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FINITE ELEMENT APPROXIMATION
FOR THE DYNAMICS OF FLUIDIC TWO-PHASE BIOMEMBRANES

John W. Barrett1, Harald Garcke2 and Robert Nürnberg1

Abstract. Biomembranes and vesicles consisting of multiple phases can attain a multitude of shapes,
undergoing complex shape transitions. We study a Cahn–Hilliard model on an evolving hypersurface
coupled to Navier–Stokes equations on the surface and in the surrounding medium to model these
phenomena. The evolution is driven by a curvature energy, modelling the elasticity of the membrane,
and by a Cahn–Hilliard type energy, modelling line energy effects. A stable semidiscrete finite element
approximation is introduced and, with the help of a fully discrete method, several phenomena occurring
for two-phase membranes are computed.
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1. Introduction

In lipid bilayer membranes a large variety of different shapes and complex shape transition behaviour can
be observed. Biological membranes are composed of several components, and lateral separation into different
phases or domains have been studied in experiments. Mathematical models for biological membranes treat them
as a deformable inextensible fluidic surface governed by bending energies, which involve the curvature of the
membrane. If different phases occur, these bending energies will depend on the individual phases, and the local
shape of the membrane will depend on the phase present locally. It has also been observed that the interfacial
energy of the phase boundaries on the membrane can have a pronounced effect on the membrane shape, and
might lead to effects like budding and fission. We refer to [11] for experimental studies and to [10,18,31,33,45]
for further information on membranes with different fluid phases.

There has been a huge interest in the modelling of (two-phase) biomembranes. Both equilibrium shapes,
as well as the evolution of membranes, have been studied intensively. However, a model taking the fluidic
behaviour of the membrane, the curvature elasticity, the interfacial line energy and the phase separation in
a time dependent model into account is missing so far. It is the goal of this paper to present such a model
and –which will be the main contribution of this paper– to come up with a stable (semidiscrete) numerical
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energy, spontaneous curvature, local surface area conservation, line energy, surface phase field model, surface Cahn–Hilliard
equation, Marangoni-type effects.
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approximation scheme for the resulting equations. The model will be based on an elastic bending energy of
Canham–Evans–Helfrich type and a Ginzburg–Landau energy modelling the interfacial energy. Through their
first variation these energy contributions lead to driving forces for the evolution, which is given by a surface
Navier–Stokes system, coupled to bulk dissipation of an ambient fluid, and a convective Cahn–Hilliard type
equation, which is formulated on the evolving membrane. The fluid part of the model goes back to the work [1],
whereas an evolution based on a Canham–Evans–Helfrich energy coupled to a Ginzburg–Landau energy on the
surface has been studied in the context of gradient flows by [24–26, 29, 30, 35, 36]. However, a coupling, which
will give the natural dynamics on the interface, is stated here for the first time, and we will show that physically
reasonable energy dissipation inequalities hold. Here the dissipation has contributions stemming from viscous
friction in the bulk and on the surface, and from dissipation due to diffusion on the membrane.

For the elastic energy we consider the classical Canham–Evans–Helfrich energy∫
Γ

1
2
α (κ − κ)2 + αG K dHd−1, (1.1)

where Γ ⊂ R
d, d = 2, 3, is a hypersurface without boundary, α > 0 and αG are the bending and Gaussian bending

rigidities, κ is the mean curvature, κ is the spontaneous curvature, which can be caused by local inhomogeneities
within the membrane, K is the Gaussian curvature and Hd−1 is the (d − 1)-dimensional surface Hausdorff
measure. As discussed in [38], the most general form of a curvature energy density that is at most quadratic in
the principal curvatures and is also symmetric in the principal curvatures has the form 1

2 ακ
2+αG K+α1 κ+α2,

which leads to (1.1) by choosing α1 = −ακ and α2 = 1
2 ακ

2. In the case d = 2 the most general form which
is at most quadratic in the curvature is 1

2 ακ
2 + α1 κ + α2. Hence throughout this paper we set αG = 0 in the

case d = 2.
We also introduce an order parameter c, which takes the values ±1 in the two different phases, and this

parameter is related to the composition of the chemical species within the membrane. On the surface we then
use a phase field model to approximate the interfacial energy by the Ginzburg–Landau functional

β

∫
Γ

1
2
γ |∇s c|2 + γ−1 Ψ(c) dHd−1,

where β > 0 is related to the line tension coefficient and γ is a multiple of the interfacial thickness of the
diffusional layer separating the two phases. Furthermore, ∇s is the surface gradient and Ψ is a double well
potential.

In the different phases α, κ and αG will take different values, and we will interpolate these values obtaining
functions α(c) > 0, κ(c) and αG(c). The total energy will hence have the form

E(Γ, c) =
∫

Γ

b(κ, c) + αG(c)K + β bGL(c) dHd−1, (1.2a)

where
b(κ, c) =

1
2
α(c) (κ − κ(c))2 and bGL(c) =

1
2
γ |∇s c|2 + γ−1 Ψ(c). (1.2b)

We recall that we assume αG = 0 in the case d = 2. In the case d = 3, and if αG is constant, then the
contribution

∫
Γ
αG(c)K dH2 is constant for a fixed topological type, which is a consequence of the Gauss–

Bonnet theorem for closed surfaces, ∫
Γ

K dH2 = 2 πm(Γ ), (1.3)

where m(Γ ) ∈ Z denotes the Euler characteristic of Γ . However, if αG is inhomogeneous, this term plays a role,
which was discussed for example in [31] in the context of two-phase membranes. Here we also mention that the
contributions 1

2

∫
Γ α(c) κ

2 dH2 +
∫

Γ αG(c)K dH2 to the energy E(Γ, c) are positive semidefinite with respect to
the principal curvatures if αG(s) ∈ [−2α(s), 0] for all s ∈ R. On account of the Gauss–Bonnet theorem, (1.3),
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we hence obtain that the energy E(Γ, c) can be bounded from below if αG(s) ≥ αG
max − 2α(s) for all s ∈ R,

which will hold whenever

αmin ≥ 1
2
(
αG

max − αG
min

)
, (1.4)

where αmin = mins∈R α(s), and similarly for αG
min, αG

max. We note that this constraint is likely to have implica-
tions for the existence and regularity theory of gradient and related flows for E(Γ, c) in the case d = 3.

The energy (1.2a) represents a phase field approximation of a two-phase membrane curvature energy with
line tension. In the limit γ → 0 the diffusive interface disappears and a sharp interface limit is obtained. Sharp
interface limits of phase field approaches to two-phase membranes have been studied with the help of formal
asymptotics in [25] in the case of a C1–limiting surface, and rigorously in [29] for axisymmetric two-phase
membranes allowing for tangent discontinuities at interfaces. Later in [30] a rigorous convergence result for the
axisymmetric situation in the C1–case was also shown.

For the fluid part of the model we generalize the model from [1] to the two-phase phase field energy (1.2a). Here
we only outline the main aspects of the model, with the precise details being given in Section 2. In particular, we
consider a closed evolving membrane (Γ (t))t∈[0,T ], with T > 0 being a fixed time, which separates a given domain
Ω into regions Ω+(t) and Ω−(t) := Ω \Ω+(t). We will assume that the classical Navier–Stokes equations, with
density ρ and viscosity μ hold in Ω−(t) and Ω+(t). In the absence of mass transfer to/from the interface from/to
the bulk it is natural to assume that the normal components of the velocity 
u in Ω±(t) is continuous across the
interface,(see e.g. [42], p. 675 and [13], p. 137). Moreover, we assume a no-slip condition of the velocity 
u at
the interface, which means that the tangential components of the bulk velocity are also continuous across the
interface, (see e.g. [42], p. 293). Hence the material on the interface is moved with the trace of the bulk velocity

u |Γ (t). In addition, and analogously to [1], we require an incompressible surface Navier–Stokes equation to hold
on Γ (t), with density ρΓ and surface viscosity μΓ . Here the main driving force for the surface Navier–Stokes
equation is given by 
fΓ = −δE/δΓ , the first variation of the total energy of Γ (t) with respect to Γ .

The overall model is completed by an appropriate evolution law for the species concentration on the mem-
brane. To this end, we consider the following Cahn–Hilliard dynamics on Γ (t)

ϑ∂•
t c = Δs m, (1.5a)

m = −β γ Δs c + β γ−1 Ψ ′(c) +
∂

∂c
b(κ, c) + (αG)′(c)K, (1.5b)

where ∂•
t is a material time derivative, m denotes the chemical potential, Δs = ∇s.∇s is the Laplace–Beltrami

operator and ϑ ∈ R>0 is a kinetic coefficient. We note here that m = δE/δc is the first variation of the total
energy with respect to c, see Sections 2, 3 and the Appendix for more details. Equation (1.5a) is a convection-
diffusion equation for the species concentration on an evolving surface driven by the chemical potential m. For
more information on the Cahn–Hilliard equation we refer to [22, 39]. We note that the Cahn–Hilliard equation
on an evolving surface was studied in [23], including its finite element approximation.

It turns out that the overall model with suitable boundary conditions, e.g. 
u = 0 on ∂Ω, fulfils, in the case
where the outer forces are zero, the following dissipation identity

d
dt

(
1
2

∫
Ω

ρ |
u|2 dLd +
1
2

∫
Γ (t)

ρΓ |
u|2 dHd−1 + E(Γ (t), c(t))

)

+ 2
∫

Ω

μ |D(
u)|2 dLd + 2μΓ

∫
Γ (t)

|Ds(
u)|2 dHd−1 + ϑ−1

∫
Γ (t)

|∇s m|2 dHd−1 = 0, (1.6)

which is consistent with the second law of thermodynamics in its isothermal formulation. Here D(
u) and Ds(
u)
are rate-of-deformation tensors in the bulk and on the surface, and so the fourth and fifth terms in (1.6)
describe dissipation by viscous friction in the bulk and on the surface. In addition, the last term in (1.6) models
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dissipation due to diffusion of molecules on the surface. We also note that the introduced model conserves the
volume of the bulk phases, the surface area and the total species concentration on the surface, i.e.

d
dt

|Ω−(t)| =
d
dt

Hd−1(Γ (t)) =
d
dt

∫
Γ (t)

c(t) dHd−1 = 0. (1.7)

In particular, in contrast to other works, no artificial Lagrange multipliers are needed to conserve the enclosed
volume, the total surface area and the total species concentration.

It is one of the main goals of this contribution to introduce and analyze a numerical method that fulfils discrete
variants of the dissipation identity and of the conservation properties (1.7), see the results in Theorem 4.2 and
Theorem 4.3, below.

Let us now discuss related works on two-phase membranes. The interest in two-phase membranes increased
due to the fascinating works [10,11], as experiments seem to validate earlier theories from [31,33] on two-phase
membranes, and showed an amazing multitude of complex shapes and patterns. There have been many studies
on two-phase axisymmetric two-phase membranes, both from an analytical and from a numerical point of view,
see [14, 15, 28–31], and the references therein. However, only very few works study general shapes of two-phase
membranes from a theoretical or computational point of view. In this context we refer to [16, 24–26,34–37,44, 46].
But we note that none of the above mentioned contributions considered a stability analysis for their numerical
approximations. We combine aspects of some of these approaches with the dynamics studied in [1], and we gen-
eralize computational approaches of the present authors for one-phase membranes, see e.g. [6,7], to numerically
compute evolving two-phase membranes.

The outline of the paper is as follows. In the following section we introduce the model with all its details. In
Section 3 we introduce a weak formulation, which is then discretized in space in Section 4. We then also show
that this scheme decreases the total energy and obeys the relevant global conservation properties. In Section 5
we introduce a fully discrete scheme and show existence and uniqueness of a fully discrete solution assuming an
LBB condition. In Section 6 we comment on the methods used to solve the fully discrete systems. In Section 7
we present several numerical computations in two and three spatial dimensions, illustrating the properties of
the numerical approach and showing the complex interplay between the curvature functional, the Ginzburg–
Landau energy and the Navier–Stokes dynamics. In the Appendix we finally state the details of the derivation
of the model, and we show that the weak formulation we introduce is consistent with the strong formulation for
smooth solutions.

2. Notation and governing equations

In this section we formulate the model, which was sketched in the Introduction, with all its details. Let Ω ⊂ R
d

be a given domain, where d = 2 or d = 3. We seek a time dependent interface (Γ (t))t∈[0,T ], Γ (t) ⊂ Ω, which for
all t ∈ [0, T ] separates Ω into a domain Ω+(t), occupied by the outer phase, and a domain Ω−(t) := Ω \Ω+(t),
which is occupied by the inner phase, see Figure 1 for an illustration. For later use, we assume that (Γ (t))t∈[0,T ]

is an evolving hypersurface without boundary that is parameterized by 
x(·, t) : Υ → R
d, where Υ ⊂ R

d is a
given reference manifold, i.e. Γ (t) = 
x(Υ, t). Then


V(
z, t) := 
xt(
q, t) ∀ 
z = 
x(
q, t) ∈ Γ (t) (2.1)

defines the velocity of Γ (t), and V := 
V . 
ν is the normal velocity of the evolving hypersurface Γ (t), where 
ν(t) is
the unit normal on Γ (t) pointing into Ω+(t). Moreover, we define the space-time surface ΓT :=

⋃
t∈[0,T ] Γ (t)×{t}.

