp)ϕ‖,

‖ALFDϕ‖ 6
1

2m
‖(1−Πp)ϕ‖.

(A.8)

Proof. The first task is to give a more explicit expression of the operator A. In the following we use frequently
the fact that operators acting only on the variables q (such as ∇q and ∇∗q) commute with operators acting
only on variables p (such as ∇p, ∇∗p and Πp). Moreover the relations ∂piΠp = 0, Πp∂

∗
pi = 0 and Πp∂pi∂

∗
pj =

∂pi∂
∗
pjΠp = β

mΠpδij allow to simplify the action of (LhamΠp)
∗(LhamΠp) as follows:

(LhamΠp)
∗(LhamΠp) = − 1

β2
Πp(∇∗p∇q −∇∗q∇p)(∇∗p∇q −∇∗q∇p)Πp

=
1

β2
Πp(∇∗q∇p)(∇∗p∇q)Πp =

1

βm
∇∗q∇qΠp.

The operator A can therefore be reformulated as

A =
1

β

(
1 +

1

βm
∇∗q∇q

)−1
∇∗qΠp∇p. (A.9)
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To obtain bounds on the operator ALham(1−Πp), we next consider its adjoint:

−(1−Πp)LhamA
∗ = − 1

β2
(1−Πp)

(
∇∗p∇q −∇∗q∇p

)
∇∗p∇qΠp

(
1 +

1

βm
∇∗q∇q

)−1
= − 1

β2
(1−Πp)

(
∇∗p∇q∇∗p∇q −

β

m
∇∗q∇q

)
Πp

(
1 +

1

βm
∇∗q∇q

)−1
= − 1

β2
(1−Πp)∇∗p∇q∇∗p∇qΠp

(
1 +

1

βm
∇∗q∇q

)−1
,

where we used (1−Πp)∇∗q∇qΠp = 0 in the last line. Moreover, the operator

∇∗p∇q∇∗p∇qΠp =

D∑
i,j=1

∂∗pi∂
∗
pjΠp∂qi∂qj

is bounded from H2(ν) to L2(µ) according to Lemma A.2. Moreover, as proved in [8], Assumption 2.1 ensures

that the operator Πp

(
1 + 1

βm∇
∗
q∇q

)−1
is bounded from L2(µ) to H2(ν). In conclusion, −(1 −Πp)LhamA

∗ is

bounded on L2(µ).
The boundedness of the operator ALFD comes from the fact that

ΠpLhamLFD = − 1

β2
Πp

(
∇∗p∇q −∇∗q∇p

)
∇∗p∇p =

1

β2
Πp∇∗q∇p∇∗p∇p

=
1

βm
Πp∇∗q∇p = − 1

m
ΠpLham.

In conclusion, ALFD = −A/m, which gives the claimed result with Lemma 2.6.

We can now proceed with the proof of Proposition 2.7.

Proof of Proposition 2.7. Note first that, for a given ϕ ∈ C , the entropy dissipation D [ϕ] can be explicitly
written as

D [ϕ] = 〈−γLFDϕ,ϕ〉+ ε 〈ALhamΠpϕ,ϕ〉+ ε 〈ALham(1−Πp)ϕ,ϕ〉
− ε 〈LhamAϕ,ϕ〉+ εγ 〈ALFDϕ,ϕ〉 ,

(A.10)

since LFDA = LFDΠpA = 0. Using respectively the properties (A.3), (A.5), (A.8) and Lemma 2.6, it follows

D [ϕ] >
γ

m
‖(1−Πp)ϕ‖2 + ελham‖Πpϕ‖2 − ε

(
Rham +

γ

2m

)
‖(1−Πp)ϕ‖ ‖Πpϕ‖

− ε 〈LhamAϕ,ϕ〉 .
(A.11)

Since, by Lemma 2.6,

〈LhamAϕ,ϕ〉 = 〈(1−Πp)LhamΠpA(1−Πp)ϕ,ϕ〉 6 ‖(1−Πp)ϕ‖2,

it holds D [ϕ] > X>SX, where

X =

(
‖Πpϕ‖

‖(1−Πp)ϕ‖

)
, S =

(
S−− S−+/2
S−+/2 S++

)
,
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with

S−− = ελham, S−+ = −ε
(
Rham +

γ

2m

)
, S++ =

γ

m
− ε.

The smallest eigenvalue of S is

Λ(γ, ε) =
S−− + S++

2
− 1

2

√
(S−− − S++)2 + (S−+)2.

