An inhomogeneous steady-state problem of radiative-conductive heat transfer in a three-dimensional domain is studied in the framework of the P
Accepté le :
DOI : 10.1051/m2an/2017042
Mots-clés : Radiative heat transfer, diffusion approximation, unique solvability, Lyapunov stability
@article{M2AN_2017__51_6_2511_0, author = {Chebotarev, Alexander Yu. and Grenkin, Gleb V. and Kovtanyuk, Andrey E.}, title = {Inhomogeneous steady-state problem of complex heat transfer}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {2511--2519}, publisher = {EDP-Sciences}, volume = {51}, number = {6}, year = {2017}, doi = {10.1051/m2an/2017042}, mrnumber = {3745180}, zbl = {1387.35122}, language = {en}, url = {https://www.numdam.org/articles/10.1051/m2an/2017042/} }
TY - JOUR AU - Chebotarev, Alexander Yu. AU - Grenkin, Gleb V. AU - Kovtanyuk, Andrey E. TI - Inhomogeneous steady-state problem of complex heat transfer JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 2511 EP - 2519 VL - 51 IS - 6 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2017042/ DO - 10.1051/m2an/2017042 LA - en ID - M2AN_2017__51_6_2511_0 ER -
%0 Journal Article %A Chebotarev, Alexander Yu. %A Grenkin, Gleb V. %A Kovtanyuk, Andrey E. %T Inhomogeneous steady-state problem of complex heat transfer %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 2511-2519 %V 51 %N 6 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2017042/ %R 10.1051/m2an/2017042 %G en %F M2AN_2017__51_6_2511_0
Chebotarev, Alexander Yu.; Grenkin, Gleb V.; Kovtanyuk, Andrey E. Inhomogeneous steady-state problem of complex heat transfer. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 6, pp. 2511-2519. doi : 10.1051/m2an/2017042. https://www.numdam.org/articles/10.1051/m2an/2017042/
M.F. Modest, Radiative Heat Transfer. Academic Press (2003).
Numerical methods and optimal control for glass cooling processes. Trans. Theory Stat. Phys. 31 (2002) 513–529. | DOI | MR | Zbl
, , , and ,
SP
Adaptive solution of SP
Optimal control of glass cooling using simplified P
Optimal control of radiative heat transfer in glass cooling with restrictions on the temperature gradient. Optimal Control Appl. Methods 33 (2012) 157–175. | DOI | MR | Zbl
and ,A nonstationary problem of complex heat transfer. Comput. Math. Math. Phys. 54 (2014) 1737–1747. | DOI | MR | Zbl
and ,
Analysis of optimal boundary control for radiative heat transfer modelled by the SP
Optimal control of a simplified natural convection-radiation model. Commun. Math. Sci. 11 (2013) 679–707. | DOI | MR | Zbl
and ,A nonhomogeneous nonstationary complex heat transfer problem. Sib. Èlektron. Mat. Izv. 12 (2015) 562–576. | MR | Zbl
and ,Existence and uniqueness of solutions of nonlinear systems of conductive-radiative heat transfer equations. Trans. Theory Stat. Phys. 25 (1996) 249–260. | DOI | MR | Zbl
,An iterative method for solving a complex heat transfer problem. Appl. Math. Comput. 219 (2013) 9356–9362. | MR | Zbl
and ,Steady-state problem of complex heat transfer. Comput. Math. Math. Phys. 54 (2014) 719–726. | DOI | MR | Zbl
and ,Stationary free convection problem with radiative heat exchange. Differ. Equ. 50 (2014) 1592–1599. | DOI | MR | Zbl
and ,Theoretical analysis of an optimal control problem of conductive-convective-radiative heat transfer. J. Math. Anal. Appl. 412 (2014) 520–528. | DOI | MR | Zbl
, , and ,
Solvability of P
Unique solvability of a steady-state complex heat transfer model. Commun. Nonlin. Sci. Numer. Simul. 20 (2015) 776–784. | DOI | MR | Zbl
, , and ,Boundary optimal control problem of complex heat transfer model. J. Math. Anal. Appl. 433 (2016) 1243–1260. | DOI | MR | Zbl
, , , and ,Time-dependent simplified PN approximation to the equations of radiative transfer. J. Comput. Phys. 226 (2007) 2289–2305. | DOI | MR | Zbl
, , and ,E. Zeidler, Nonlinear functional analysis and its applications. II/A: Linear monotone operators. Springer, New York (1990). | Zbl
Cité par Sources :