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INHOMOGENEOUS STEADY-STATE PROBLEM OF COMPLEX HEAT
TRANSFER ∗

Alexander Yu. Chebotarev1,2, Gleb V. Grenkin1,2 and Andrey E. Kovtanyuk1,2

Abstract. An inhomogeneous steady-state problem of radiative-conductive heat transfer in a three-
dimensional domain is studied in the framework of the P1 approximation of the nonlinear complex heat
transfer model. The unique solvability of the problem is proved. The Lyapunov stability of solutions is
shown.
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1. Introduction

The steady-state normalized P1 approximation of the complex heat transfer model describing radiative and
conductive contributions is considered in a bounded domain Ω ⊂ R

3. The model has the following form [1]:

−aΔθ + bκa(|θ|θ3 − ϕ) = f, (1.1)

−αΔϕ+ κa(ϕ − |θ|θ3) = g. (1.2)

Here, θ is the normalized temperature, ϕ the normalized radiation intensity averaged over all directions, f, g
the volume densities of temperature and intensity sources, and κa the absorption coefficient. The constants a,
b, and α are given by the formulas:

a =
k

ρcp
, b =

4σn2T 3
max

ρcp
, α =

1
3κ−Aκs

,

where k is the thermal conductivity, cp the specific heat capacity, ρ the density, σ the Stefan–Boltzmann
constant, n the refractive index, Tmax the maximum temperature in the unnormalized model, κ := κs + κa the
extinction coefficient (total attenuation factor), and κs the scattering coefficient. The coefficient A ∈ [−1, 1]
describes the anisotropy of the scattering.
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The following boundary conditions on Γ = ∂Ω are assumed:

a∂θ/∂n+ β(θ − θb)|Γ = 0, α∂ϕ/∂n+ γ(ϕ− |θb|θ3b )|Γ = 0. (1.3)

Here, the boundary functions, θb = θb(x), β = β(x), and the function γ = γ(x), x ∈ Γ , describing reflecting
properties of the boundary, are fixed.

The problems of complex heat transfer in scattering media with reflecting boundaries are of growing interest in
connection with engineering applications (see e.g. [2–6]). A considerable number of works is devoted to theoretical
analysis of complex heat transfer models. In [7], the solvability of a homogeneous non-stationary boundary-value
problem of complex heat transfer (1.1)–(1.3) (the case f = g = 0) and stability of steady-state solutions are
proved. Theoretical analysis of similar non-stationary models is conducted in [8–10]. In [9], an inhomogeneous
boundary-value problem for the SP3 approximation of a complex heat transfer model is studied. For the case
of bounded temperature sources, the unique solvability of the problem is proved. In [10], the unique solvability
of an inhomogeneous boundary-value problem for P1 approximation is proved using softer constraints on the
sources. Theoretical aspects of homogeneous steady-state boundary-value problems of complex heat transfer are
studied in [11–18], in particular, under some physical constraints [11–15].

The study of complex heat transfer models with sources which are described by functionals or p-integrable
functions has not only theoretical interest. The estimates of solutions can be applied, particularly in analysis of
inverse problems for complex heat transfer models. The main results of the current work consist in the derivation
of new a priori estimates for a solution of the boundary-value problem (1.1)–(1.3) and the proof of its unique
solvability. Also, Lyapunov stability of steady-state solutions of a non-stationary complex heat transfer problem
is proved. This is very important for the problem of the adequacy of the steady-state complex heat transfer
model.

2. Problem formalization

Let Ω ⊂ R
3 be a bounded Lipschitz domain. Let the notation Lp, 1 ≤ p ≤ ∞, stand for the space of

p-integrable functions, and Hs denote the Sobolev space W s
2 . Denote H = L2(Ω) and V = H1(Ω). Let V ′ be

the adjoint space of V . Identifying H with the dual space H ′ yields the Gelfand triple V ⊂ H = H ′ ⊂ V ′. Let
‖ · ‖, ‖ · ‖V , and ‖ · ‖V ′ be the norms in the spaces H , V , and V ′, respectively. Let the value of a functional
f ∈ V ′ on an element v ∈ V be denoted by (f, v). Notice that (f, v) is the inner product in H if f and v are
elements of H .

Suppose that the problem data satisfy the following conditions:

(i) β, γ ∈ L∞(Γ ), β ≥ β0 > 0, γ ≥ γ0 > 0, β0, γ0 = const, θb ∈ L16/3(Γ ),
(ii) f ∈ V ′, g ∈ L6/5(Ω).