In the limit γ → 0, the parameter ε should be chosen of order γ in order for Λ(γ, ε) to be positive (in particular
for S++ to remain positive). When γ → +∞, the parameter ε should be chosen of order 1/γ in order for the
determinant of S to remain positive. We therefore consider the choice

ε = εmin(γ, γ−1). (A.12)

It is then easy to check that there exists ε > 0 sufficiently small such that Λ(γ, εmin(γ, γ−1)) > 0 for
all γ > 0. Moreover, it can be proved that Λ(γ, εmin(γ, γ−1))/γ converges to a positive value as γ → 0,
while γΛ(γ, εmin(γ, γ−1)) converges to a positive value as γ → +∞. This gives the claimed result with

λ̃γ = Λ(γ, εmin(γ, γ−1)).

The proof of Theorem 2.2 is now easy to obtain. Consider ϕ0 ∈ Dom(L) ∩ L2
0(µ) (which contains H2(µ) ∩

L2
0(µ)) and introduce H (t) = H[ϕ(t)], where ϕ(t) = etLϕ0 ∈ Dom(L) for any t > 0. Then,

H ′(t) = −D [ϕ(t)] 6 −λ̃γ‖ϕ(t)‖2.

Using the norm equivalence (2.13) and the choice (A.12) for ε < 1, it follows that

H ′(t) 6 − 2λ̃γ
1 + εmin(γ, γ−1)

H (t),

so that, by a Gronwall estimate,

H (t) 6 H (0) exp

(
− 2λ̃γ

1 + εmin(γ, γ−1)
t

)
.

Using again the norm equivalence (2.13), it follows that

‖ϕ(t)‖2 6
1 + ε

1− ε
e−2λγt‖ϕ(0)‖2,

with the decay rate

λγ =
λ̃γ

1 + εmin(γ, γ−1)
.

The desired estimate finally follows by density of Dom(L) in L2(µ).
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Appendix B. Proof of technical estimates for the system
considered in Section 4

We prove in this section that the conditions (3.11) and (3.3) allowing to apply the results of Section 3 hold for
the system considered in Section 4. Recall that the condition M → +∞ should be understood as K,L→ +∞.
Let us also emphasize that, although we perform the computations for the simple potential V (q) = 1− cos(q),
the extension to a general trigonometric polynomial V is straightforward.

B.1 Condition (3.11) and bound on ‖LuK‖.

Since uM depends only on the positions, it is denoted uK and

‖LuK‖2 = ‖L∗uK‖2 =
1

‖Πq
K1‖2

‖p∂qΠq
K1‖2 = β

‖∂qΠq
K1‖2

‖Πq
K1‖2

.

In order to estimate ‖∂qΠq
K1‖, we decompose Πq

K1 in the basis under consideration as follows:

Πq
K1 =

2K−2∑
j=0

gjGj , gj = 〈Πq
K1, Gj〉 =

∫
D
Gj dν.

Then, using ∂qΠ
q
K1 = −∂q(1−Πq

K)1 and (with (4.9))

∀k > 1, ∂∗qG2k = −β
4
G2k−3 + kG2k−1 +

β

4
G2k+1, ∂∗qG2k−1 =

β

4
G2k−2 − kG2k −

β

4
G2k+2, (B.1)

it follows that, for K > 1,

‖∂qΠq
K1‖2 =

∑
j∈N
〈∂qΠq

K1, Gj〉
2

=

2K−2∑
j=0

〈−∂q(1−Πq
K)1, Gj〉

2
+

+∞∑
j=2K−1

〈∂qΠq
K1, Gj〉

2

=

2K−2∑
j=0

Eν
[
(1−Πq

K)∂∗qGj
]2

+

+∞∑
j=2K−1

Eν
[
Πq
K∂
∗
qGj

]2
= Eν [(1−Πq

K)∂∗qG2K−3]2 + Eν [(1−Πq
K)∂∗qG2K−2]2 + Eν [Πq

K∂
∗
qG2K−1]2 + Eν [Πq

K∂
∗
qG2K ]2

=
β2

16

(
g22K + g22K−1 + g22K−2 + g22K−3

)
6
β2

16

∥∥(1−Πq
K−1)1

∥∥2 .
Since 1 ∈ Hs(ν) for any s ∈ N, it follows that ‖(1−Πq

K−1)1‖ vanishes faster than any polynomial in K in view
of Lemma 4.2. This implies that ‖∂qΠq

K1‖, and hence ‖LuK‖ and ‖L∗uK‖, vanish faster than any polynomial
in K. More precisely,

‖L∗uK‖2 = ‖LuK‖2 6
β3

16

∥∥(1−Πq
K−1)1

∥∥2
‖Πq

K1‖2
6
β3

16

∥∥(1−Πq
K−1)1

∥∥2
1− ‖(1−Πq

K)1‖2
. (B.2)
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B.2 Condition (3.3).

