The aim of this paper is to develop a virtual element method (VEM) for the vibration problem of thin plates on polygonal meshes. We consider a variational formulation relying only on the transverse displacement of the plate and propose an H2(Ω) conforming discretization by means of the VEM which is simple in terms of degrees of freedom and coding aspects. Under standard assumptions on the computational domain, we establish that the resulting scheme provides a correct approximation of the spectrum and prove optimal order error estimates for the eigenfunctions and a double order for the eigenvalues. Finally, we report several numerical experiments illustrating the behaviour of the proposed scheme and confirming our theoretical results on different families of meshes. Additional examples of cases not covered by our theory are also presented.
Accepté le :
DOI : 10.1051/m2an/2017041
Mots clés : Virtual element method, Kirchhoff plates, spectral problem, error estimates
@article{M2AN_2018__52_4_1437_0, author = {Mora, David and Rivera, Gonzalo and Vel\'asquez, Iv\'an}, title = {A virtual element method for the vibration problem of {Kirchhoff} plates}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1437--1456}, publisher = {EDP-Sciences}, volume = {52}, number = {4}, year = {2018}, doi = {10.1051/m2an/2017041}, mrnumber = {3875292}, zbl = {1407.65274}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2017041/} }
TY - JOUR AU - Mora, David AU - Rivera, Gonzalo AU - Velásquez, Iván TI - A virtual element method for the vibration problem of Kirchhoff plates JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2018 SP - 1437 EP - 1456 VL - 52 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2017041/ DO - 10.1051/m2an/2017041 LA - en ID - M2AN_2018__52_4_1437_0 ER -
%0 Journal Article %A Mora, David %A Rivera, Gonzalo %A Velásquez, Iván %T A virtual element method for the vibration problem of Kirchhoff plates %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2018 %P 1437-1456 %V 52 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2017041/ %R 10.1051/m2an/2017041 %G en %F M2AN_2018__52_4_1437_0
Mora, David; Rivera, Gonzalo; Velásquez, Iván. A virtual element method for the vibration problem of Kirchhoff plates. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 4, pp. 1437-1456. doi : 10.1051/m2an/2017041. http://www.numdam.org/articles/10.1051/m2an/2017041/
[1] Equivalent projectors for virtual element methods. Comput. Math. Appl. 66 (2013) 376–391. | DOI | MR | Zbl
, , , and ,[2] Postprocessing and higher order convergence of the mixed finite element approximations of biharmonic eigenvalue problems. J. Comput. Appl. Math. 182 (2005) 333–349. | DOI | MR | Zbl
, and ,[3] A C1 virtual element method for the Cahn–Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54 (2016) 34–56. | DOI | MR | Zbl
, , and ,[4] Eigenvalue problems, in Vol. II of Handbook of Numerical Analysis, edited by and . North-Holland, Amsterdam (1991), 641–787. | DOI | MR | Zbl
and ,[5] Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. | DOI | MR | Zbl
, , , , and ,[6] The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24 (2014) 1541–1573. | DOI | MR | Zbl
, , and ,[7] Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27 (2017) 2557. | DOI | MR | Zbl
, and ,[8] A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Eng. 295 (2015) 327–346. | DOI | MR | Zbl
, and ,[9] A virtual element method with arbitrary regularity. IMA J. Numer. Anal. 34 (2014) 759–781. | DOI | MR | Zbl
and ,[10] Virtual Elements for a shear-deflection formulation of Reissner-Mindlin plates. To appear in: Math. Comp. Doi: (2018). | DOI | MR | Zbl
, and ,[11] A virtual element method for the acoustic vibration problem. Numer. Math. 136 (2017) 725–763. | DOI | MR | Zbl
, , and ,[12] Finite element approximation of eigenvalue problems. Acta Num. 19 (2010) 1–120. | DOI | MR | Zbl
,[13] Some remarks on eigenvalue approximation by finite elements, in Frontiers in Numerical Analysis–Durham 2010. Lect. Notes Comput. Sci. Eng. 85 (2012) 1–77. | MR | Zbl
, and ,[14] C0 interior penalty Galerkin method for biharmonic eigenvalue problems, in Spectral and High Order Methods for Partial Differential Equations. Lect. Notes Comput. Sci. Eng. 106 (2015) 3–15. | DOI | MR
, and ,[15] The Mathematical Theory of Finite Element Methods. Springer, New York (2008). | DOI | MR | Zbl
and ,[16] Virtual elements for plate bending problems. Comput. Methods Appl. Mech. Eng. 253 (2013) 455–462. | DOI | MR | Zbl
and ,[17] A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem. IMA J. Numer. Anal. 37 (2017) 296–331. | DOI | MR | Zbl
and ,[18] hp-version discontinuous Galerkin methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 24 (2014) 2009–2041. | DOI | MR | Zbl
, and ,[19] Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37 (2017) 1317–1354. | MR | Zbl
, and ,[20] Eigenvalue approximations by mixed methods. RAIRO Anal. Numér. 12 (1978) 27–50. | DOI | Numdam | MR | Zbl
,[21] Virtual element method for fourth order problems: L2-estimates. Comput. Math. Appl. 72 (2016) 1959–1967. | DOI | MR | Zbl
and ,[22] The Finite Element Method for Elliptic Problems. SIAM (2002). | MR
,[23] On spectral approximation. Part 1: The problem of convergence. RAIRO Anal. Numér. 12 (1978) 97–112. | DOI | Numdam | MR | Zbl
, , and ,[24] On spectral approximation. Part 2: Error estimates for the Galerkin method. RAIRO Anal. Numér. 12 (1978) 113–119. | DOI | Numdam | MR | Zbl
, , and ,[25] A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283 (2015) 1–21. | DOI | MR | Zbl
and ,[26] On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Eng. 282 (2014) 132–160. | DOI | MR | Zbl
, and ,[27] Virtual element method for second order elliptic eigenvalue problems. Preprint arXiv:1610.03675 [math.NA] (2016). | MR
and ,[28] Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin, 1986. | DOI | MR | Zbl
and ,[29] Elliptic Problems in Non-Smooth Domains. Pitman, Boston (1985). | MR | Zbl
,[30] Eigenvalue approximation by mixed and hybrid methods. Math. Comp. 36 (1981) 427–453. | DOI | MR | Zbl
, , , and ,[31] A virtual element method for the Steklov eigenvalue problem. Math. Models Methods Appl. Sci. 25 (2015) 1421–1445. | DOI | MR | Zbl
, and ,[32] A piecewise linear finite element method for the buckling and the vibration problems of thin plates. Math. Comp. 78 (2009) 1891–1917. | DOI | MR | Zbl
and ,[33] Bridging art and engineering using Escher-based virtual elements. Struct. Multidiscip. Optim. 51 (2015) 867–883. | DOI | MR
and ,[34] Nonconforming finite element methods for eigenvalue problems in linear plate theory. Numer. Math. 33 (1979) 23–42. | DOI | MR | Zbl
,[35] Conforming polygonal finite elements. Internat. J. Numer. Methods Eng. 61 (2004) 2045–2066. | DOI | MR | Zbl
and ,[36] Polygonal finite elements for topology optimization: A unifying paradigm. Int. J. Numer. Methods Eng. 82 (2010) 671–698. | DOI | Zbl
, , and ,[37] A virtual element method for contact. Comput. Mech. 58 (2016) 1039–1050. | DOI | MR | Zbl
, and ,Cité par Sources :