Let us introduce the functions hp(s) := |s|psigns, p > 0, s ∈ R. Notice that h′p(s) = p|s|p−1 and
hp(hq(s)) = hpq(s).

Assuming that θ, ϕ, v are arbitrary elements of V , define operators and functionals A1, A2 : V → V ′, f1, f2 ∈
V ′ by the following relations:

(A1θ, v) = a(∇θ,∇v) +
∫
Γ

βθvdΓ, (A2ϕ, v) = α(∇ϕ,∇v) +
∫
Γ

γϕvdΓ,

(f1, v) =
∫
Γ

βθbvdΓ, (g1, v) =
∫
Γ

γh4(θb)vdΓ.

Notice that the bilinear forms (A1u, v), (A2u, v) can be considered as inner products of V . The corresponding
norms are equivalent to the conventional norm of V . Therefore, the bounded inverse operators A−1

1 , A−1
2 : V ′ 
→

V are well defined.
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Definition 2.1. A pair {θ, ϕ} ∈ V × V is called a weak solution of the problem (1.1)–(1.3) if it satisfies the
equations

A1θ + bκa(h4(θ) − ϕ) = f + f1, (2.1)

A2ϕ+ κa(ϕ− h4(θ)) = g + g1. (2.2)

3. Unique solvability

Let us reduce the boundary-value problem (2.1), (2.2) to an operator equation in the Hilbert space V = V ×V
with inner product

((y, z)) = (A1u1, v1) + (A2u2, v2) ∀y = {u1, u2}, z = {v1, v2} ∈ V.

Define a non-linear operator F : V 
→ V,

Fy = {A−1
1 (f + f1 − bκa(h4(θ) − ϕ)), A−1

2 (g + g1 + κa(h4(θ) − ϕ))} ∀y = {θ, ϕ} ∈ V.

The problem (2.1), (2.2) is reduced to finding the fixed point of the operator F ,

y = Fy, y = {θ, ϕ} ∈ V. (3.1)

Lemma 3.1. The operator F is completely continuous.

Proof. Let y1 = {θ1, ϕ1}, y2 = {θ2, ϕ2}, z = {z1, z2} be arbitrary elements of the space V, θ = θ1 − θ2,
ϕ = ϕ1 − ϕ2.

((Fy1 − Fy2, z)) = −κab(|θ1|θ31 − |θ2|θ32 − ϕ, z1) + κa(|θ1|θ31 − |θ2|θ32 − ϕ, z2)

≤ 2κab
(
‖θ1‖3

L6(Ω) + ‖θ2‖3
L6(Ω)

)
‖θ‖L4(Ω)‖z1‖L4(Ω) + κab‖ϕ‖‖z1‖ + κa‖ϕ‖‖z2‖

+ 2κa
(
‖θ1‖3

L6(Ω) + ‖θ2‖3
L6(Ω)

)
‖θ‖L4(Ω)‖z2‖L4(Ω).

Let z = {z1, z2} := Fy1 − Fy2. Taking into account the continuity of the embedding V in Ls(Ω), 1 ≤ s ≤ 6,
from the last inequality, it follows:

‖Fy1 − Fy2‖V ≤ C
(‖θ‖L4(Ω) + ‖ϕ‖) . (3.2)

Here, C depends only on κa, b, norms of embedding operators, and norms of θ1 and θ2 in the space V . From
estimate (3.2), it follows the continuity of the operator F : V 
→ V. Moreover, the compactness of embedding
the space V into L4(Ω), and into L2(Ω) gives the compactness of F . �
Theorem 3.2. If the conditions (i), (ii) are fulfilled, then the problem (2.1), (2.2) is solvable.

Proof. To prove the existence of a fixed point of the completely continuous operator F , it is sufficient, based on
the Leray−Schauder principle, to show the uniform boundedness (with respect to λ ∈ (0, 1]) of the solutions of
the operator equation

y = λFy, y = {θ, ϕ} ∈ V. (3.3)

Equation (3.3) is equivalent to the following equalities:

a(∇θ,∇v) +
∫
Γ

βθvdΓ + λbκa(h4(θ) − ϕ, v) = λ(f + f1, v) ∀v ∈ V, (3.4)

α(∇ϕ,∇w) +
∫
Γ

γϕwdΓ − λκa(h4(θ) − ϕ,w) = λ(g + g1, w) ∀w ∈ V. (3.5)
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Denote ϕ1 = h1/4(ϕ) and, for ε > 0, define

wε =

⎧⎪⎪⎨⎪⎪⎩
ϕ1 − ε, ϕ1 > ε,

0, |ϕ1| ≤ ε,

ϕ1 + ε, ϕ1 < −ε.