Let ρ(t) = ρ+ XΩ+(t) +ρ−XΩ−(t), with ρ± ∈ R≥0, denote the fluid densities. Here and throughout XA defines
the characteristic function for a set A. Denoting by 
u : Ω×[0, T ] → R

d the fluid velocity and by p : Ω×[0, T ] → R

the pressure, we define the stress tensor

σ = μ (∇ 
u+ (∇ 
u)T ) − p Id = 2μD(
u) − p Id, (2.2)
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Γ(t)

Ω−(t)

Ω+(t)

Figure 1. The domain Ω in the case d = 2.

where Id ∈ R
d×d denotes the identity matrix, D(
u) := 1

2 (∇ 
u + (∇ 
u)T ) is the bulk rate-of-deformation tensor,

with ∇ 
u =
(
∂xj ui

)d
i,j=1

, and μ(t) = μ+ XΩ+(t) + μ− XΩ−(t), for μ± ∈ R>0, denotes the dynamic viscosities in

the two phases. With 
f : Ω × [0, T ] → R
d denoting a possible volume force, the incompressible Navier–Stokes

equations in the two phases are given by (2.2) and

ρ (
ut + (
u.∇) 
u) −∇. σ = ρ 
f in Ω±(t), (2.3a)
∇. 
u = 0 in Ω±(t), (2.3b)


u = 
g on ∂1Ω, (2.3c)

σ
n = 
0 on ∂2Ω, (2.3d)

where ∂Ω = ∂1Ω∪∂2Ω, with ∂1Ω∩∂2Ω = ∅, denotes the boundary of Ω with outer unit normal 
n. Hence (2.3c)
prescribes a possibly inhomogeneous Dirichlet condition for the velocity on ∂1Ω, which collapses to the standard
no-slip condition when 
g = 
0, while (2.3d) prescribes a stress-free condition on ∂2Ω. Throughout this paper we
assume that Hd−1(∂1Ω) > 0. We will also assume w.l.o.g. that 
g is extended so that 
g : Ω → R

d.
Following [1], on the free surface Γ (t) we require the conditions

[
u]+− = 
0 on Γ (t), (2.4a)

ρΓ ∂•
t 
u−∇s. σΓ = [σ 
ν]+− + 
fΓ on Γ (t), (2.4b)

∇s. 
u = 0 on Γ (t), (2.4c)

V . 
ν = 
u. 
ν on Γ (t), (2.4d)

where [
u]+− := 
u+ − 
u− and [σ 
ν]+− := σ+ 
ν − σ− 
ν denote the jumps in velocity and normal stress across
the interface Γ (t). Here and throughout, we employ the shorthand notation 
a± := 
a |Ω±(t) for a function

a : Ω × [0, T ] → R

d; and similarly for scalar and matrix-valued functions. Moreover, ρΓ ∈ R≥0 denotes the
surface material density and the source term 
fΓ = −δE/δΓ is the first variation of the total energy of Γ (t)
with respect to Γ , see (2.9) below. In addition,

∂•
t ζ = ζt + 
u.∇ ζ (2.5)

denotes the material time derivative of ζ on Γ (t), see e.g. ([21], p. 324). Furthermore, the surface stress tensor
is given by

σΓ = 2μΓ Ds(
u) − pΓ PΓ on Γ (t), (2.6)
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where μΓ ∈ R≥0 is the interfacial shear viscosity and pΓ denotes the surface pressure, which acts as a Lagrange
multiplier for the incompressibility condition (2.4c). Here

PΓ = Id − 
ν ⊗ 
ν on Γ (t), (2.7a)

and
Ds(
u) =

1
2
PΓ (∇s 
u+ (∇s 
u)T )PΓ on Γ (t), (2.7b)

with the surface gradient ∇s = PΓ ∇ = (∂s1 , . . . , ∂sd
) on Γ (t), and ∇s 
u =

(
∂sj ui

)d
i,j=1

. Finally, ∇s. denotes
the surface divergence on Γ (t). The system (2.3a–d), (2.2), (2.4a–d), (2.6) is closed with the initial conditions

Γ (0) = Γ0, ρ 
u(·, 0) = ρ 
u0 in Ω, ρΓ 
u(·, 0) = ρΓ 
u0 on Γ0, (2.8)

where Γ0 ⊂ Ω and 
u0 : Ω → R
d are given initial data satisfying ρ∇. 
u0 = 0 in Ω, ρΓ ∇s. 
u0 = 0 on Γ0 and

ρ+ 
u0 = ρ+ 
g on ∂1Ω. Of course, in the case ρ− = ρ+ = ρΓ = 0 the initial data 
u0 is not needed. Similarly, in
the case ρ− = ρ+ = 0 and ρΓ > 0 the initial data 
u0 is only needed on Γ0. However, for ease of exposition, and
in view of the unfitted nature of our numerical method, we will always assume that 
u0, if required, is given on
all of Ω.

The source term 
fΓ in (2.4b) plays a crucial role, and it is given by minus the first variation of the energy (1.2a)
with respect to Γ , i.e.


fΓ = − δ

δΓ
E(Γ, c)

=
[
−Δs [α(c) (κ − κ(c))] − α(c) (κ − κ(c)) |∇s 
ν|2 + b(κ, c) κ −∇s. ([κ Id + ∇s 
ν]∇s α

G(c))
]

ν

+ (b,c(κ, c) + (αG)′(c)K)∇s c + β [bGL(c) κ 
ν + ∇s bGL(c) − γ∇s. ((∇s c) ⊗ (∇s c))] , (2.9)

where we have defined

b,c(κ, c) =
∂

∂c
b(κ, c) =

1
2
α′(c) (κ − κ(c))2 − α(c) (κ − κ(c)) κ

′(c). (2.10)

Throughout we assume that α, αG ∈ C1(R), with α(s) > 0 for all s ∈ R. We refer to the Appendix for a
detailed derivation of (2.9). In contrast to situations where the energy density does not depend on a species
concentration, we now have tangential contributions to 
fΓ . In particular, the terms (b,c(κ, c)+(αG)′(c)K)∇s c+
β∇s bGL(c)−β γ∇s. ((∇s c)⊗(∇s c)) give rise to a tangential flow and hence can induce a Marangoni-type effect.

The overall model we are going to study in this work is the coupled bulk and surface Navier–Stokes equa-
tions (2.3a–d), (2.4a–d) and (1.5a,b), respectively. Together with the convective Cahn–Hilliard system (1.5a,b)
on the evolving interface, suitably supplemented with initial conditions for c. Here the double well potential Ψ
in (1.2b) and (1.5b) may be chosen, for example, as a quartic potential

Ψ(s) =
1
4

(s2 − 1)2, (2.11a)

or as the obstacle potential

Ψ(s) :=

⎧⎨⎩
1
2
(
1 − s2

)
if |s| ≤ 1,

∞ if |s| > 1,
(2.11b)

which restricts c ∈ [−1, 1]. For the analysis we will always assume that Ψ ∈ C1(R) for ease of exposition, but
we will use (2.11b) for our fully discrete approximations.
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As stated previously, κ in (2.9) denotes the so-called mean curvature of Γ (t), i.e. the sum of the principal
curvatures κi, i = 1, . . . , d − 1, of Γ (t), where we have adopted the sign convention that κ is negative where
Ω−(t) is locally convex. In particular, it holds that

Δs

id = κ 
ν =: 
κ on Γ (t), (2.12)

where 
id is the identity function on R
d. We recall that the second fundamental tensor for Γ (t) is given by ∇s 
ν,

and this appears in (2.9). Moreover, we note that −∇s 
ν(
z), for any 
z ∈ Γ (t), is a symmetric linear map that
has a zero eigenvalue with eigenvector 
ν, i.e.

(∇s 
ν)T = ∇s 
ν and (∇s 
ν)
ν = 
0, (2.13)

and the remaining (d−1) eigenvalues, κ1, . . . ,κd−1, are the principal curvatures of Γ at 
z; (see e.g. [17], p. 152).
The mean curvature κ and the Gauss curvature K can now be stated as

κ = − tr (∇s 
ν) = −∇s. 
ν =
d−1∑
i=1

κi and K =
d−1∏
i=1

κi, (2.14)

which in the case d = 3 immediately yields that

K =
1
2

(κ2 − |∇s 
ν|2). (2.15)

Finally, it is not difficult to show that the conditions (2.3b) enforce volume preservation for the phases,
while (2.4c) leads to the conservation of the total surface area Hd−1(Γ (t)), see (3.7) and (3.8) in Section 3 below
for the relevant proofs. As an immediate consequence we obtain that a sphere Γ (t) remain a sphere, and that
a sphere Γ (t) with a zero bulk velocity is a stationary solution.

3. Weak formulation

We begin by recalling the weak formulation of (2.3a–d), (2.2), (2.4a–d), (2.6) from [6] for the special case
α ∈ R>0, αG = κ = β = 0, i.e. when E(Γ, c) in (1.2a) is replaced by 1

2 α
∫

Γ κ
2 dHd−1. To this end, we introduce

the following function spaces for a given 
a ∈ [H1(Ω)]d:

U(
a) := {
ϕ ∈ [H1(Ω)]d : 
ϕ = 
a on ∂1Ω}, V(
a) := L2(0, T ; U(
a)) ∩H1(0, T ; [L2(Ω)]d),

VΓ (
a) := {
ϕ ∈ V(
a) : 
ϕ |ΓT ∈ [H1(ΓT )]d}. (3.1a)

In addition, we let P := L2(Ω) and define

P̂ :=

{
{η ∈ P :

∫
Ω η dLd = 0} if Hd−1(∂2Ω) = 0,

P if Hd−1(∂2Ω) > 0.
(3.1b)

Here and throughout, Hd−1 denotes the (d − 1)-dimensional Hausdorff measure in R
d, while Ld denotes the

Lebesgue measure in R
d. Moreover, we let (·, ·) and 〈·, ·〉∂2Ω denote the L2–inner products on Ω and ∂2Ω, and

similarly for 〈·, ·〉Γ (t).
Similarly to (2.5) we define the following time derivative that follows the parameterization 
x(·, t) of Γ (t),

rather than 
u. In particular, we let

∂◦
t ζ = ζt + 
V .∇ ζ ∀ ζ ∈ H1(ΓT ) ; (3.2)
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where we stress that this definition is well-defined, even though ζt and ∇ ζ do not make sense separately for a
function ζ ∈ H1(ΓT ). For later use we note that

d
dt

〈χ, ζ〉Γ (t) = 〈∂◦
t χ, ζ〉Γ (t) + 〈χ, ∂◦

t ζ〉Γ (t) +
〈
χ ζ,∇s. 
V

〉
Γ (t)

∀ χ, ζ ∈ H1(ΓT ), (3.3)

(see [21], Lem. 5.2).
On recalling (2.5) we obtain from (3.2) that ∂◦

t = ∂•
t if


V = 
u on Γ (t). (3.4)

Hence the most natural tangential velocity for the parameterization 
x(·, t) : Υ → Γ (t) is the fluidic tangential
velocity, and so our weak formulation will replace (2.4d) with (3.4). Recall that while the tangential velocity for
the parameterization may be chosen arbitrarily on the continuous level, any particular choice will have important
implications on the mesh quality on the discrete level. For the approximation of fluidic biomembranes, thanks to
the surface incompressibility condition (2.4c), it turns out that the choice (3.4) in general leads to good meshes.
See [6] for more details.