Let us now prove that ‖(A+A∗)(1−ΠKL)LΠKL‖ −−−−−→
K,L→∞

0 for the model under consideration. Introducing

L+−
KL = (1−ΠKL)LΠKL, we prove in fact that AL+−

KL and A∗L+−
KL are bounded operators whose norms converge

to 0 as K,L→ +∞. In all this proof, we consider K > 1 and L > 2.
The first task is to provide a more explicit expression of L+−

KL. We introduce to this end the operator D+−
K =

Πq⊥
K ∂qΠ

q
K . In view of (4.9),

D+−
K ϕ =

+∞∑
j′=2K−1

2K−2∑
j=0

〈ϕ,Gj〉 〈∂qGj , Gj′〉Gj′ =
β

4

(
〈ϕ,G2K−2〉G2K−1 − 〈ϕ,G2K−3〉G2K

)
.

This shows that the operator D+−
K is bounded on L2(µ), and in fact

‖D+−
K ϕ‖ 6 β

4
‖Πq⊥

K+1Π
q
Kϕ‖. (B.3)

Comparing (B.1) and (4.9), we also see that D+−
K = Πq⊥

K ∂qΠ
q
K = Πq⊥

K ∂∗qΠ
q
K . We can now compute more

explicitly the action of L+−
KL by noting that

βL+−
KL = (1−ΠKL)∂q∂

∗
pΠKL − (1−ΠKL)∂∗q∂pΠKL − γ(1−ΠKL)∂∗p∂pΠKL,

where (1−ΠKL)∂∗p∂pΠKL = 0 by (4.3), while (using (4.2) to write Πp
L−1∂p = ∂pΠ

p
L and Πp

L+1∂
∗
p = ∂∗pΠ

p
L)

(1−ΠKL)∂q∂
∗
pΠKL = (1−Πq

KΠ
p
L)∂qΠ

p
L+1∂

∗
pΠ

q
K

= (1−Πq
KΠ

p
L)∂q(Π

p
L +Πp⊥

L )Πp
L+1∂

∗
pΠ

q
K

= (Πp
L +Πp⊥

L Πp
L+1 −Π

q
KΠ

p
L)∂q∂

∗
pΠ

q
K

= Πp
L(1−Πq

K)∂q∂
∗
pΠ

q
K + ∂qΠ

p
L+1Π

p⊥
L ∂∗pΠ

q
K

= Πp
L∂
∗
pD

+−
K + ∂q∂

∗
pΠ

p
LΠ

p⊥
L−1Π

q
K

= ∂∗pΠ
p
L−1D

+−
K + ∂q∂

∗
pΠ

p⊥
L−1ΠKL,

and

(1−ΠKL)∂∗q∂pΠKL = ∂p(1−Πq
KΠ

p
L+1)∂∗qΠ

p
LΠ

q
K = ∂pΠ

p
L(1−Πq

K)∂∗qΠ
q
K

= D+−
K ∂pΠ

p
L.

Therefore,

βL+−
KL = ∂∗pΠ

p
L−1D

+−
K + ∂q∂

∗
pΠ

p⊥
L−1ΠKL −D+−

K ∂pΠ
p
L. (B.4)
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Moreover ‖∂∗pΠ
p
L−1‖ 6

√
β(L− 1), ‖∂pΠp

L‖ 6
√
β(L− 1) and using the Gerschgorin theorem (see [27] for

example) ‖∂qΠq
K‖ 6 K − 1 + β/2, so the operator L+−

KL is bounded, with

∥∥L+−
KL

∥∥ 6 β−1
√
β(L− 1)

β

4
+ β−1

√
βL

(
K − 1 +

β

2

)
+ β−1

√
β(L− 1)

β

4

6

√
L

β
(K − 1 + β) .

