Finite element approximation for the dynamics of fluidic two-phase biomembranes
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 6, pp. 2319-2366.

Biomembranes and vesicles consisting of multiple phases can attain a multitude of shapes, undergoing complex shape transitions. We study a Cahn–Hilliard model on an evolving hypersurface coupled to Navier–Stokes equations on the surface and in the surrounding medium to model these phenomena. The evolution is driven by a curvature energy, modelling the elasticity of the membrane, and by a Cahn–Hilliard type energy, modelling line energy effects. A stable semidiscrete finite element approximation is introduced and, with the help of a fully discrete method, several phenomena occurring for two-phase membranes are computed.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017037
Classification : 35Q35, 65M12, 65M60, 76D05, 76D27, 76M10, 76Z99, 92C05
Mots clés : Fluidic membranes, incompressible two-phase Navier–Stokes flow, parametric finite elements, Helfrich energy, spontaneous curvature, local surface area conservation, line energy, surface phase field model, surface Cahn–Hilliard equation, Marangoni-type effects
Barrett, John W. 1 ; Garcke, Harald 2 ; Nürnberg, Robert 1

1 Department of Mathematics, Imperial College, London, SW7 2AZ, U.K.
2 Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany.
@article{M2AN_2017__51_6_2319_0,
     author = {Barrett, John W. and Garcke, Harald and N\"urnberg, Robert},
     title = {Finite element approximation for the dynamics of fluidic two-phase biomembranes},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2319--2366},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {6},
     year = {2017},
     doi = {10.1051/m2an/2017037},
     zbl = {1383.35153},
     mrnumber = {3745174},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2017037/}
}
TY  - JOUR
AU  - Barrett, John W.
AU  - Garcke, Harald
AU  - Nürnberg, Robert
TI  - Finite element approximation for the dynamics of fluidic two-phase biomembranes
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 2319
EP  - 2366
VL  - 51
IS  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2017037/
DO  - 10.1051/m2an/2017037
LA  - en
ID  - M2AN_2017__51_6_2319_0
ER  - 
%0 Journal Article
%A Barrett, John W.
%A Garcke, Harald
%A Nürnberg, Robert
%T Finite element approximation for the dynamics of fluidic two-phase biomembranes
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 2319-2366
%V 51
%N 6
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2017037/
%R 10.1051/m2an/2017037
%G en
%F M2AN_2017__51_6_2319_0
Barrett, John W.; Garcke, Harald; Nürnberg, Robert. Finite element approximation for the dynamics of fluidic two-phase biomembranes. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 6, pp. 2319-2366. doi : 10.1051/m2an/2017037. http://www.numdam.org/articles/10.1051/m2an/2017037/

M. Arroyo and A. Desimone, Relaxation dynamics of fluid membranes. Phys. Rev. E 79 (2009) 031915. | DOI | MR

J.W. Barrett, H. Garcke and R. Nürnberg, On the parametric finite element approximation of evolving hypersurfaces in ℝ3. J. Comput. Phys. 227 (2008) 4281–4307. | DOI | MR | Zbl

J.W. Barrett, H. Garcke and R. Nürnberg, Stable phase field approximations of anisotropic solidification. IMA J. Numer. Anal. 34 (2014) 1289–1327. | DOI | MR | Zbl

J.W. Barrett, H. Garcke and R. Nürnberg, A stable parametric finite element discretization of two-phase Navier–Stokes flow. J. Sci. Comput. 63 (2015) 78–117. | DOI | MR | Zbl

J.W. Barrett, H. Garcke and R. Nürnberg, Computational parametric Willmore flow with spontaneous curvature and area difference elasticity effects. SIAM J. Numer. Anal. 54 (2016) 1732–1762. | DOI | MR | Zbl

J.W. Barrett, H. Garcke and R. Nürnberg, A stable numerical method for the dynamics of fluidic biomembranes. Numer. Math. 134 (2016) 783–822. | DOI | MR | Zbl

J.W. Barrett, H. Garcke and R. Nürnberg, Finite element approximation for the dynamics of asymmetric fluidic biomembranes. Math. Comput. 86 (2017) 1037–1069. | DOI | MR | Zbl

J.W. Barrett, H. Garcke and R. Nürnberg, Stable variational approximations of boundary value problems for Willmore flow with Gaussian curvature. IMA J. Numer. Anal. 37 (2017) 1657–1709. | MR | Zbl

J.W. Barrett, R. Nürnberg and V. Styles, Finite element approximation of a phase field model for void electromigration. SIAM J. Numer. Anal. 42 (2004) 738–772. | DOI | MR | Zbl

T. Baumgart, S. Das, W.W. Webb and J.T. Jenkins, Membrane elasticity in giant vesicles with fluid phase coexistence. Biophys. J. 89 (2005) 1067–1080. | DOI

T. Baumgart, S.T. Hess and W.W. Webb, Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425 (2003) 821–824. | DOI

J.F. Blowey and C.M. Elliott, The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy. Part II: Numerical analysis. European J. Appl. Math. 3 (1992) 147–179. | DOI | MR | Zbl

D. Bothe and J. Prüss, On the two-phase Navier-Stokes equations with Boussinesq–Scriven surface fluid. J. Math. Fluid Mech. 12 (2010) 133–150. | DOI | MR | Zbl

R. Choksi, M. Morandotti and M. Veneroni, Global minimizers for axisymmetric multiphase membranes. ESAIM: COCV 19 (2013) 1014–1029. | Numdam | MR | Zbl

G. Cox and J. Lowengrub, The effect of spontaneous curvature on a two-phase vesicle. Nonlinearity 28 (2015) 773–793. | DOI | MR | Zbl