Notice that if ϕ ∈ V , then ϕ1 ∈ L24(Ω), ϕ1|Γ ∈ L16(Γ ), wε ∈ V , and

∇wε =
1
4

{|ϕ|−3/4∇ϕ, |ϕ1| > ε,

0, otherwise.

It is important that∫
Γ

γϕwεdΓ −λκa(h4(θ)−ϕ,wε)−λ(g+ g1, wε) =
∫
Γ

γ(ϕ−λh4(θb))ϕ1dΓ −λκa(h4(θ)−ϕ,ϕ1)−λ(g, ϕ1) + cε.

Herewith |cε| ≤ Cε, where C > 0 does not depend on ε.
Set v = θ in (3.4), w = bwε in (3.5), and add these equalities. Then, taking into account monotonicity of

(h4(θ) − ϕ)(θ − h1/4(ϕ)) ≥ 0, we obtain the inequality

a‖∇θ‖2 +
∫
Γ

βθ2dΓ +
16
25
αb

∫
|ψ|>ε5/2

|∇ψ|2dx+b
∫
Γ

γψ2dΓ ≤ λ(f+f1, θ)+λb(g, ϕ1)+λb
∫
Γ

γh4(θb)ϕ1dΓ −bcε.
(3.6)

Here, ψ = h5/8(ϕ), ϕ1 = h2/5(ψ). Let us show that from estimate (3.6) follows ψ ∈ V . Denote

ψε =

⎧⎪⎪⎨⎪⎪⎩
ψ − ε5/2, ψ > ε5/2,

0, |ψ| ≤ ε5/2,

ψ + ε5/2, ψ < −ε5/2.

Since |ψε − ψ| ≤ ε5/2, then ψε → ψ in L2(Ω) as ε → +0. As follows from (3.6), the sequence ψε is bounded in
the space V and ∇ψε → ∇ψ in L2(Ω) weakly. Moreover, ‖∇ψ‖ ≤ lim inf ‖∇ψε‖.

Therefore, passing to the limit in inequality (3.6) as ε→ +0, we obtain

k1‖θ‖2
V + k2‖ψ‖2

V ≤ |(f + f1, θ)| + b|(g, h2/5(ψ))| + b

∫
Γ

γ|h4(θb)h2/5(ψ)|dΓ. (3.7)

Here, k1 = min{a, β0}, k2 = bmin{ 16
25α, γ0}. The norm in the space V is defined by the following equality:

‖v‖2
V = ‖∇v‖2 +

∫
Γ

v2dΓ.

Using Hölder and Young inequalities with parameter δ > 0, we estimate the terms in the right-hand side of (3.7):

|(f + f1, θ)| ≤ δ

2
‖θ‖2

V +
1
2δ

‖f + f1‖2
V ′ ,

|(g, h2/5(ψ))| ≤ δ5

5
‖ψ‖2

L6(Ω) +
4

5δ5/4
‖g‖5/4

L15/14(Ω)
,∫

Γ

γ|h4(θb)h2/5(ψ)|dΓ ≤ ‖γ‖L∞(Γ )

(
δ5

5
‖ψ‖2

L4(Γ ) +
4

5δ5/4
‖θb‖5

L40/9(Γ )

)
.
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Taking into account the continuity of the embedding of V into L6(Ω), the continuity of the trace operator from
V into L4(Γ ), and choosing a sufficiently small δ, we obtain from (3.7) the uniform estimate with respect to
λ ∈ (0, 1]:

‖θ‖2
V + ‖ψ‖2

V ≤ K1

(
‖f + f1‖2

V ′ + ‖g‖5/4

L15/14(Ω)
+ ‖θb‖5

L40/9(Γ )

)
. (3.8)

Here, K1 depends only on a, α, b, β0, γ0, ‖γ‖L∞(Γ ), and the domain Ω.
The estimate of ‖θ‖V allows to obtain the uniform estimate of ‖ϕ‖V with respect to λ. By setting w = ϕ

in (3.5), and denoting k3 = min{α, γ0}, we obtain the inequality

k3‖ϕ‖2
V + κa‖ϕ‖2 ≤ |(g, ϕ)| + κa|(h4(θ), ϕ)| +

∫
Γ

γ|h4(θb)ϕ|dΓ.