(B.5)

We are now in position to provide a more explicit expression of AL+−
KL and A∗L+−

KL based on (B.4). Recalling

the definition (2.11) of Πp = Πp
1 , it holds ΠpΠ

p⊥
L−1 = 0 and ΠpΠ

p
L−1 = Πp for L > 2. Using also the relation

Πp∂p∂
∗
p = β, we obtain

(LhamΠp)
∗L+−

KL = β−1Πp∂
∗
q∂pL+−

KL

= β−1Πp∂
∗
qΠ

p
L−1D

+−
K + β−1Πp∂

∗
q∂qΠ

p⊥
L−1ΠKL − β−2Πp∂

∗
q∂

2
pD

+−
K Πp

L

= β−1Πp∂
∗
qD

+−
K − β−2Πp∂

∗
q∂

2
pD

+−
K

= β−1Πp

(
1− β−2∂2p

)
∂∗qD

+−
K

since L > 2. Introducing the generator of the overdamped Langevin dynamics (for m = 1 here)

Lovd = −β−1∂∗q∂q,

it is possible to rewrite (A.9) as A = (1− Lovd)
−1
Πp∂p∂

∗
q , so that

AL+−
KL =

(
β−1Πp − β−2Πp∂

2
p

)
(1− Lovd)−1∂∗qD

+−
K . (B.6)

Similar computations show that (using Πp∂
∗
p = 0)

A∗L+−
KL = −β−2∂∗p∂q(1− Lovd)−1Πp∂pD

+−
K Πp

L

= −β−2∂∗pΠp∂p∂q(1− Lovd)−1D+−
K .

(B.7)

The momentum operators Πp, Πp∂
2
p and ∂∗pΠp∂p are bounded according to Lemma A.2:

∥∥β−2Πp∂
2
p − β−1Πp

∥∥
B(L2(κ))

6

√
2 + 1

β
,
∥∥∂∗pΠp∂p

∥∥
B(L2(κ))

6 β,

so that

∥∥AL+−
KL

∥∥
B(L2(µ))

6

√
2 + 1

β

∥∥(1− Lovd)−1∂∗qD
+−
K

∥∥
B(L2(ν))

,∥∥A∗L+−
KL

∥∥
B(L2(µ))

6
1

β

∥∥∂q(1− Lovd)−1D+−
K

∥∥
B(L2(ν))

.

(B.8)

At this stage, it remains to prove that the operators on L2(ν) in the right-hand sides of the previous
inequalities are bounded, with vanishing norms as K → +∞. We use to this end the following decompositions:

(1− Lovd)−1∂∗qD
+−
K = T1S1,KD

+−
K , ∂q(1− Lovd)−1D+−

K = T2S2,KD
+−
K ,



SPECTRAL METHODS FOR LANGEVIN DYNAMICS AND ASSOCIATED ERROR ESTIMATES 1081

with (using D+−
K = Πq⊥

K−1D
+−
K )

T1 = (1− Lovd)−1∂∗q (1− L̃ovd)
1/2, S1,K = (1− L̃ovd)−

1/2Πq⊥
K−1,

T2 = ∂q(1− Lovd)−
1/2, S2,K = (1− Lovd)−

1/2Πq⊥
K−1,

(B.9)

where we introduced the symmetric negative operator L̃ovd = −β−1∂q∂∗q . Let us show that T1 and T2 are
bounded and S1,K and S2,K can be made small for K sufficiently large. Note first that

T1T
∗
1 = (1− Lovd)−1∂∗q

(
1− L̃ovd

)
∂q(1− Lovd)−1

= (1− Lovd)−1
(
∂∗q∂q + β−1∂∗q∂q∂

∗
q∂q
)

(1− Lovd)−1 = −β(1− Lovd)−1Lovd,

so that, by spectral calculus, 0 6 T1T
∗
1 6 β. This shows that T ∗1 and T1 are bounded operators on L2(ν), with

‖T ∗1 ‖ = ‖T1‖ 6
√
β. Similarly,

T ∗2 T2 = −β(1− Lovd)−
1/2Lovd(1− Lovd)−

1/2,

from which we deduce ‖T ∗2 ‖ = ‖T2‖ 6
√
β. We next prove that the operators S1,K and S2,K can be made as

small as wanted by increasing K. We start by proving the following lemma.

Lemma B.1. For K > 2, the following inequalities hold in the sense of symmetric operators:

1− Lovd > β−1(K − 1)2Πq⊥
K−1, 1− L̃ovd > β−1(K − 1)2Πq⊥

K−1.

