On spectral approximation. Part 1. The problem of convergence
RAIRO. Analyse numérique, Tome 12 (1978) no. 2, pp. 97-112.
@article{M2AN_1978__12_2_97_0,
     author = {Descloux, Jean and Nassif, Nabil and Rappaz, Jacques},
     title = {On spectral approximation. {Part} 1. {The} problem of convergence},
     journal = {RAIRO. Analyse num\'erique},
     pages = {97--112},
     publisher = {Centrale des revues, Dunod-Gauthier-Villars},
     address = {Montreuil},
     volume = {12},
     number = {2},
     year = {1978},
     mrnumber = {483400},
     zbl = {0393.65024},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1978__12_2_97_0/}
}
TY  - JOUR
AU  - Descloux, Jean
AU  - Nassif, Nabil
AU  - Rappaz, Jacques
TI  - On spectral approximation. Part 1. The problem of convergence
JO  - RAIRO. Analyse numérique
PY  - 1978
SP  - 97
EP  - 112
VL  - 12
IS  - 2
PB  - Centrale des revues, Dunod-Gauthier-Villars
PP  - Montreuil
UR  - http://www.numdam.org/item/M2AN_1978__12_2_97_0/
LA  - en
ID  - M2AN_1978__12_2_97_0
ER  - 
%0 Journal Article
%A Descloux, Jean
%A Nassif, Nabil
%A Rappaz, Jacques
%T On spectral approximation. Part 1. The problem of convergence
%J RAIRO. Analyse numérique
%D 1978
%P 97-112
%V 12
%N 2
%I Centrale des revues, Dunod-Gauthier-Villars
%C Montreuil
%U http://www.numdam.org/item/M2AN_1978__12_2_97_0/
%G en
%F M2AN_1978__12_2_97_0
Descloux, Jean; Nassif, Nabil; Rappaz, Jacques. On spectral approximation. Part 1. The problem of convergence. RAIRO. Analyse numérique, Tome 12 (1978) no. 2, pp. 97-112. http://www.numdam.org/item/M2AN_1978__12_2_97_0/

1. P. M. Anselone, Collectively Compact Operator Approximation theory, Prentice-Hall, 1971. | MR | Zbl

2. J. Descloux, Two Basic Properties of Finite Elements, Rapport, Département de Mathématiques, E.P.F.L., 1973.

3. J. Descloux, N. Nassif and J. Rappaz, Spectral Approximations with Error Bounds for Non Compact Operators, Rapport, Département de Mathématiques, E.P.F.L., 1977.

4. J. Descloux, N. Nassif and J. Rappaz, Various Results on Spectral Approximation, Rapport, Département de Mathématiques, E.P.F.L., 1977.

5. T. Kato, Perturbation Theory of Linear Operators, Springer-Verlag, 1966. | MR | Zbl

6. J. Nitsche and A. Schatz, On Local Approximation properties of L2-Projection on Spline-Subspaces, Applicable analysis, Vol. 2, 1972, pp. 161-168. | MR | Zbl

7. J. Rappaz, Approximation of the Spectrum of a Non-Compact Operator Given by the Magnetohydrodynamic Stability of a Plasma, Numer. Math., Vol. 28, 1977, pp. 15-24. | MR | Zbl

8. F. Riesz and B. Z. Nagy, Leçons d'analyse fonctionnelle, Gauthier-Villars, Paris, 6e éd., 1972. | Zbl

9. G. M. Vainikko, The Compact Approximation Principle in the Theory of Approximation Methods, U.S.S.R. Computational Mathematics and Mathematical Physics, Vol. 9, No. 4, 1969, pp. 1-32. | MR | Zbl

10. G. M. Vainikko, A Difference Method for Ordinary Differential Equations,U.S.S.R. Computational Mathematics and Mathematical Physics, Vol. 9,No. 5, 1969. | MR | Zbl