The weak formulation of (2.3a–d), (2.2), (2.4a–d), (2.6), with E(Γ (t), c(t)) replaced by 1
2 α 〈
κ, 
κ〉Γ (t), from [6]

is then given as follows. Find Γ (t) = 
x(Υ, t) for t ∈ [0, T ] with 
V ∈ [L2(ΓT )]d and 
V(·, t) ∈ [H1(Γ (t)]d for almost
all t ∈ (0, T ), and functions 
u ∈ VΓ (
g), p ∈ L2(0, T ; P̂), pΓ ∈ L2(ΓT ), 
κ ∈ [H1(ΓT )]d and 
fΓ ∈ [L2(ΓT )]d such
that the initial conditions (2.8) hold and such that for almost all t ∈ (0, T ) it holds that

1
2

[
d
dt

(ρ 
u, 
ξ) + (ρ 
ut, 
ξ) − (ρ 
u, 
ξt) + (ρ, [(
u.∇) 
u]. 
ξ − [(
u.∇) 
ξ]. 
u) + ρ+

〈

u.
n, 
u. 
ξ

〉
∂2Ω

]
+ 2 (μD(
u), D(
ξ)) − (p,∇. 
ξ) + ρΓ

〈
∂◦

t 
u,

ξ
〉

Γ (t)
+ 2μΓ

〈
Ds(
u), Ds(
ξ)

〉
Γ (t)

−
〈
pΓ ,∇s. 
ξ

〉
Γ (t)

= (ρ 
f, 
ξ) +
〈

fΓ , 
ξ
〉

Γ (t)
∀ 
ξ ∈ VΓ (
0), (3.5a)

(∇. 
u, ϕ) = 0 ∀ ϕ ∈ P̂, (3.5b)
〈∇s. 
u, η〉Γ (t) = 0 ∀ η ∈ L2(Γ (t)), (3.5c)〈

V − 
u, 
χ

〉
Γ (t)

= 0 ∀ 
χ ∈ [L2(Γ (t))]d, (3.5d)

as well as

〈
κ, 
η〉Γ (t) +
〈
∇s


id,∇s 
η
〉

Γ (t)
= 0 ∀ 
η ∈ [H1(Γ (t))]d, (3.6a)〈


fΓ , 
χ
〉

Γ (t)
= α 〈∇s 
κ,∇s 
χ〉Γ (t) + α 〈∇s. 
κ,∇s. 
χ〉Γ (t) +

1
2
α
〈
|
κ|2,∇s. 
χ

〉
Γ (t)

− 2α
〈
(∇s 
κ)T , Ds(
χ) (∇s


id)T
〉

Γ (t)
∀ 
χ ∈ [H1(Γ (t))]d, (3.6b)

where in (3.5d) we have recalled (2.1) and (3.4). We also note that (3.6a) is the weak form of (2.12).
For the case 
g = 
0, it was shown in [6] that choosing 
ξ = 
u ∈ VΓ (
0) in (3.5a), ϕ = p(·, t) ∈ P̂ in (3.5b),

η = pΓ (·, t) ∈ L2(Γ (t)), 
χ = 
fΓ in (3.5d) and 
χ = 
V in (3.6b) yields that

1
2

d
dt

(
‖ρ 1

2 
u‖2
0 + ρΓ 〈
u, 
u〉Γ (t) + α 〈
κ, 
κ〉Γ (t)

)
+ 2 ‖μ 1

2 D(
u)‖2
0 + 2μΓ

〈
Ds(
u), Ds(
u)

〉
Γ (t)

+
1
2
ρ+

〈

u.
n, |
u|2

〉
∂2Ω

= (ρ 
f, 
u).
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Moreover, we recall from [6] that it follows from (3.3) and (3.5c,d) that

d
dt

Hd−1(Γ (t)) =
d
dt

〈1, 1〉Γ (t) =
〈
1,∇s. 
V

〉
Γ (t)

= 〈1,∇s. 
u〉Γ (t) = 0, (3.7)

while ([17], Lem. 2.1), (3.5b,d) and (3.1b) imply that

d
dt

Ld(Ω−(t)) =
〈

V , 
ν
〉

Γ (t)
= 〈
u, 
ν〉Γ (t) =

∫
Ω−(t)

∇. 
u dLd = 0. (3.8)

We remark that very recently, in [5, 7] the present authors have extended the weak formulation (3.6a,b) for
the energy 1

2 α 〈κ2, 1〉Γ (t) to energies of the form 1
2 α 〈(κ − κ)2, 1〉Γ (t), with κ ∈ R. In the remainder of this

section, we will extend (3.6a,b) to deal with the general two-phase energy E(Γ, c) as in (1.2a).

3.1. Reformulation of E(Γ (t), c(t))

We recall that in the case d = 2, we always assume that αG = 0. In the case d = 3, on the other hand, we
have from (2.15) that 〈

αG(c),K
〉

Γ (t)
=

1
2
〈
αG(c), |
κ|2 − |w|2

〉
Γ (t)

, (3.9)

where w ∈ [H1(Γ (t))]d×d is such that for all ζ ∈ [H1(Γ (t))]d×d

〈
w, ζ
〉

Γ (t)
=
〈
∇s 
ν, ζ

〉
Γ (t)

= −
〈

ν, ζ 
κ + ∇s. ζ

〉
Γ (t)

. (3.10)

Here we have recalled from ([21], Thm. 2.10) that

〈∇s ζ, 
η〉Γ (t) + 〈ζ,∇s. 
η〉Γ (t) = 〈∇s. (ζ 
η), 1〉Γ (t) = −〈ζ κ 
ν, 
η〉Γ (t) ∀ ζ ∈ H1(Γ (t)), 
η ∈ [H1(Γ (t))]d. (3.11)

Hence the total energy E(Γ (t), c(t)), on recalling (1.2a,b) and (2.12), can be rewritten as

E(Γ (t), c(t)) =
∫

Γ

1
2
α(c) |
κ − κ(c)
ν |2 +

1
2
αG(c) (|
κ|2 − |w|2) + β bGL(c) dHd−1, (3.12)

and it is this reformulation on which our weak formulation, and hence our stable semidiscrete finite element
approximation, will be based.

3.2. The first variation of E(Γ (t), c(t))

In this section we would like to derive a weak formulation for the first variation of E(Γ (t), c(t)) with respect
to Γ (t) = 
x(Υ, t). To this end, for a given 
χ ∈ [H1(Γ (t))]d and for ε ∈ (0, ε0), where ε0 ∈ R>0, let 
Φ(·, ε) be a
family of transformations such that

Γε(t) := {
Φ(
z, ε) : 
z ∈ Γ (t)}, where 
Φ(
z, 0) = 
z and
∂
Φ

∂ε
(
z, 0) = 
χ(
z) ∀ 
z ∈ Γ (t). (3.13)

Then the first variation of Hd−1(Γ (t)) with respect to Γ (t) in the direction 
χ ∈ [H1(Γ (t))]d is given by[
δ

δΓ
Hd−1(Γ (t))

]
(
χ) =

d
dε

Hd−1(Γε(t)) |ε=0= lim
ε→0

1
ε

[
Hd−1(Γε(t)) −Hd−1(Γ (t))

]
=
〈
∇s


id,∇s 
χ
〉

Γ (t)

= 〈1,∇s. 
χ〉Γ (t) , (3.14)

see e.g. the proof of Lemma 1 in [20]. For any quantity w, that is naturally defined on Γε(t), we define

∂0
ε w(
z) =

d
dε
wε(
Φ(
z, ε)) |ε=0 ∀ 
z ∈ Γ (t), (3.15)
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and similarly for ∂0
ε 
w and ∂0

ε w. A common example is 
νε, the outer normal on Γε(t). In cases where w ∈
L∞(Γ (t)) is meaningful only on Γ (t), we let wε ∈ L∞(Γε(t)) be such that

wε(
Φ(
z, ε)) = w(
z) ∀ 
z ∈ Γ (t), (3.16)

which immediately implies that for such w it holds that ∂0
ε w = 0. Once again, we extend (3.16) also to vector-

and tensor-valued functions. For later use we note that generalized variants of (3.14) also hold. Similarly to (3.3)
it holds that[

δ

δΓ
〈w, v〉Γ (t)

]
(
χ) =

〈
∂0

ε w, v
〉

Γ (t)
+
〈
w, ∂0

ε v
〉

Γ (t)
+ 〈w v,∇s. 
χ〉Γ (t) ∀ w, v ∈ L∞(Γ (t)). (3.17)

Similarly, it holds that[
δ

δΓ
〈
w, 
ν〉Γ (t)

]
(
χ) =

d
dε

〈
wε, 
νε〉Γε(t) |ε=0=
〈
∂0

ε 
w, 
ν
〉

Γ (t)
+
〈

w, ∂0

ε 
ν
〉

Γ (t)
+ 〈
w. 
ν,∇s. 
χ〉Γ (t)

∀ 
w ∈ [L∞(Γ (t))]d, (3.18)

where 
νε(t) denotes the unit normal on Γε(t). In this regard, we note the following result concerning the variation
of 
ν, with respect to Γ (t), in the direction 
χ ∈ [H1(Γ (t))]d:

∂0
ε 
ν = −[∇s 
χ]T 
ν on Γ (t) ⇒ ∂◦

t 
ν = −[∇s

V]T 
ν on Γ (t), (3.19)

(see [41], Lem. 9). Next we note that for 
η ∈ [H1(Γ (t))]d it holds that[
δ

δΓ

〈
∇s


id,∇s 
η
〉

Γ (t)

]
(
χ) =

d
dε

〈
∇s


id,∇s 
ηε

〉
Γε(t)

|ε=0

= 〈∇s. 
η,∇s. 
χ〉Γ (t) +
d∑

l, m=1

[
〈(
ν)l (
ν)m ∇s (
η)m,∇s (
χ)l〉Γ (t) − 〈(∇s)m (
η)l, (∇s)l (
χ)m〉Γ (t)

]
= 〈∇s 
η,∇s 
χ〉Γ (t) + 〈∇s. 
η,∇s. 
χ〉Γ (t) − 2

〈
(∇s 
η)T , Ds(
χ) (∇s


id)T
〉

Γ (t)
, (3.20)

where ∂0
ε 
η = 
0. We refer to Lemma 2 and the proof of Lemma 3 in [20] for a proof of (3.20). Here we observe

that our notation is such that ∇s 
χ = (∇Γ 
χ)T , with ∇Γ 
χ = (∂si χj)
d
i,j=1 defined as in [20]. Moreover, it holds,

on noting (2.7a), that
∇s 
χ PΓ = ∇s 
χ ⇒ PΓ (∇s 
χ)T = (∇s 
χ)T (3.21a)

and
2 (∇s 
η)T : Ds(
χ) (∇s


φ)T = (∇s 
η)T : [∇s 
χ+ (∇s 
χ)T ] (∇s

φ)T , (3.21b)

which yields that the last term on the right hand side in (3.20) can be rewritten as in [20].
As ∇s


id = PΓ , one can deduce from (2.7a), (3.20) and (3.17) that for sufficiently smooth 
η

∂0
ε (∇s. 
η) = ∂0

ε (∇s

id : ∇s 
η) = ∇s 
η : ∇s 
χ− 2 (∇s 
η)T : Ds(
χ) (∇s


id)T = [∇s 
χ− 2Ds(
χ)] : ∇s 
η a.e. on Γ (t),
(3.22)

where ∂0
ε 
η = 
0. From (3.22) we can also derive that for sufficiently smooth w

∂0
ε (∇s w) = [∇s 
χ− 2Ds(
χ)]∇s w a.e. on Γ (t), (3.23)

where ∂0
ε w = 0. In addition, it follows from (3.23) that

∂0
ε |∇s w|2 = 2∇sw. ∂

0
ε (∇s w) = −2∇sw. (∇s 
χ∇s w) = −2 (∇sw ⊗∇s w) : ∇s 
χ a.e. on Γ (t), (3.24)

where ∂0
ε w = 0.
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Remark 3.1. We note from (3.22) that the last term in (3.20) can be simplified to

−2
〈
∇s 
η,Ds(
χ)

〉
Γ (t)

.

However, to be consistent with our approximations in [5], we prefer the form used in (3.20).