Proof. The operator 1− Lovd can be expressed in the L2(µ)-orthonormal basis Gk as
(1− Lovd)G2k−1 = − β

16
(G2k−5 +G2k+3)− 1

4
(G2k−3 +G2k+1) +

(
1 +

β

8
+
k2

β

)
G2k−1,

(1− Lovd)G2k = − β

16
(G2k−4 +G2k+4)− 1

4
(G2k−2 +G2k+2) +

(
1 +

β

8
+
k2

β

)
G2k.

(B.10)

Similar formulas hold for 1−L̃ovd, upon changing the factors −1/4 into 1/4 in the above expressions. Therefore,

the symmetric operators 1−Lovd −
(
β−1(K − 1)2 + 1

2

)
Πq⊥
K−1 and 1− L̃ovd −

(
β−1(K − 1)2 + 3

2

)
Πq⊥
K−1 can be

represented by diagonally dominant matrices in the basis (Gk), which shows that these operators are positive.

Lemma B.2. There exists K0 ∈ N such that, for any K > K0, the following inequalities hold in the sense of
symmetric operators:

0 6 Πq⊥
K−1(1− Lovd)−1Πq⊥

K−1 6
2β

K2
, 0 6 Πq⊥

K−1

(
1− L̃ovd

)−1
Πq⊥
K−1 6

2β

K2
.

Proof. We write the proof for the operator A = 1 − Lovd, the result for 1 − L̃ovd being obtained by similar
manipulations. Consider the following block decomposition with respect to Πq⊥

K−1 for K fixed:

A =

(
A−− A−+
A+− A++

)
.

More precisely, A−− = Πq
K−1AΠ

q
K−1, A−+ = Πq

K−1AΠ
q⊥
K−1, A+− = Πq⊥

K−1AΠ
q
K−1 and A++ = Πq⊥

K−1AΠ
q⊥
K−1.

A similar decomposition holds for A−1. With this notation, the goal is to estimate
(
A−1

)++
= Πq⊥

K−1(1 −
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Lovd)−1Πq⊥
K−1. By the Schur complement formula,

(
A−1

)++
=
[
A++ −A+− (A−−)−1A−+]−1 ,

provided the operators under consideration are all invertible. By Lemma B.1,

A++ −A+− (A−−)−1A−+ >

(
(K − 1)2

β
− ‖A+−‖2

∥∥∥(A−−)−1∥∥∥)Πq⊥
K−1.

Since (A−−)
−1 6 1 (because A−− > 1) and, in view of (B.10),

‖A+−‖2 6
1

8
+
β2

64
,

the Schur complement is invertible for K sufficiently large, and its inverse is a symmetric operator satisfying

0 6
(
A−1

)++
6

[
(K − 1)2

β
−
(

1

8
+
β2

64

)]−1
Πq⊥
K−1.

The right-hand side is, in turn, smaller than 2β/K2 for K > K0 with K0 sufficiently large.

Since S∗2,KS2,K = Πq⊥
K−1(1 − Lovd)−1Πq⊥

K−1 and S∗1,KS1,K = Πq⊥
K−1(1 − L̃ovd)−1Πq⊥

K−1, Lemma B.2 immedi-
ately implies that

∀K > K0, ‖S1,K‖L2(ν) 6

√
2β

K
, ‖S2,K‖L2(ν) 6

√
2β

K
. (B.11)

The conclusion now follows from (B.3) (which implies that
∥∥D+−

K

∥∥
L2(ν)

6 β/4) and (B.6)–(B.7), which lead to

∥∥T1S1,KD
+−
K

∥∥
L2(ν)

6

√
2β2

4K
,
∥∥T2S2,KD

+−
K

∥∥
L2(ν)

6

√
2β2

4K
.

Using (B.8), we finally obtain

∥∥(A+A∗)L+−
KL

∥∥
B(L2(µ))

6
(1 +

√
2)β

2K
.

B.3 Final explicit estimates.

Using the bounds provided in this appendix, it is easily seen that the constant λ̂γ,KL introduced in
Corollary 3.4 satisfies (4.10). It is then possible to make explicit the resolvent bound (3.22).
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measures including the log-concave case. Electron. Commun. Probab. 13 (2008) 60–66.
[4] R. Balian, From Microphysics to Macrophysics: Methods and Applications of Statistical Physics, Vol. 1 and 2. Springer (2007).
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