Using Hölder and Young inequalities with parameter δ > 0, we estimate the terms in the right-hand side:

|(g, ϕ)| ≤ δ

2
‖ϕ‖2

L6(Ω) +
1
2δ

‖g‖2
L6/5(Ω),

|(h4(θ), ϕ)| ≤ δ

2
‖ϕ‖2

L3(Ω) +
1
2δ

‖θ‖8
L6(Ω),∫

Γ

γ|h4(θb)ϕ|dΓ ≤ ‖γ‖L∞(Γ )

(
δ

2
‖ϕ‖2

L4(Γ ) +
1
2δ

‖θb‖8
L16/3(Γ )

)
.

Taking into account the continuity of the embedding of V into L6(Ω), the continuity of the trace operator from
V into L4(Γ ), and a sufficiently small δ, we obtain the uniform estimate of ‖ϕ‖V with respect to λ ∈ (0, 1]:

‖ϕ‖2
V ≤ K2

(
‖g‖2

L6/5(Ω) + ‖θb‖8
L16/3(Γ ) + ‖θ‖8

V

)
. (3.9)

Here, K2 depends only on α, γ0, κa ‖γ‖L∞(Γ ), and the domain Ω. The estimates (3.8) and (3.9) give the
boundedness (uniform with respect to λ ∈ (0, 1]) of the set of solutions of the operator equation (3.3). This
proves the theorem. �

Theorem 3.3. The problem (2.1), (2.2) has a unique solution.

Proof. Let {θ1, ϕ1}, {θ2, ϕ2} ∈ V be the solutions of the problem (2.1), (2.2). Let θ = θ1 − θ2, ϕ = ϕ1 − ϕ2,
and w = h4(θ1) − h4(θ2). Then we obtain

A1θ + bκa(w − ϕ) = 0, A2ϕ+ κa(ϕ− w) = 0. (3.10)

Let us consider a regularization of sign function: rδ(s) = s/|s|, if |s| ≥ δ, and rδ(s) = s/δ, if |s| < δ. Multiplying
the first equation in (3.10), in the sense of the inner product of H , by rδ(θ), the second one by brδ(ϕ), and
adding these equalities, we obtain

a(∇θ, r′δ(θ)∇θ) +
∫
Γ

βθrδ(θ)dΓ + αb(∇ϕ, r′δ(ϕ)∇ϕ) + b

∫
Γ

γϕrδ(ϕ)dΓ + bκa(w − ϕ, rδ(θ) − rδ(ϕ)) = 0. (3.11)

Note that r′δ(s) ≥ 0, s ∈ R. Moreover, the values of the functions θ and w have the same sign. Therefore,
from (3.11), it follows:∫

Γ

βθrδ(θ)dΓ + b

∫
Γ

γϕrδ(ϕ)dΓ + bκa

∫
w,ϕ �=0

(w − ϕ)(rδ(θ) − rδ(ϕ))dx ≤ 0.

In the limit as δ → +0, we obtain∫
Γ

β|θ|dΓ + b

∫
Γ

γ|ϕ|dΓ + bκa

∫
w,ϕ �=0

(w − ϕ)(signθ − signϕ)dx ≤ 0.
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Therefore, θ|Γ = ϕ|Γ = 0. Further, from (3.10), it follows that

A1θ + bA2ϕ = 0. (3.12)

Multiplying (3.12), in the sense of the inner product of H , by aθ+αbϕ, and taking into account zero boundary
values of θ and ϕ, we obtain ‖∇(aθ+αbϕ)‖2 = 0. Therefore, aθ+αbϕ = 0. As a result, from the first equation
of (3.10), it follows:

a(∇θ,∇v) + bκa

(
w +

a

αb
θ, v

)
= 0 ∀v ∈ V. (3.13)

Setting v = θ in (3.13), we obtain θ = 0. Therefore, also ϕ = 0. �

4. Lyapunov stability

In this section, the Lyapunov stability of steady-state solutions of a non-stationary complex heat transfer
problem [7,10,19] is studied. This is very important for the problem of the adequacy of the steady-state complex
heat transfer model. To formulate the problem of stability, we consider the following non-stationary system with
initial and boundary conditions [10]:

∂θ/∂t− aΔθ + bκa(h4(θ) − ϕ) = f, (4.1)
μ∂ϕ/∂t− αΔϕ+ κa(ϕ − h4(θ)) = g, x ∈ Ω, t ∈ (0,+∞), (4.2)
a∂θ/∂n+ β(θ − θb)|Γ = 0, α∂ϕ/∂n+ γ(ϕ− h4(θb))|Γ = 0, (4.3)

θ|t=0 = θ0, ϕ|t=0 = ϕ0. (4.4)

Here, μ = 1/c, where c is the speed of light in the medium. The functions f , g, and θb do not depend on time.
The unique solvability of the problem (4.1)–(4.4) is proved in [10] for any finite interval of time. Let W =

{y ∈ L2(0, T ;V ) : y′ ∈ L2(0, T ;V ′)}. Hereinafter, y′ = dy/dt. Suppose that the following conditions hold:

(j) β, γ ∈ L∞(Γ ), β ≥ β0 > 0, γ ≥ γ0 > 0, β0, γ0 = const, θb ∈ L8(Γ ),
(jj) f ∈ L15/11(Ω), g ∈ L6/5(Ω),
(jjj) θ0 ∈ L5(Ω), ϕ0 ∈ L2(Ω).

Theorem 4.1. Let the conditions (j)–(jjj) hold. Then for any T > 0 there exists a unique pair {θ, ϕ} ∈W ×W
such that

θ′ +A1θ + bκa(h4(θ) − ϕ) = f + f1, (4.5)
μϕ′ +A2ϕ+ κa(ϕ− h4(θ)) = g + g1, (4.6)

θ|t=0 = θ0, ϕ|t=0 = ϕ0. (4.7)

Moreover, h4(θ) ∈ L2(Q).

Let {θs, ϕs} ∈ V be a stationary state of system (4.5), (4.6). Notice that this state is a solution of the system
of the operator equations (2.1), (2.2). To perform the stability analysis, let us consider a pair {θ, ϕ} which is a
solution of the problem (4.5)–(4.7) over the interval (0,+∞). Let ζ = θ − θs and ξ = ϕ− ϕs. Then

ζ′ +A1ζ + bκa(q(ζ, x) − ξ) = 0, μξ′ +A2ξ + κa(ξ − q(ζ, x)) = 0, (4.8)
ζ|t=0 = ζ0 = θ0 − θs, ξ|t=0 = ξ0 = ϕ0 − ϕs. (4.9)

Here, q(ζ, x) = h4(θs(x) + ζ) − h4(θs(x)).
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For any ε > 0, let us define the function: rε(s) = s/|s|, if |s| ≥ ε, and rε(s) = s/ε, if |s| < ε. Also, we
introduce the function

zε(s) =

⎧⎪⎪⎨⎪⎪⎩
−ε/2 − s, s < −ε,
s2/2ε, |s| ≤ ε,

−ε/2 + s, s > ε.

Notice that z′ε(s) = rε(s).

Lemma 4.2. Let y ∈W , ε > 0. Then rε(y) ∈ L2(0, T ;V ),∫ t

0

(y′(τ), rε(y(τ)))dτ =
∫
Ω

zε(y(t))dx −
∫
Ω

zε(y(0))dx, t ∈ [0, T ].

Proof. Notice that the space H1(Q) is dense in W ([20], p. 423). Let yj ∈ H1(Q), yj → y in W . Let us consider
the following integral:∫ t

0

(y′j , rε(yj))dτ =
∫
Ω

∫ t

0

(zε(yj))′dτdx =
∫
Ω

zε(yj(t))dx −
∫
Ω

zε(yj(0))dx. (4.10)

Notice that rε(yj) → rε(y) in L2(0, T ;H) because

|rε(yj) − rε(y)| ≤ 1
ε
|yj − y|,

∫ T

0

‖rε(yj) − rε(y)‖2dt ≤ 1
ε2

∫ T

0

‖yj − y‖2dt→ 0.

The sequence rε(yj) is bounded in L2(0, T ;V ) because ∇(rε(yj)) = r′ε(yj)∇yj , and∫ T

0

‖∇(rε(yj))‖2dt =
1
ε2

∫ T

0

∫
|yj |<ε

|∇yj |2dxdt ≤ 1
ε2

∫ T

0

‖∇yj‖2dt.

Similarly, it can be proved that rε(y) ∈ L2(0, T ;V ). Therefore, rε(yj) ⇀ rε(y) weakly in L2(0, T ;V ). Thus,∫ t

0

(y′j , rε(yj))dτ →
∫ t

0

(y′, rε(y))dτ.