It is straightforward to derive results for the time derivative of the considered quantities from the collected
first variations above. For example, it follows from (3.20) that

d
dt

〈
∇s


id,∇s 
η
〉

Γ (t)
=
〈
∇s. 
η,∇s. 
V

〉
Γ (t)

+
〈
∇s 
η,∇s


V
〉

Γ (t)
− 2
〈
(∇s 
η)T , Ds(
V) (∇s


id)T
〉

Γ (t)

∀ 
η ∈ {
ξ ∈ [H1(ΓT )]d : ∂◦
t

ξ = 
0}. (3.25)

On recalling (3.6a), (3.10) and (2.13), we now consider the first variation of (3.12) subject to the side
constraints

〈
κ�, 
η〉Γ (t) +
〈
∇s


id,∇s 
η
〉

Γ (t)
= 0 ∀ 
η ∈ [H1(Γ (t))]d, (3.26a)〈

w�, ζ
〉

Γ (t)
+

1
2

〈

ν, [ζ + ζT ] 
κ� + ∇s. [ζ + ζT ]

〉
Γ (t)

= 0 ∀ ζ ∈ [H1(Γ (t))]d×d. (3.26b)

Here we use the symmetric formulation in (3.26b), because its discretized form will then ensure that the discrete
approximations to w� are also symmetric, since〈

(w�)T , ζ
〉

Γ (t)
=
〈
w�, ζT

〉
Γ (t)

=
〈
w�, ζ

〉
Γ (t)

∀ ζ ∈ [H1(Γ (t))]d×d. (3.27)

On recalling (3.12), we define the Lagrangian

L(Γ, 
κ�, 
y, w�, z, c) =
1
2
〈
α(c) |
κ� − κ(c)
ν|2, 1

〉
Γ (t)

+
1
2
〈
αG(c), |
κ�|2 − |w�|2

〉
Γ (t)

+ β 〈bGL(c), 1〉Γ (t)

− 〈
κ�, 
y〉Γ (t) −
〈
∇s


id,∇s 
y
〉

Γ (t)
−
〈
w�, z

〉
Γ (t)

− 1
2
〈

ν, [z + zT ] 
κ� + ∇s. [z + zT ]

〉
Γ (t)

,

(3.28)

where 
y ∈ [H1(Γ (t))]d and z ∈ [H1(Γ (t))]d×d are Lagrange multipliers for (3.26a,b). In order to compute the
direction of steepest descent, 
fΓ , of E(Γ (t), c(t)), with respect to Γ (t) and subject to the constraints (3.26a,b),
we set the variations of L(Γ, 
κ�, 
y, w�, z, c) with respect to 
κ�, 
y, w� and z to zero, and we use the variation
with respect to c to define the Cahn–Hilliard dynamics. Moreover, we obtain on using the formal calculus of
PDE constrained optimization, see e.g. [43], that[

δ

δΓ
L

]
(
χ) = lim

ε→0

1
ε

[
L(Γε, 
κ

�
ε, 
yε, w

�
ε, zε, cε) − L(Γ, 
κ�, 
y, w�, z, c)

]
= −
〈

fΓ , 
χ
〉

Γ (t)
, (3.29a)[

δ

δ
κ�
L

]
(
ξ) = lim

ε→0

1
ε

[
L(Γ, 
κ� + ε 
ξ, 
y, w�, z, c) − L(Γ, 
κ�, 
y, w�, z, c)

]
= 0, (3.29b)[

δ

δ
y
L

]
(
η) = lim

ε→0

1
ε

[
L(Γ, 
κ�, 
y + ε 
η, w�, z, c) − L(Γ, 
κ�, 
y, w�, z, c)

]
= 0, (3.29c)[

δ

δw�
L

]
(φ) = lim

ε→0

1
ε

[
L(Γ, 
κ�, 
y, w� + ε φ, z, c) − L(Γ, 
κ�, 
y, w�, z, c)

]
= 0, (3.29d)[

δ

δz
L

]
(ζ) = lim

ε→0

1
ε

[
L(Γ, 
κ�, 
y, w�, z + ε ζ, c) − L(Γ, 
κ�, 
y, w�, z, c)

]
= 0, (3.29e)
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δ

δc
L

]
(ξ) = lim

ε→0

1
ε

[
L(Γ, 
κ�, 
y, w�, z, c + ε ξ) − L(Γ, 
κ�, 
y, w�, z, c)

]
= 〈m, ξ〉Γ (t) , (3.29f)

where 
κ�
ε, 
yε ∈ [H1(Γε(t))]d, w�

ε, zε ∈ [H1(Γε(t))]d×d, cε ∈ H1(Γε(t)) are defined as in (3.16), and where
m defines the chemical potential. We note that (3.29c,e) immediately yield (3.26a,b), which means that we
can recover 
κ� and w� in terms of Γ (t) again. In particular, combining (3.11) and (3.26a) yields, on re-
calling (2.12) that 
κ� = 
κ. In addition, it then follows from (3.26b) and (3.10) that w� = w = ∇s 
ν. On
recalling (1.2b), (3.17)–(3.20), (3.22) and (3.24) this yields that〈


fΓ , 
χ
〉

Γ (t)
− 〈∇s 
y,∇s 
χ〉Γ (t) − 〈∇s. 
y,∇s. 
χ〉Γ (t) + 2

〈
(∇s 
y)T , Ds(
χ) (∇s


id)T
〉

Γ (t)

+
1
2
〈
α(c) |
κ − κ(c)
ν|2 − 2 
y. 
κ,∇s. 
χ

〉
Γ (t)

+
〈
α(c) κ(c) (
κ − κ(c)
ν), [∇s 
χ]T 
ν

〉
Γ (t)

+ β 〈bGL(c),∇s. 
χ〉Γ (t) − β γ 〈(∇s c) ⊗ (∇s c),∇s 
χ〉Γ (t) +
1
2
〈
αG(c) (|
κ|2 − |w|2),∇s. 
χ

〉
Γ (t)

−
〈
w : z,∇s. 
χ

〉
Γ (t)

− 1
2
〈

ν. ([z + zT ] 
κ + ∇s. [z + zT ]),∇s. 
χ

〉
Γ (t)

−
d∑

i=1

〈
νi ∇s 
zi,∇s 
χ− 2Ds(
χ)

〉
Γ (t)

+
1
2
〈
[z + zT ] 
κ + ∇s. [z + zT ], [∇s 
χ]T 
ν

〉
Γ (t)

= 0 ∀ 
χ ∈ [H1(Γ (t))]d, (3.30a)〈
α(c) (
κ − κ(c)
ν) + αG(c) 
κ − 1

2
[z + zT ]
ν − 
y, 
ξ

〉
Γ (t)

= 0 ∀ 
ξ ∈ [H1(Γ (t))]d, (3.30b)

z = −αG(c)w, (3.30c)

〈
κ, 
η〉Γ (t) +
〈
∇s


id,∇s 
η
〉

Γ (t)
= 0 ∀ 
η ∈ [H1(Γ (t))]d, (3.30d)〈

w, ζ
〉

Γ (t)
+

1
2

〈

ν, [ζ + ζT ] 
κ + ∇s. [ζ + ζT ]

〉
Γ (t)

= 0 ∀ ζ ∈ [H1(Γ (t))]d×d. (3.30e)

The above is coupled to (3.5a–d) subject to the initial conditions (2.8). Here we have introduced 
zi = 1
2 [z+zT ]
ei,

i = 1 → d, as well as νi = 
ν.
ei, i = 1 → d. Finally, on recalling (1.5a), and on using (3.11), (3.3), (3.2), (2.5)
and (3.5c,d), a weak form of the Cahn–Hilliard dynamics is given by

ϑ
d
dt

〈c, η〉Γ (t) + 〈∇s m,∇s η〉Γ (t) = 0 ∀ η ∈ {ξ ∈ H1(ΓT ) : ∂◦
t ξ = 0}, (3.31a)

〈m, ξ〉Γ (t) = β γ 〈∇s c,∇s ξ〉Γ (t) + β γ−1 〈Ψ ′(c), ξ〉Γ (t)

+
1
2
〈
α′(c) |
κ − κ(c)
ν|2 − 2 κ

′(c)α(c) (
κ − κ(c)
ν). 
ν, ξ
〉

Γ (t)

+
1
2
〈
(αG)′(c) (|
κ|2 − |w|2), ξ

〉
Γ (t)

∀ ξ ∈ H1(Γ (t)), (3.31b)

c(·, 0) = c0 on Γ0, (3.31c)

with c0 : Γ0 → R given initial data, recall (2.8). Here we note that (3.31b) is well-posed for nonconstant α,
αG and κ only in the case β > 0, which is why we assume that β is positive throughout the manuscript. In
addition, we observe that choosing η = 1 in (3.31a) yields that

d
dt

〈c, 1〉Γ (t) = 0. (3.32)

Remark 3.2. With regards to (3.30b) we note from (3.30c) and (2.13), as w = ∇s 
ν = (∇s 
ν)T , it holds that
z = −αG(c)w = −αG(c)∇s 
ν, and so z 
ν = zT 
ν = 
0. For further simplifications we refer to the Appendix.
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We note the following LBB-type condition:

inf
(ϕ,η)∈P̂×L2(Γ (t))

sup
	ξ∈UΓ (t)(	0)

(ϕ,∇. 
ξ) +
〈
η,∇s. 
ξ

〉
Γ (t)

(‖ϕ‖0 + ‖η‖0,Γ (t)) (‖
ξ‖1 + ‖PΓ

ξ |Γ (t) ‖1,Γ (t))

≥ C > 0, (3.33)

which we also refer to as the LBBΓ condition. Here we have defined the space UΓ (t)(
0) := {
ξ ∈ U(
0) : PΓ

ξ |Γ (t)∈

[H1(Γ (t))]d}, and let ‖
η‖2
1,Γ (t) := 〈
η, 
η〉Γ (t) + 〈∇s 
η,∇s 
η〉Γ (t). In the case that the smooth hypersurface Γ (t)

is not a sphere, then (3.33) is shown to hold if ∂1Ω = ∂Ω is a smooth boundary in ([32], p. 15). See also the
discussion around (2.11a,b) in [6].

Overall the weak formulation for the free boundary problem (2.3a–d), (2.2), (2.4a–d), (2.6),
(1.5a,b), (2.8), (3.31c) that we consider in this paper is given by

(P) (3.5a–d), (3.30a–e), (3.31a–c), (2.8). (3.34)

Remark 3.3. We note that in the case d = 2 we do not consider Gaussian curvature terms, i.e. we assume
that αG(c) = 0. Then (3.30a) simplifies to〈


fΓ , 
χ
〉

Γ (t)
− 〈∇s 
y,∇s 
χ〉Γ (t) − 〈∇s. 
y,∇s. 
χ〉Γ (t) + 2

〈
(∇s 
y)T , Ds(
χ) (∇s


id)T
〉

Γ (t)

+
1
2
〈
α(c) |
κ − κ(c)
ν|2 − 2 
y. 
κ,∇s. 
χ

〉
Γ (t)

+
〈
α(c) κ(c) (
κ − κ(c)
ν), [∇s 
χ]T 
ν

〉
Γ (t)

+ β 〈bGL(c),∇s. 
χ〉Γ (t) − β γ
〈
(∂s c)2,∇s. 
χ

〉
Γ (t)

= 0 ∀ 
χ ∈ [H1(Γ (t))]d. (3.35)

Clearly, the last two terms in (3.35) can be absorbed by the surface pressure pΓ in (3.5a). Hence, for constant
α and constant κ, the evolution of the interface is totally independent of the Cahn–Hilliard system. Of course,
for d = 3 even for constant α, κ and αG, the line tension term β γ 〈(∇s c) ⊗ (∇s c),∇s 
χ〉Γ (t) in (3.30a) means
that nonconstant values of c do have an influence on the membrane evolution.

4. Semidiscrete finite element approximation

For simplicity we consider Ω to be a polyhedral domain. Then let T h be a regular partitioning of Ω into
disjoint open simplices oh

j , j = 1, . . . , JΩ. Associated with T h are the finite element spaces

Sh
k := {χ ∈ C(Ω) : χ |o∈ Pk(o) ∀ o ∈ T h} ⊂ H1(Ω), k ∈ N,

where Pk(o) denotes the space of polynomials of degree k on o. We also introduce Sh
0 , the space of piecewise

constant functions on T h. Let {ϕh
k,j}

Kh
k

j=1 be the standard basis functions for Sh
k , k ≥ 0. We introduce 
Ih

k :
[C(Ω)]d → [Sh

k ]d, k ≥ 1, the standard interpolation operators, such that (
Ih
k 
η)(
p

h
k,j) = 
η(
ph

k,j) for j = 1, . . . ,Kh
k ;

where {
ph
k,j}

Kh
k

j=1 denotes the coordinates of the degrees of freedom of Sh
k , k ≥ 1. In addition we define the standard

projection operator Ih
0 : L1(Ω) → Sh

0 , such that

(Ih
0 η) |o=

1
Ld(o)

∫
o

η dLd ∀ o ∈ T h.

Our approximation to the velocity and pressure on T h will be based on standard finite element spaces U
h(
g) ⊂

U(
Ih
k 
g), for some k ≥ 2, and P

h(t) ⊂ P, recall (3.1a,b). Here, for the former we assume from now on that 
g ∈
[C(Ω)]d. We require also the space P̂

h(t) := P
h(t)∩ P̂. Here, in general, we will choose pairs of velocity/pressure

finite element spaces that satisfy the LBB inf-sup condition, see e.g. ([27], p. 114). For example, we may choose
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the lowest order Taylor-Hood element P2–P1 for d = 2 and d = 3, the P2–P0 element or the P2–(P1+P0)
element for d = 2 on setting U

h(
g) = [Sh
2 ]d ∩ U(
Ih

2 
g), and P
h = Sh

1 , S
h
0 or Sh

1 + Sh
0 , respectively.

The parametric finite element spaces in order to approximate e.g. 
κ and c are defined as follows. Similarly
to [2], we introduce the following discrete spaces, based on the work of Dziuk, [19]. Let Γ h(t) ⊂ R

d be a
(d− 1)-dimensional polyhedral surface, i.e. a union of non-degenerate (d− 1)-simplices with no hanging vertices
(see [17], p. 164) for d = 3), approximating the closed surface Γ (t). In particular, let Γ h(t) =

⋃JΓ

j=1 σ
h
j (t), where

{σh
j (t)}JΓ

j=1 is a family of mutually disjoint open (d− 1)-simplices with vertices {
qh
k (t)}KΓ

k=1. Then let

W (Γ h(t)) := {χ ∈ C(Γ h(t)) : χ |σh
j

is linear ∀ j = 1, . . . , JΓ },

V (Γ h(t)) := {
χ ∈ [C(Γ h(t))]d : 
χ |σh
j

is linear ∀ j = 1, . . . , JΓ },

V (Γ h(t)) := {χ ∈ [C(Γ h(t))]d×d : χ |σh
j

is linear ∀ j = 1, . . . , JΓ }.