S.L. Das, J.T. Jenkins and T. Baumgart, Neck geometry and shape transitions in vesicles with co-existing fluid phases: Role of Gaussian curvature stiffness vs. spontaneous curvature. Eur. Lett. 86 (2009) 48003. | DOI

K. Deckelnick, G. Dziuk and C.M. Elliott, Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14 (2005) 139–232. | DOI | MR | Zbl

H.-G. Döbereiner, J. Käs, D. Noppl, I. Sprenger and E. Sackmann, Budding and fission of vesicles. Biophys. J. 65 (1993) 1396–1403. | DOI

G. Dziuk, An algorithm for evolutionary surfaces. Numer. Math. 58 (1991) 603–611. | DOI | MR | Zbl

G. Dziuk, Computational parametric Willmore flow. Numer. Math. 111 (2008) 55–80. | DOI | MR | Zbl

G. Dziuk and C.M. Elliott, Finite element methods for surface PDEs. Acta Numer. 22 (2013) 289–396. | DOI | MR | Zbl

C.M. Elliott, The Cahn–Hilliard model for the kinetics of phase transitions. Edited by J.F. Rodrigues. In vol. 88 of Mathematical Models for Phase Change Problems, International Series of Numerical Mathematics. Birkhäuser, Basel (1989) 35–73. | MR | Zbl

C.M. Elliott and T. Ranner, Evolving surface finite element method for the Cahn–Hilliard equation. Numer. Math. 129 (2015) 483–534. | DOI | MR | Zbl

C.M. Elliott and B. Stinner, Modeling and computation of two phase geometric biomembranes using surface finite elements. J. Comput. Phys. 229 (2010) 6585–6612. | DOI | MR | Zbl

C.M. Elliott and B. Stinner, A surface phase field model for two-phase biological membranes. SIAM J. Appl. Math. 70 (2010) 2904–2928. | DOI | MR | Zbl

C.M. Elliott and B. Stinner, Computation of two-phase biomembranes with phase dependent material parameters using surface finite elements. Commun. Comput. Phys. 13 (2013) 325–360. | DOI | MR | Zbl

V. Girault and P.-A. Raviart, Finite element methods for Navier–Stokes equations, Theory and algorithms. In Vol. 5 of Springer Ser. Comput. Math. Springer Verlag, Berlin (1986). | MR | Zbl

M. Helmers, Snapping elastic curves as a one-dimensional analogue of two-component lipid bilayers. Math. Models Methods Appl. Sci. 21 (2011) 1027–1042. | DOI | MR | Zbl

M. Helmers, Kinks in two-phase lipid bilayer membranes. Calc. Var. Partial Differ. Equ. 48 (2013) 211–242. | DOI | MR | Zbl

M. Helmers, Convergence of an approximation for rotationally symmetric two-phase lipid bilayer membranes. Q. J. Math. 66 (2015) 143–170. | DOI | MR | Zbl

F. Jülicher and R. Lipowsky, Shape transformations of vesicles with intramembrane domains. Phys. Rev. E 53 (1996) 2670–2683. | DOI

D. Lengeler, On a Stokes-type system arising in fluid vesicle dynamics. Preprint (2015). | arXiv

R. Lipowsky, Budding of membranes induced by intramembrane domains. J. Phys. II France 2 (1992) 1825–1840.

J.S. Lowengrub, A. Rätz and A. Voigt, Phase-field modeling of the dynamics of multicomponent vesicles: Spinodal decomposition, coarsening, budding, and fission. Phys. Rev. E 79 (2009) 0311926. | DOI | MR

M. Mercker and A. Marciniak-Czochra, Bud-neck scaffolding as a possible driving force in ESCRT-induced membrane budding. Biophys. J. 108 (2015) 833–843. | DOI

M. Mercker, A. Marciniak-Czochra, T. Richter and D. Hartmann, Modeling and computing of deformation dynamics of inhomogeneous biological surfaces. SIAM J. Appl. Math. 73 (2013) 1768–1792. | DOI | MR | Zbl

M. Mercker, M. Ptashnyk, J. Kühnle, D. Hartmann, M. Weiss and W. Jäger, A multiscale approach to curvature modulated sorting in biological membranes. J. Theoret. Biol. 301 (2012) 67–82. | DOI | MR | Zbl

J.C.C. Nitsche, Boundary value problems for variational integrals involving surface curvatures. Quart. Appl. Math. 51 (1993) 363–387. | DOI | MR | Zbl

A. Novick-Cohen, The Cahn–Hilliard equation. In Handbook of differential equations: evolutionary equations. Vol. IV, Elsevier/North-Holland. Amsterdam, Handb. Differ. Equ. (2008) 201–228. | MR | Zbl

A. Schmidt and K.G. Siebert, Design of Adaptive Finite Element Software: The Finite Element Toolbox ALBERTA, vol. 42 of Lect. Notes Comput. Sci. Eng. Springer Verlag, Berlin (2005). | MR | Zbl

S. Schmidt and V. Schulz, Shape derivatives for general objective functions and the incompressible Navier–Stokes equations. Control Cybernet. 39 (2010) 677–713. | MR | Zbl

J.C. Slattery, L. Sagis and E.-S. Oh, Interfacial Transport Phenomena. Springer, New York, 2nd edn. (2007). | MR | Zbl

F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications, vol. 112 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2010). | MR | Zbl

Z.-C. Tu, Challenges in theoretical investigations of configurations of lipid membranes. Chin. Phys. B 22 (2013) 28701. | DOI

S.L. Veatch and S.L. Keller, Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys. J. 85 (2003) 3074–3083. | DOI

X. Wang and Q. Du, Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches. J. Math. Biol. 56 (2008) 347–371. | DOI | MR | Zbl

Cité par Sources :