Notice that the embedding W ⊂ C([0, T ];H) is continuous. Therefore, the trace y|t=t0 is valid, and besides
yj(t) → y(t), yj(0) → y(0) in H . Thus, using the estimate |zε(yj)− zε(y)| ≤ |yj − y|, we obtain that zε(yj(t)) →
zε(y(t)) and zε(yj(0)) → zε(y(0)) in H .

Passing to the limit in (4.10), we obtain the statement of the lemma. �

In the following theorem, the Lyapunov stability of steady-state solutions of the problem (4.1)–(4.4) is proved.

Theorem 4.3. Let the conditions (j)–(jjj) hold. Then the following estimate of the stability is true:∫
Ω

|θ(t) − θs|dx+ bμ

∫
Ω

|ϕ(t) − ϕs|dx ≤
∫
Ω

|θ0 − θs|dx+ bμ

∫
Ω

|ϕ0 − ϕs|dx, t > 0.

Proof. Notice that the statement h4(θ) ∈ L2(Q) implies q(ζ, x) ∈ L1(Q). Multiplying the first equation in (4.8),
in the sense of the inner product of H , by rε(ζ), multiplying the second equation in (4.8) by brε(ξ), integrating
them with respect to t, and adding the obtained equalities, we obtain:∫ t

0

(
(ζ′, rε(ζ)) + a(∇ζ, r′ε(ζ)∇ζ) +

∫
Γ

βζrε(ζ)dΓ + bμ(ξ′, rε(ξ))

+bα(∇ξ, r′ε(ξ)∇ξ) + b

∫
Γ

γξrε(ξ)dΓ + bκa
(
q(ζ, x) − ξ, rε(ζ) − rε(ξ)

))
dτ = 0. (4.11)
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Notice that the second, the third, the firth, and the sixth terms in (4.11) are nonnegative. Moreover, (q(ζ, x)−
ξ)(rε(ζ) − rε(ξ)) ≥ 0, if ζ = 0 or ξ = 0. Therefore,

∫ t

0

⎛⎜⎝(ζ′, rε(ζ)) + bμ(ξ′, rε(ξ)) + bκa

∫
ζ,ξ �=0

(q(ζ, x) − ξ)(rε(ζ) − rε(ξ))dx

⎞⎟⎠ dτ ≤ 0. (4.12)

Let us pass to the limit in (4.12) as ε→ 0. Consider the first term. By lemma 2∫ t

0

(ζ′(τ), rε(ζ(τ)))dτ =
∫
Ω

zε(ζ(t))dx −
∫
Ω

zε(ζ(0))dx.

Since

|zε(ζ(t)) − |ζ(t)|| ≤ ε/2 ∀t,

then ∫
Ω

zε(ζ(t))dx →
∫
Ω

|ζ(t)|dx,
∫
Ω

zε(ζ(0))dx →
∫
Ω

|ζ(0)|dx.

Therefore, ∫ t

0

(ζ′(τ), rε(ζ(τ)))dτ →
∫
Ω

|ζ(t)|dx −
∫
Ω

|ζ(0)|dx,

and similarly ∫ t

0

(ξ′(τ), rε(ξ(τ)))dτ →
∫
Ω

|ξ(t)|dx −
∫
Ω

|ξ(0)|dx.

Taking into account that rε(ζ) → signζ, rε(ξ) → signξ a.e. in Ω, and applying the Lebesgue theorem, we obtain∫ t

0

∫
ζ,ξ �=0

(q(ζ, x) − ξ)(rε(ζ) − rε(ξ))dxdτ →
∫ t

0

∫
ζ,ξ �=0

(q(ζ, x) − ξ)(signζ − signξ)dxdτ ≥ 0.

Thus, passing to the limit in (4.12), and dropping the nonnegative terms, we obtain the statement of the
theorem. �

5. Conclusion

The conducted study allows us to consider the cases of singularity sources. For example, setting the right-hand
side in equation (1.1) from the space V ′,

(f, v) =
∫
S

f̃vdΓ, v ∈ V, f̃ ∈ L2(S),

where S is a surface in the domain Ω, we define a jump of the heat flow through the surface S. This allows us
to consider the cases of practical interest with surface temperature sources.

Also, this article significantly generalizes the previous results obtained in [17], where the unique solvability
of the homogeneous steady-state boundary-value problem was proved in the class L∞(Ω).
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