Hence W (Γ h(t)) is the space of scalar continuous piecewise linear functions on Γ h(t), with {χh
k(·, t)}KΓ

k=1 denoting
the standard basis of W (Γ h(t)), i.e.

χh
k(
qh

l (t), t) = δkl ∀ k, l ∈ {1, . . . ,KΓ}, t ∈ [0, T ]. (4.1)

We require that Γ h(t) = 
Xh(Γ h(0), t) with 
Xh ∈ V (Γ h(0)), and that 
qh
k ∈ [H1(0, T )]d, k = 1, . . . ,KΓ . For later

purposes, we also introduce πh(t) : C(Γ h(t)) → W (Γ h(t)), the standard interpolation operator at the nodes
{
qh

k (t)}KΓ

k=1, and similarly 
πh(t) : [C(Γ h(t))]d → V (Γ h(t)).
For scalar and vector functions η, ζ on Γ h(t) we introduce the L2–inner product 〈·, ·〉Γ h(t) over the polyhedral

surface Γ h(t) as follows

〈η, ζ〉Γ h(t) :=
∫

Γ h(t)

η. ζ dHd−1.

In order to derive a stable (semidiscrete) numerical method, it is crucial to consider numerical integration in
the discrete energy, see (4.11) below. Hence, for piecewise continuous functions v, w, with possible jumps across
the edges of {σh

j (t)}JΓ

j=1, we introduce the mass lumped inner product 〈·, ·〉hΓ h(t) as

〈η, φ〉hΓ h(t) =
J∑

j=1

〈η, φ〉hσh
j (t) :=

J∑
j=1

1
d Hd−1(σh

j (t))
d∑

k=1

(η φ)((
qh
jk

(t))−), (4.2)

where {
qh
jk

(t)}d
k=1 are the vertices of σh

j (t), and where we define η((
qh
jk

(t))−) := lim
σh

j (t)�	p→	qh
jk

(t)
η(
p). We naturally

extend this definition to vector and tensor functions.
Following ([21], (5.23)), we define the discrete material velocity for 
z ∈ Γ h(t) by


Vh(
z, t) :=
KΓ∑
k=1

[
d
dt


qh
k (t)
]
χh

k(
z, t). (4.3)

For later use, we also introduce the finite element spaces

WT (Γ h
T ) := {φ ∈ C(Γ h

T ) : φ(·, t) ∈ W (Γ h(t)) ∀ t ∈ [0, T ], φ(
qh
k (t), t) ∈ H1(0, T ) ∀ k ∈ {1, . . . ,K}},

where Γ h
T :=

⋃
t∈[0,T ] Γ

h(t) × {t}, as well as the vector- and tensor-valued analogues V T (Γ h
T ) and V T (Γ h

T ). In
a similar fashion, we introduce WT (σh

j,T ) via

WT (σh
j,T ) := {φ ∈ C(σh

j,T ) : φ(·, t) is linear ∀ t ∈ [0, T ], φ(
qh
jk

(t), t) ∈ H1(0, T ) k = 1, . . . , d},

where {
qh
jk

(t)}d
k=1 are the vertices of σh

j (t), and where σh
j,T :=

⋃
t∈[0,T ] σ

h
j (t) × {t}, for j ∈ {1, . . . , J}.
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Then, similarly to (3.2), we define the discrete material derivatives on Γ h(t) element-by-element via the
equations

(∂◦,h
t φ) |σh

j (t)= (φt + 
Vh.∇φ) |σh
j (t) ∀ φ ∈ WT (σh

j,T ), j ∈ {1, . . . , J}.

Moreover, similarly to (3.13), for any given 
χ ∈ V (Γ h(t)) we introduce

Γ h
ε (t) := {
Φh(
z, ε) : 
z ∈ Γ h(t)}, where 
Φh(
z, 0) = 
z and ∂	Φh

∂ε (
z, 0) = 
χ(
z) ∀ 
z ∈ Γ h(t), (4.4)

as well as ∂0,h
ε defined by (3.15) with Γ (t) and 
Φ replaced by Γ h(t) and 
Φh, respectively. We also introduce

V
h
Γ h(
g) := {
φ ∈ H1(0, T ; Uh(
g)) : ∃ 
χ ∈ V T (Γ h

T ), s.t. 
χ(·, t) = 
πh [
φ |Γ h(t)] ∀ t ∈ [0, T ]}. (4.5)

On differentiating (4.1) with respect to t, it immediately follows that

∂◦,h
t χh

k = 0 ∀ k ∈ {1, . . . ,KΓ }, (4.6)

(see [21], Lem. 5.5). It follows directly from (4.6) that

∂◦,h
t ζ(·, t) =

KΓ∑
k=1

χh
k(·, t) d

dt
ζk(t) on Γ h(t)

for ζ(·, t) =
∑KΓ

k=1 ζk(t)χh
k(·, t) ∈ W (Γ h(t)), and hence ∂◦,h

t

id = 
Vh on Γ h(t).

We recall from ([21], Lem. 5.6) that

d
dt

∫
σh

j (t)

ζ dHd−1 =
∫

σh
j (t)

∂◦,h
t ζ + ζ∇s. 
Vh dHd−1 ∀ ζ ∈ WT (σh

j,T ), j ∈ {1, . . . , JΓ }. (4.7)

Moreover, on recalling (4.2), we have that

d
dt

〈η, ζ〉hσh
j (t) =

〈
∂◦,h

t η, ζ
〉h

σh
j (t)

+
〈
η, ∂◦,h

t ζ
〉h

σh
j (t)

+
〈
η ζ,∇s. 
Vh

〉h

σh
j (t)

∀ η, ζ ∈ WT (σh
j,T ), j ∈ {1, . . . , JΓ }. (4.8)

Given Γ h(t), we let Ωh
+(t) denote the exterior of Γ h(t) and let Ωh−(t) denote the interior of Γ h(t), so that

Γ h(t) = ∂Ωh−(t) = Ωh−(t) ∩ Ωh
+(t). We then partition the elements of the bulk mesh T h into interior, exterior

and interfacial elements as follows. Let

T h
− (t) := {o ∈ T h : o ⊂ Ωh

−(t)}, T h
+ (t) := {o ∈ T h : o ⊂ Ωh

+(t)}, T h
Γ h(t) := {o ∈ T h : o ∩ Γ h(t) �= ∅}.

Clearly T h = T h
− (t) ∪ T h

+ (t) ∪ T h
Γ (t) is a disjoint partition. In addition, we define the piecewise constant unit

normal 
νh(t) to Γ h(t) such that 
νh(t) points into Ωh
+(t). Moreover, we introduce the discrete density ρh(t) ∈ Sh

0

and the discrete viscosity μh(t) ∈ Sh
0 as

ρh(t) |o=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ− o ∈ T h

− (t),

ρ+ o ∈ T h
+ (t),

1
2

(ρ− + ρ+) o ∈ T h
Γ h(t),

and μh(t) |o=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μ− o ∈ T h

− (t),

μ+ o ∈ T h
+ (t),

1
2

(μ− + μ+) o ∈ T h
Γ h(t).

Similarly to (2.7a,b), we introduce

PΓ h = Id − 
νh ⊗ 
νh on Γ h(t), (4.9a)
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and
Dh

s (
η) =
1
2
PΓ h (∇s 
η + (∇s 
η)T )PΓ h on Γ h(t), (4.9b)

where here ∇s = PΓ h ∇ denotes the surface gradient on Γ h(t). Moreover, we introduce the vertex normal
function 
ωh(·, t) ∈ V (Γ h(t)) with


ωh(
qh
k (t), t) :=

1
Hd−1(Λh

k(t))

∑
j∈Θh

k

Hd−1(σh
j (t))
νh |σh

j (t),

where for k = 1, . . . ,Kh
Γ we define Θh

k := {j : 
qh
k (t) ∈ σh

j (t)} and set

Λh
k(t) := ∪j∈Θh

k
σh

j (t).

For later use we note that〈

z, w 
νh

〉h
Γ h(t)

=
〈

z, w 
ωh

〉h
Γ h(t)

∀ 
z ∈ V (Γ h(t)), w ∈ W (Γ h(t)), (4.10)

and so, in particular,
〈

z, 
νh
〉

Γ h(t)
=
〈

z, 
νh
〉h

Γ h(t)
=
〈

z, 
ωh

〉h
Γ h(t)

for all 
z ∈ V (Γ h(t)).
In what follows we will introduce a finite element approximation for the weak formulation (P), recall (3.34).

By repeating on the discrete level the steps in Section 3.2, we will now derive a discrete analogue of (3.30a)–(e).
Similarly to the continuous setting in (3.12) and (3.26a,b), we consider the first variation of the discrete

energy

Eh(Γ h(t),Ch(t)) =
1
2
〈
α(Ch), |
κh − κ(Ch)
νh|2

〉h
Γ h(t)

+
1
2
〈
αG(Ch), |
κh|2 − |Wh|2

〉h
Γ h(t)

+ β
〈
bGL(Ch), 1

〉h
Γ h(t)

,

(4.11)
where 
κh ∈ V (Γ h(t)) and Wh ∈ V (Γ h(t)) have to satisfy side constraints〈


κh, 
η
〉h

Γ h(t)
+
〈
∇s


id,∇s 
η
〉

Γ h(t)
= 0 ∀ 
η ∈ V (Γ h(t)), (4.12a)〈

Wh, ζ
〉h

Γ h(t)
+

1
2

〈

νh, [ζ + ζT ]
κh + ∇s. [ζ + ζT ]

〉h

Γ h(t)
= 0 ∀ ζ ∈ V (Γ h(t)). (4.12b)

Similarly to (3.28), we define the Lagrangian

Lh(Γ h, 
κh, 
Y h,Wh, Zh,Ch)

=
1
2
〈
α(Ch), |
κh − κ(Ch)
νh|2

〉h
Γ h(t)

+
1
2
〈
αG(Ch), |
κh|2 − |Wh|2

〉h
Γ h(t)

+ β
〈
bGL(Ch), 1

〉h
Γ h(t)

−
〈

κh, 
Y h

〉h

Γ h(t)

−
〈
∇s


id,∇s

Y h
〉

Γ h(t)
−
〈
Wh, Zh

〉h
Γ h(t)

− 1
2
〈

νh, [Zh + (Zh)T ]
κh + ∇s. [Zh + (Zh)T ]

〉h
Γ h(t)

,

where 
κh ∈ V (Γ h(t)), Wh ∈ V (Γ h(t)), Ch ∈ W (Γ h(t)), with 
Y h ∈ V (Γ h(t)) and Zh ∈ V (Γ h(t)) being Lagrange
multipliers for (4.12a,b), respectively. Similarly to (3.30a–c), on recalling the formal calculus of PDE constrained
optimization, we obtain the gradient 
Fh

Γ ∈ V (Γ h(t)) of Eh(Γ h(t),Ch(t)) with respect to Γ h(t) subject to the

side constraints (4.12a,b) by setting [ δ
δΓ h L

h](
χ) = −
〈

Fh

Γ , 
χ
〉h

Γ h(t)
for 
χ ∈ V (Γ h(t)), where we have recalled

the definition (4.4), and by setting the remaining variations with respect to 
κh, 
Y h, Wh and Zh to zero. On
noting (1.2b), (4.10) and the variation analogue of (4.8), as well as the obvious discrete variants of (3.17)–(3.20),
(3.22) and (3.24), we then obtain that

〈
Fh
Γ , 
χ〉hΓ h(t) −

〈
∇s


Y h,∇s 
χ
〉

Γ h(t)
−
〈
∇s. 
Y

h,∇s. 
χ
〉

Γ h(t)
+

1
2

〈
α(Ch) |
κh − κ(Ch)
νh|2 − 2 
Y h. 
κh,∇s. 
χ

〉h

Γ h(t)
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+ 2
〈
(∇s


Y h)T , Dh
s (
χ) (∇s


id)T
〉

Γ h(t)
+
〈
α(Ch) κ(Ch) (
κh − κ(Ch)
νh), [∇s 
χ]T 
νh

〉h
Γ h(t)

+β
〈
bGL(Ch),∇s. 
χ

〉h
Γ h(t)

−β γ
〈
(∇s Ch) ⊗ (∇s Ch),∇s 
χ

〉
Γ h(t)

+
1
2
〈
αG(Ch) (|
κh|2 − |Wh|2),∇s. 
χ

〉h
Γ h(t)

−
〈
Wh : Zh,∇s. 
χ

〉h
Γ h(t)

− 1
2
〈

νh. ([Zh + (Zh)T ]
κh + ∇s. [Zh + (Zh)T ]),∇s. 
χ

〉h
Γ h(t)

−
d∑

i=1

〈
νh

i ∇s

Zh

i ,∇s 
χ− 2Dh
s (
χ)
〉

Γ h(t)
+

1
2
〈
[Zh + (Zh)T ]
κh + ∇s. [Zh + (Zh)T ], [∇s 
χ]T 
νh

〉h
Γ h(t)

= 0 ∀ 
χ ∈ V (Γ h(t)), (4.13a)〈
α(Ch) (
κh − κ(Ch)
νh) + αG(Ch)
κh − 1

2
[Zh + (Zh)T ]
νh − 
Y h, 
ξ

〉h

Γ h(t)

= 0 ∀ 
ξ ∈ V (Γ h(t)), (4.13b)

Zh = πh[−αG(Ch)Wh], (4.13c)

as well as (4.12a,b) from the variations with respect to 
Y h and Zh. Here we have introduced 
Zh
i = 1

2 [Zh +
(Zh)T ]
ei, i = 1 → d, as well as νh

i = 
νh. 
ei, i = 1 → d. Similarly to (3.27) it clearly follows from (4.12b) that

(Wh)T = Wh ⇒ (Zh)T = Zh, (4.14)

and so many terms in (4.13a,b) can be simplified. We will perform these simplifications when we introduce
the semidiscrete finite element approximation, see (4.16a–d), (4.17a–d) below. The Cahn–Hilliard dynamics are
defined by

ϑ
d
dt
〈
Ch, χh

k

〉h
Γ h(t)

+
〈
∇s Mh,∇s χ

h
k

〉
Γ h(t)

= 0 ∀ k ∈ {1, . . . ,KΓ }, (4.15a)〈
Mh, ξ

〉h
Γ h(t)

= β γ
〈
∇s Ch,∇s ξ

〉
Γ h(t)

+ β γ−1
〈
Ψ ′(Ch), ξ

〉h
Γ h(t)

+
1
2
〈
(αG)′(Ch) (|
κh|2 − |Wh|2), ξ

〉h
Γ h(t)

+
1
2
〈
α′(Ch) |
κh − κ(Ch)
νh|2 − 2 κ

′(Ch)α(Ch) (
κh − κ(Ch)
νh). 
νh, ξ
〉h

Γ h(t)
∀ ξ ∈ W (Γ h(t)),

(4.15b)

where, similarly to the continuous setting (3.31a,b), we have defined Mh ∈ W (Γ h(t)) by
〈
Mh, ξ

〉h
Γ h(t)

=

[ δ
δCh L

h](ξ) for all ξ ∈ W (Γ h(t)).
Overall, we then obtain the following semidiscrete continuous-in-time finite element approximation, which

is the semidiscrete analogue of the weak formulation (P), recall (3.34). Given Γ h(0), 
Uh(·, 0) ∈ U
h(
g) and

Ch(·, 0) ∈ W (Γ h(0)), find (Γ h(t))t∈(0,T ] such that 
id |Γ h(·)∈ V T (Γ h
T ), with 
Vh = ∂◦,h

t

id |Γ h(t)∈ V (Γ h(t)) for

all t ∈ (0, T ], and 
Uh ∈ V
h
Γ h(
g), Ch ∈ WT (Γ h

T ), and, for all t ∈ (0, T ], P h(t) ∈ P̂
h(t), P h

Γ (T ) ∈ W (Γ h(t)),
Wh(t) ∈ V (Γ h(t)) and 
κh(t), 
Y h(t), 
Fh

Γ (t) ∈ V (Γ h(t)), Mh ∈ W (Γ h(t)) such that (4.15a), (b) holds, as well as

1
2

[
d
dt

(
ρh 
Uh, 
ξ

)
+
(
ρh 
Uh

t ,

ξ
)
− (ρh 
Uh, 
ξt) + ρ+

〈

Uh. 
n, 
Uh. 
ξ

〉
∂2Ω

]
+ 2
(
μh D(
Uh), D(
ξ)

)
+

1
2

(
ρh, [(
Uh.∇) 
Uh]. 
ξ − [(
Uh.∇) 
ξ]. 
Uh

)
−
(
P h,∇. 
ξ

)
+ ρΓ

〈
∂◦,h

t 
πh 
Uh, 
ξ
〉h

Γ h(t)

+ 2μΓ

〈
Dh

s (
πh 
Uh), Dh
s (
πh 
ξ)

〉
Γ h(t)

−
〈
P h

Γ ,∇s. (
πh 
ξ)
〉

Γ h(t)
=
(
ρh 
fh, 
ξ

)
+
〈

Fh

Γ ,

ξ
〉h

Γ h(t)

∀ 
ξ ∈ H1(0, T ; Uh(
0)), (4.16a)(
∇. 
Uh, ϕ

)
= 0 ∀ ϕ ∈ P̂

h(t), (4.16b)
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∇s. (
πh 
Uh), η

〉
Γ h(t)

= 0 ∀ η ∈ W (Γ h(t)), (4.16c)〈

Vh, 
χ

〉h

Γ h(t)
=
〈

Uh, 
χ

〉h

Γ h(t)
∀ 
χ ∈ V (Γ h(t)), (4.16d)

where we recall (4.3), and〈

κh, 
η
〉h

Γ h(t)
+
〈
∇s


id,∇s 
η
〉

Γ h(t)
= 0 ∀ 
η ∈ V (Γ h(t)), (4.17a)〈

Wh, ζ
〉h

Γ h(t)
+

1
2

〈

νh, [ζ + ζT ]
κh + ∇s. [ζ + ζT ]

〉h

Γ h(t)
= 0 ∀ ζ ∈ V (Γ h(t)), (4.17b)〈

α(Ch) (
κh − κ(Ch)
νh) + αG(Ch) (
κ +Wh 
νh) − 
Y h, 
ξ
〉h

Γ h(t)
= 0 ∀ 
ξ ∈ V (Γ h(t)), (4.17c)〈


Fh
Γ , 
χ
〉h

Γ h(t)
=
〈
∇s


Y h,∇s 
χ
〉

Γ h(t)
+
〈
∇s. 
Y

h,∇s. 
χ
〉

Γ h(t)
− 2
〈
(∇s


Y h)T , Dh
s (
χ) (∇s


id)T
〉

Γ h(t)

− 1
2

〈
[α(Ch) |
κh − κ(Ch)
νh|2 − 2 
Y h. 
κh],∇s. 
χ

〉h

Γ h(t)
−
〈
α(Ch) κ(Ch)
κh, [∇s 
χ]T 
νh

〉h
Γ h(t)

− β
〈
bGL(Ch),∇s. 
χ

〉h
Γ h(t)

+ β γ
〈
(∇s Ch) ⊗ (∇s Ch),∇s 
χ

〉
Γ h(t)

− 1
2
〈
αG(Ch) (|
κh|2 + |Wh|2),∇s. 
χ

〉h
Γ h(t)

+
〈

νh. (Zh 
κh + ∇s. Z

h),∇s. 
χ
〉h

Γ h(t)

+
d∑

i=1

〈
νh

i ∇s

Zh

i ,∇s 
χ− 2Dh
s (
χ)
〉

Γ h(t)
−
〈
Zh 
κh + ∇s. Z

h, [∇s 
χ]T 
νh
〉h

Γ h(t)
∀ 
χ ∈ V (Γ h(t)), (4.17d)

where Zh = πh[−αG(Ch)Wh] and 
Zh
i = Zh 
ei, i = 1 → d. In addition, we have noted (4.14) and that

α(Ch) κ
2(Ch)
νh. [∇s 
χ]T 
νh = 0 on Γ h(t). Here we have defined 
fh(·, t) := 
Ih

2

f(·, t), where here and throughout

we assume that 
f ∈ L2(0, T ; [C(Ω)]d). We note that in the special case of uniform α and κ, and if αG =
β = 0, the scheme (4.16a–d), (4.17a–d) collapses to the semidiscrete approximation (4.15a–g), with β = 0,
from [7].

The following lemma is crucial in establishing a direct discrete analogue of (1.6).

Lemma 4.1. Let {(Γ h, 
Uh, P h, P h
Γ , 
κ

h, 
Y h, 
Fh
Γ ,W

h, Zh,Ch,Mh)(t)}t∈[0,T ] be a solution to (4.15a,b), (4.16a–d),
(4.17a–d). In addition, we assume that 
κh ∈ V T (Γ h

T ) and Wh ∈ V T (Γ h
T ). Then

d
dt

Eh(Γ h(t),Ch(t)) = −
〈

Fh

Γ , 
Vh
〉h

Γ h(t)
+
〈
Mh, ∂◦,h

t Ch
〉h

Γ h(t)
. (4.18)

Proof. Taking the time derivatives of (4.12a,b), where we choose discrete test functions 
η and ζ such that

∂◦,h
t 
η = 
0 and ∂◦,h

t ζ = 0, respectively, yields that

〈
∂◦,h

t 
κh, 
η
〉h

Γ h(t)
+
〈

κh. 
η,∇s. 
Vh

〉h

Γ h(t)
+
〈
∇s. 
Vh,∇s. 
η

〉
Γ h(t)

+
〈
∇s


Vh,∇s 
η
〉

Γ h(t)

− 2
〈
Dh

s (
Vh) (∇s

id)T , (∇s 
η)T

〉
Γ h(t)

= 0, (4.19a)〈
∂◦,h

t Wh, ζ
〉h

Γ h(t)
+
〈
Wh : ζ,∇s. 
Vh

〉h

Γ h(t)
+

1
2

〈
∂◦,h

t 
νh, [ζ + ζT ]
κh + ∇s. [ζ + ζT ]
〉h

Γ h(t)

+
1
2

〈

νh. ([ζ + ζT ]
κh + ∇s. [ζ + ζT ]),∇s. 
Vh

〉h

Γ h(t)
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+
d∑

i=1

〈
νh

i ∇s

ζi,∇s


Vh − 2Dh
s (
Vh)

〉
Γ h(t)

+
1
2

〈

νh, [ζ + ζT ] ∂◦,h

t 
κh
〉h

Γ h(t)
= 0, (4.19b)

where 
ζi = 1
2 [ζ + ζT ]
ei, i = 1, . . . , d. Here we have noted 
κh ∈ V T (Γ h

T ), Wh ∈ V T (Γ h
T ), (4.8) and the discrete

versions of (3.25) and (3.22). Choosing 
χ = 
Vh in (4.13a), 
η = 
Y h in (4.19a), ζ = Zh in (4.19b) and combining
yields, on recalling (4.8) and the discrete variants of (3.19) and (3.24), that

−
〈

Fh

Γ ,

Vh
〉h

Γ h(t)
=

1
2

〈
α(Ch) |
κh − κ(Ch)
νh|2,∇s. 
Vh

〉h

Γ h(t)
−
〈
α(Ch) κ(Ch) (
κh − κ(Ch)
νh), ∂◦,h

t 
νh
〉h

Γ h(t)

+
〈
∂◦,h

t 
κh, 
Y h
〉h

Γ h(t)
+ β
〈
bGL(Ch),∇s. 
Vh

〉h

Γ h(t)
− β γ

〈
(∇s Ch) ⊗ (∇s Ch),∇s


Vh
〉

Γ h(t)

+
1
2

〈
αG(Ch) (|
κh|2 − |Wh|2),∇s. 
Vh

〉h

Γ h(t)
+
〈
∂◦,h

t Wh, Zh
〉h

Γ h(t)
+

1
2

〈

νh, [Zh + (Zh)T ] ∂◦,h

t 
κh
〉h

Γ h(t)

=
1
2

〈
α(Ch) |
κh − κ(Ch)
νh|2,∇s. 
Vh

〉h

Γ h(t)
−
〈
α(Ch) κ(Ch) (
κh − κ(Ch)
νh), ∂◦,h

t 
νh
〉h

Γ h(t)

+
〈
α(Ch) (
κh − κ(Ch)
νh) + αG(Ch)
κh, ∂◦,h

t 
κh
〉h

Γ h(t)
− β γ

〈
(∇s Ch) ⊗ (∇s Ch),∇s


Vh
〉

Γ h(t)

+ β
〈
bGL(Ch),∇s. 
Vh

〉h

Γ h(t)
+

1
2

〈
αG(Ch) (|
κh|2 − |Wh|2),∇s. 
Vh

〉h

Γ h(t)
−
〈
αG(Ch) ∂◦,h

t Wh,Wh
〉h

Γ h(t)

=
d
dt

[
1
2
〈
α(Ch), |
κh − κ(Ch)
νh|2

〉h
Γ h(t)

+
1
2
〈
αG(Ch), |
κh|2 − |Wh|2

〉h
Γ h(t)

+ β
〈
bGL(Ch), 1

〉h
Γ h(t)

]
− 1

2

〈
α′(Ch) |
κh − κ(Ch)
νh|2 − 2 κ

′(Ch)α(Ch) (
κh − κ(Ch)
νh). 
νh, ∂◦,h
t Ch

〉h

Γ h(t)

− 1
2

〈
(αG)′(Ch) (|
κh|2 − |Wh|2), ∂◦,h

t Ch
〉h

Γ h(t)
− β γ

〈
∇s Ch,∇s ∂

◦,h
t Ch

〉
Γ h(t)

− β γ−1
〈
Ψ ′(Ch), ∂◦,h

t Ch
〉h

Γ h(t)

=
d
dt
Eh(Γ h(t),Ch(t)) −

〈
Mh, ∂◦,h

t Ch
〉h

Γ h(t)
(4.20)

where we have noted (4.13b,c) and (4.15b), as well as Ch ∈ WT (Γ h
T ). This yields the desired result (4.18). �

In the following theorem we derive discrete analogues of (1.6), (3.7) and (3.32) for the
scheme (4.15a,b), (4.16a–d), (4.17a–d).

Theorem 4.2. Let the assumptions of Lemma 4.1 hold. Then, in the case 
g = 
0, it holds that

d
dt

(
1
2
‖[ρh]

1
2 
Uh‖2

0 +
1
2
ρΓ

〈

Uh, 
Uh

〉h

Γ h(t)
+ Eh(Γ h(t),Ch(t))

)
+ 2μΓ

〈
Dh

s (
πh 
Uh), Dh
s (
πh 
Uh)

〉
Γ h(t)

+ 2 ‖[μh]
1
2 D(
Uh)‖2

0 +
1
2
ρ+

〈

Uh. 
n, |
Uh|2

〉
∂2Ω

+ ϑ−1
〈
∇s Mh,∇s Mh

〉
Γ h(t)

= (ρh 
fh, 
Uh). (4.21)

Moreover, it holds that
d
dt
〈
χh

k , 1
〉
Γ h(t)

= 0 ∀ k ∈ {1, . . . ,KΓ } (4.22a)

and hence that
d
dt

Hd−1(Γ h(t)) = 0. (4.22b)

Finally, we have that
d
dt
〈
Ch, 1
〉

Γ h(t)
= 0. (4.22c)
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Proof. Choosing 
ξ = 
Uh in (4.16a), recall that 
g = 
0, ϕ = P h in (4.16b) and η = P h
Γ in (4.16c) yields that

1
2

d
dt

‖[ρh]
1
2 
Uh‖2

0 + 2 ‖[μh]
1
2 D(
Uh)‖2

0 + ρΓ

〈
∂◦,h

t 
πh 
Uh, 
Uh
〉h

Γ h(t)
+

1
2
ρ+

〈

Uh. 
n, |
Uh|2

〉
∂2Ω

+ 2μΓ

〈
Dh

s (
πh 
Uh), Dh
s (
πh 
Uh)

〉
Γ h(t)

= (ρh 
fh, 
Uh) +
〈

Fh

Γ , 
U
h
〉h

Γ h(t)
. (4.23)

In addition, we note that (4.8), (4.16d) and (4.16c) with η = πh [|
Uh |Γ h(t) |2] imply that

1
2
ρΓ

d
dt

〈

Uh, 
Uh

〉h

Γ h(t)
=

1
2
ρΓ

〈
∂◦,h

t 
πh [|
Uh|2], 1
〉h

Γ h(t)
+

1
2
ρΓ

〈
∇s. 
Vh, |
Uh|2

〉h

Γ h(t)

= ρΓ

〈
∂◦,h

t 
πh 
Uh, 
Uh
〉h

Γ h(t)
+

1
2
ρΓ

〈
∇s. (
πh 
Uh), |
πh 
Uh|2

〉
Γ h(t)

= ρΓ

〈
∂◦,h

t 
πh 
Uh, 
Uh
〉h

Γ h(t)
, (4.24)

where we have recalled 
Uh ∈ V
h
Γ h(
g), see (4.5). Choosing 
χ = 
Fh

Γ in (4.16d), and combining with (4.18), yields
that 〈


Fh
Γ , 
U

h
〉h

Γ h(t)
=
〈

Fh

Γ , 
Vh
〉h

Γ h(t)
= − d

dt
Eh(Γ h(t),Ch(t)) +

〈
Mh, ∂◦,h

t Ch
〉h

Γ h(t)
. (4.25)

Moreover, similarly to (4.24), it follows from (4.8), (4.6) and (4.16c,d), on recalling Ch ∈ WT (Γ h
T ), that

d
dt
〈
Ch, χh

k

〉h
Γ h(t)

=
〈
∂◦,h

t Ch, χh
k

〉h

Γ h(t)
+
〈
Ch χh

k ,∇s. 
Vh
〉h

Γ h(t)
=
〈
∂◦,h

t Ch, χh
k

〉h

Γ h(t)
+
〈
πh [Ch χh

k ],∇s. 
Vh
〉

Γ h(t)

=
〈
∂◦,h

t Ch, χh
k

〉h

Γ h(t)
+
〈
πh [Ch χh

k ],∇s. (
πh 
Uh)
〉

Γ h(t)
=
〈
∂◦,h

t Ch, χh
k

〉h

Γ h(t)
,

for k = 1, . . . ,KΓ . Hence we obtain from (4.15a) that

−
〈
Mh, ∂◦,h

t Ch
〉h

Γ h(t)
= ϑ−1

〈
∇s Mh,∇s Mh

〉
Γ h(t)

. (4.26)

The desired result (4.21) now directly follows from combining (4.23), (4.24), (4.25) and (4.26).
Similarly to (3.7), it immediately follows from (4.7) and (4.6), on choosing η = χh

k in (4.16c), and on recalling
from (4.16d) that 
Vh = 
πh [
Uh |Γ h(t)], that

d
dt
〈
χh

k , 1
〉
Γ h(t)

=
〈
χh

k ,∇s. 
Vh
〉

Γ h(t)
= 0,

which proves the desired result (4.22a). Summing (4.22a) for all k = 1, . . . ,KΓ then yields the desired re-
sult (4.22b). Similarly, summing (4.15a) for k = 1, . . . ,KΓ yields the desired result (4.22c). �

We observe that it does not appear possible to prove a discrete analogue of (3.8) for the
scheme (4.15a,b), (4.16a–d), (4.17a–d), even if the pressure space P

h(t) is enriched by the characteristic function
of the inner phase, XΩh

−(t). Following the approach introduced in [6, 7], we enforce〈

Uh, 
ωh

〉h

Γ h(t)
= 0, (4.27)

which will lead to volume conservation for the two phases on the discrete level. As (4.27) cannot be interpreted
in terms of enriching P

h(t), we enforce it separately with the help of a Lagrange multiplier, which we denote
by P h

sing. We are now in a position to propose the following adaptation of (4.15a,b), (4.16a–d), (4.17a–d).
Given Γ h(0), 
Uh(·, 0) ∈ U

h(
g) and Ch(·, 0) ∈ W (Γ h(0)), find (Γ h(t))t∈(0,T ] such that 
id |Γ h(·)∈ V T (Γ h
T ),

with 
Vh = ∂◦,h
t


id |Γ h(t)∈ V (Γ h(t)) for all t ∈ (0, T ], and 
Uh ∈ V
h
Γ h(
g), Ch ∈ WT (Γ h

T ), and, for all t ∈ (0, T ],
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P h(t) ∈ P̂
h(t), P h

sing(t) ∈ R, P h
Γ (T ) ∈ W (Γ h(t)), Wh(t) ∈ V (Γ h(t)) and 
κh(t), 
Y h(t), 
Fh

Γ (t) ∈ V (Γ h(t)),
Mh ∈ W (Γ h(t)) such that (4.15a,b) holds, as well as

1
2

[
d
dt

(
ρh 
Uh, 
ξ

)
+
(
ρh 
Uh

t ,

ξ
)
− (ρh 
Uh, 
ξt) + ρ+

〈

Uh. 
n, 
Uh. 
ξ

〉
∂2Ω

]
+ 2
(
μh D(
Uh), D(
ξ)

)
+

1
2

(
ρh, [(
Uh.∇) 
Uh]. 
ξ − [(
Uh.∇) 
ξ]. 
Uh

)
−
(
P h,∇. 
ξ

)
− P h

sing

〈

ωh, 
ξ
〉h

Γ h(t)
+ ρΓ

〈
∂◦,h

t 
πh 
Uh, 
ξ
〉h

Γ h(t)
+ 2μΓ

〈
Dh

s (
πh 
Uh), Dh
s (
πh 
ξ)

〉
Γ h(t)

−
〈
P h

Γ ,∇s. (
πh 
ξ)
〉

Γ h(t)
=
(
ρh 
fh, 
ξ

)
+
〈

Fh

Γ ,

ξ
〉h

Γ h(t)
∀ 
ξ ∈ H1(0, T ; Uh(
0)), (4.28a)(

∇. 
Uh, ϕ
)

= 0 ∀ ϕ ∈ P̂
h(t) and

〈

Uh, 
ωh

〉h

Γ h(t)
= 0 (4.28b)

and (4.16c,d), (4.17a–d) hold. We now have the following result.

Theorem 4.3. Let {(Γ h, 
Uh, P h, P h
sing, P

h
Γ , 
κ

h, 
Y h, 
Fh
Γ ,W

h, Zh,Ch,Mh)(t)}t∈[0,T ] be a solution to (4.15a,b),
(4.28a,b), (4.16c,d), (4.17a–d). In addition, we assume that 
κh ∈ V T (Γ h

T ) and Wh ∈ V T (Γ h
T ). Then (4.21)

holds if 
g = 
0. In addition, (4.22a–c) and

d
dt

Ld(Ωh
−(t)) = 0 (4.29)

hold.

Proof. The proofs for (4.21) and (4.22a–c) are analogous to the proofs in Theorem 4.2. In order to prove (4.29)
we choose 
χ = 
ωh ∈ V (Γ h(t)) in (4.16d) to yield that

d
dt

Ld(Ωh
−(t)) =

〈

Vh, 
νh

〉
Γ h(t)

=
〈

Vh, 
νh

〉h

Γ h(t)
=
〈

Vh, 
ωh

〉h

Γ h(t)
=
〈

Uh, 
ωh

〉h

Γ h(t)
= 0,

where we have used ([17], Lem. 2.1), (4.10) and (4.28b). �

5. Fully discrete finite element approximation

We consider the partitioning tm = mτ , m = 0, . . . ,M , of [0, T ] into uniform time steps τ = T/M . The time
discrete spatial discretizations then directly follow from the finite element spaces introduced in §4, where in
order to allow for adaptivity in space we consider bulk finite element spaces that change in time. For all m ≥ 0,
let T m be a regular partitioning of Ω into disjoint open simplices om

j , j = 1, . . . , Jm
Ω . Associated with T m are

the finite element spaces Sm
k (Ω) for k ≥ 0. We introduce also 
Im

k : [C(Ω)]d → [Sm
k (Ω)]d, k ≥ 1, the standard

interpolation operators, and the standard projection operator Im
0 : L1(Ω) → Sm

0 (Ω). The parametric finite
element spaces are given by

V (Γm) := {
χ ∈ [C(Γm)]d : 
χ |σm
j

is linear ∀ j = 1, . . . , JΓ } =: [W (Γm)]d,

for m = 0, . . . ,M − 1, and similarly for V (Γm). Here Γm =
⋃JΓ

j=1 σ
m
j , where {σm

j }JΓ

j=1 is a family of mu-
tually disjoint open (d − 1)-simplices with vertices {
qm

k }KΓ

k=1. We denote the standard basis of W (Γm) by
{χm

k (·, t)}KΓ

k=1. We also introduce πm : C(Γm) → W (Γm), the standard interpolation operator at the nodes
{
qm

k }KΓ

k=1, and similarly 
πm : [C(Γm)]d → V (Γm). Throughout this paper, we will parameterize the new closed
surface Γm+1 over Γm, with the help of a parameterization 
Xm+1 ∈ V (Γm), i.e. Γm+1 = 
Xm+1(Γm). Moreover,
let W≤1(Γm) := {χ ∈ W (Γm) : |χ| ≤ 1}.
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Given Γm, we let Ωm
+ denote the exterior of Γm and let Ωm− denote the interior of Γm, so that Γm = ∂Ωm− =

Ωm− ∩ Ωm
+ . In addition, we define the piecewise constant unit normal 
νm to Γm such that 
νm points into Ωm

+ .
We then partition the elements of the bulk mesh T m into interior, exterior and interfacial elements as before,
and we introduce ρm, μm ∈ Sm

0 (Ω), for m ≥ 0, as

ρm |om=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ− om ∈ T m− ,

ρ+ om ∈ T m
+ ,

1
2

(ρ− + ρ+) om ∈ T m
Γ m ,

and μm |om=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μ− om ∈ T m− ,

μ+ om ∈ T m
+ ,

1
2

(μ− + μ+) om ∈ T m
Γ m .

We also introduce the L2–inner product 〈·, ·〉Γ m over the current polyhedral surface Γm, as well as the mass
lumped inner product 〈·, ·〉hΓ m . In addition, similarly to (4.9a,b), we define

PΓ m = Id − 
νm ⊗ 
νm on Γm,

and

Dm
s (
η) =

1
2
PΓ m (∇s 
η + (∇s 
η)T )PΓ m on Γm,

where here ∇s = PΓ m ∇ denotes the surface gradient on Γm.
Moreover, we introduce the following pushforward operator for the discrete interfaces Γm and Γm−1, for

m = 0, . . . ,M . We set Γ−1 := Γ 0. Let 
Πm
m−1 : [C(Γm−1)]d → V (Γm) such that

( 
Πm
m−1 
z)(
q

m
k ) = 
z(
qm−1

k ), k = 1, . . . ,KΓ , ∀ 
z ∈ [C(Γm−1)]d, (5.1)

for m = 1, . . . ,M , and set 
Π0−1 := 
π0. Analogously to (5.1) we also define Πm
m−1 : C(Γm−1) → W (Γm) and

Πm
m−1 : [C(Γm−1)]d×d → V (Γm). For later use, we also introduce the short hand notations

αm = πm [α(Cm)], κ
m = πm [κ(Cm)], αG,m = πm [αG(Cm)], (5.2)

for m = 0, . . . ,M − 1. We note, similarly to (4.10), that

〈
z, w 
νm〉hΓ m = 〈
z, w 
ωm〉hΓ m ∀ 
z ∈ V (Γm), w ∈ W (Γm),

where 
ωm :=
∑KΓ

k=1 χ
m
k 
ωm

k ∈ V (Γm), and where for k = 1, . . . ,KΓ we let Θm
k := {j : 
qm

k ∈ σm
j } and set

Λm
k := ∪j∈Θm

k
σm

j and 
ωm
k := 1

Hd−1(Λm
k )

∑
j∈Θm

k
Hd−1(σm

j ) 
νm
j .

For the approximation to the velocity and pressure on T m we use the finite element spaces U
m(
g) and P

m,
which are the direct time discrete analogues of U

h(
g) and P
h(tm), as well as P̂

m ⊂ P̂.
Analogously to (3.33), we recall the following discrete LBBΓ inf-sup assumption from [7]. Let there exist a

C0 ∈ R>0, independent of T m and {σm
j }JΓ

j=1, such that

inf
(ϕ,λ,η)∈P̂m×R×W (Γ m)

sup
	ξ∈Um(	0)

(ϕ,∇. 
ξ) + λ
〈

ωm, 
ξ

〉h

Γ m
+
〈
η,∇s. (
πm 
ξ |Γ m)

〉
Γ m

(‖ϕ‖0 + |λ| + ‖η‖0,Γ m) (‖
ξ‖1 + ‖PΓ m (
πm 
ξ |Γ m)‖1,Γ m,h)
≥ C0, (5.3)

where ‖η‖2
0,Γ m := 〈η, η〉Γ m and ‖
η‖2

1,Γ m,h := 〈
η, 
η〉Γ m +
∑JΓ

j=1

∫
σm

j
|∇s 
η|2 dHd−1. (See [7], (5.2)) for more details.

We are now in a position to state our fully discrete approximation of (4.15a,b), (4.28a,b), (4.16c,d)
and (4.17a–d). Here we stress that it does not appear possible to prove a stability result for a fully discrete
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approximation. This is in line with approximations for other evolution problems involving curvature energies,
and is mainly due to the fact that it does not appear possible to mimic the differentiation steps in (4.19a,b). To
increase the practicality of our fully discrete scheme, we will decouple the fully discrete variant of (4.15a,b) from
the remaining equations. For the remaining equations we follow the strategy from [7], which leads to a linear
set of equations that couple the bulk and surface Navier–Stokes equations to the evolution of the interface.
This fully discrete approximation is given as follows. Let Γ 0, an approximation to Γ (0), as well as 
κ0 ∈ V (Γ 0),
C0 ∈ W (Γ 0) and 
U0 ∈ U

0(
g) be given. For m = 0, . . . ,M − 1, find 
Um+1 ∈ U
m(
g), Pm+1 ∈ P̂

m, Pm+1
sing ∈ R,

Pm+1
Γ ∈ W (Γm), 
Xm+1 ∈ V (Γm), 
κm+1 ∈ V (Γm), Wm+1 ∈ V (Γm) and 
Y m+1, 
Fm+1

Γ ∈ V (Γm) such that

1
2

(
ρm 
Um+1 − (Im

0 ρm−1) 
Im
2

Um

τ
+ (Im

0 ρm−1)

Um+1 − 
Im

2

Um

τ
, 
ξ

)
+ 2
(
μm D(
Um+1), D(
ξ)

)
+

1
2

(
ρm, [(
Im

2

Um.∇) 
Um+1]. 
ξ − [(
Im

2

Um.∇) 
ξ]. 
Um+1

)
−
(
Pm+1,∇. 
ξ

)
− Pm+1

sing

〈

ωm, 
ξ

〉h

Γ m

+ ρΓ

〈

Um+1− 
Πm

m−1 (
Im
2

Um) |Γ m−1

τ
, 
ξ

〉h

Γ m

+2μΓ

〈
Dm

s (
πm 
Um+1), Dm
s (
πm 
ξ)

〉
Γ m

−
〈
Pm+1

Γ ,∇s. (
πm 
ξ)
〉

Γ m

=
(
ρm 
fm+1, 
ξ

)
+
〈

Fm+1

Γ , 
ξ
〉h

Γ m
− 1

2
ρ+

〈

Um. 
n, 
Um. 
ξ

〉
∂2Ω

∀ 
ξ ∈ U
m(
0), (5.4a)(

∇. 
Um+1, ϕ
)

= 0 ∀ ϕ ∈ P̂
m and

〈

Um+1, 
ωm

〉h

Γ m
= 0, (5.4b)〈

∇s. (
πm 
Um+1), η
〉

Γ m
= 0 ∀ η ∈ W (Γm), (5.4c)〈


Xm+1 − 
id
τ

, 
χ

〉h

Γ m

=
〈

Um+1, 
χ

〉h

Γ m
∀ 
χ ∈ V (Γm), (5.4d)

and〈

κm+1, 
η

〉h
Γ m +

〈
∇s


Xm+1,∇s 
η
〉

Γ m
= 0 ∀ 
η ∈ V (Γm), (5.5a)〈

Wm+1, ζ
〉h

Γ m
+

1
2

〈

νm, [ζ + ζT ]
κm+1 + ∇s. [ζ + ζT ]

〉h

Γ m
= 0 ∀ ζ ∈ V (Γm), (5.5b)〈


Y m+1, 
ξ
〉h

Γ m
−
〈
αm (
κm+1 − κ

m 
νm), 
ξ
〉h

Γ m
−
〈
αG,m ( 
Πm

m−1 
κ
m +Πm

m−1 W
m 
νm), 
ξ

〉h

Γ m
= 0 ∀ 
ξ ∈ V (Γm),

(5.5c)〈

Fm+1

Γ , 
χ
〉h

Γ m
=
〈
∇s


Y m+1,∇s 
χ
〉

Γ m
+
〈
∇s. ( 
Πm

m−1

Y m),∇s. 
χ

〉
Γ m

− 2
〈
[∇s ( 
Πm

m−1

Y m)]T , Dm

s (
χ) (∇s

id)T
〉

Γ m

− 1
2

〈
αm | 
Πm

m−1 
κ
m − κ

m 
νm|2 − 2 
Πm
m−1


Y m. 
Πm
m−1 
κ

m,∇s. 
χ
〉h

Γ m
−
〈
αm

κ
m 
Πm

m−1 
κ
m, [∇s 
χ]T 
νm

〉h

Γ m

− β 〈bGL(Cm),∇s. 
χ〉hΓ m + β γ 〈(∇s Cm) ⊗ (∇s Cm),∇s 
χ〉Γ m

− 1
2

〈
αG,m (| 
Πm

m−1 
κ
m|2 + |Πm

m−1 W
m|2),∇s. 
χ

〉h

Γ m
+
〈

νm. (Zm 
Πm

m−1 
κ
m + ∇s. Z

m),∇s. 
χ
〉h

Γ m

+
d∑

i=1

〈
νm

i ∇s

Zm

i ,∇s 
χ− 2Dm
s (
χ)

〉
Γ m

−
〈
Zm 
κm + ∇s. Z

m, [∇s 
χ]T 
νm
〉h

Γ m ∀ 
χ ∈ V (Γm), (5.5d)

and set Γm+1 = 
Xm+1(Γm). Hence 
Xm+1 represents the positions of the vertices of the new discrete membrane.
In the above we have defined 
fm+1 := 
Im

2

f(·, tm+1), Zm = πm[−αG(Cm)Πm

m−1 W
m] and 
Zm

i = Zm 
ei, i = 1 →
d. We note that (5.5b) decouples from (5.4a–d) and (5.5a,c,d). In addition, we note that in the special case of
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uniform α and κ, and if αG = β = 0, the scheme (5.4a–d), (5.5a,c,d) collapses to the scheme (5.4a–f) and (5.5)
with β = 0, from [7].

For the fully discrete approximation of (4.15a,b) for the case of the obstacle potential (2.11b) we consider
a semi-implicit (surface) finite element approximation in the spirit of [12] in the planar case. Hence, having
computed Γm+1, we find Cm+1 ∈ W≤1(Γm+1) and Mm+1 ∈ W (Γm+1) such that

ϑ

τ

〈
Cm+1, χm+1

k

〉h
Γ m+1 +

〈
∇s Mm+1,∇s χ

m+1
k

〉
Γ m+1 =

ϑ

τ
〈Cm, χm

k 〉hΓ m ∀ k ∈ {1, . . . ,KΓ }. (5.6a)

β γ
〈
∇s Cm+1,∇s [χ− Cm+1]

〉
Γ m+1 ≥

〈
Mm+1 + β γ−1Πm+1

m Cm, χ− Cm+1
〉h

Γ m+1

− 1
2

〈
α′(Πm+1

m Cm) | 
Πm+1
m 
κm+1 − κ(Πm+1

m Cm)
νm+1|2, χ− Cm+1
〉h

Γ m+1

+
〈

κ
′(Πm+1

m Cm)α(Πm+1
m Cm) ( 
Πm+1

m 
κm+1 − κ(Πm+1
m Cm)
νm+1). 
νm+1, χ− Cm+1

〉h

Γ m+1

− 1
2

〈
(αG)′(Πm+1

m Cm) (| 
Πm+1
m 
κm+1|2 − |Πm+1

m Wm+1|2), χ− Cm+1
〉h

Γ m+1
∀ χ ∈ W≤1(Γm+1). (5.6b)

In the absence of the LBBΓ condition (5.3) we need to consider the reduced system (5.4a,d), (5.5a–d), where
U

m(
0) in (5.4a) is replaced by U
m
0 (
0). Here we define

U
m
0 (
a) :=

{

U ∈ U

m(
a) : (∇. 
U, ϕ) = 0 ∀ ϕ ∈ P̂
m,
〈
∇s. (
πm 
U), η

〉
Γ m

= 0 ∀ η ∈ W (Γm)

and
〈

U, 
ωm

〉h

Γ m
= 0
}
,

for given data 
a ∈ [C(Ω)]d.
In order to prove the existence of a unique solution to (5.4a–d), (5.5a–d) we make the following very mild

well-posedness assumption.

(A) We assume for m = 0, . . . ,M − 1 that Hd−1(σm
j ) > 0 for all j = 1, . . . , JΓ , and that Γm ⊂ Ω.

Theorem 5.1. Let the assumption (A) hold. If the LBBΓ condition (5.3) holds, then there exists a unique solu-
tion (
Um+1, Pm+1, Pm+1

sing , Pm+1
Γ , 
Xm+1, 
κm+1, 
Y m+1, 
Fm+1

Γ ,Wm+1) ∈ U
m(
g)× P̂

m×R×W (Γm)× [V (Γm)]4 ×
V (Γm) to (5.4a–d), (5.5a–d). In all other cases, on assuming that U

m
0 (
g) is nonempty, there exists a unique so-

lution (
Um+1, 
Xm+1, 
κm+1, 
Y m+1, 
Fm+1
Γ ,Wm+1) ∈ U

m
0 (
g)× [V (Γm)]4×V (Γm) to the reduced system (5.4a,d),

(5.5a–d) with U
m(
0) replaced by U

m
0 (
0). Moreover, there exists a solution (Cm+1,Mm+1) ∈ W≤1(Γm+1) ×

W (Γm+1) to (5.6a,b), with Cm+1 being unique.

Proof. As the system (5.4a–d), (5.5a–d) is linear, existence follows from uniqueness. In order to establish the
latter, we consider the homogeneous system. Find (
U, P, Psing, PΓ , 
X,
κ, 
Y , 
FΓ , W ) ∈ U

m(
0)×P̂
m×R×W (Γm)×

[V (Γm)]4 × V (Γm) such that

1
2 τ

(
(ρm + Im

0 ρm−1) 
U, 
ξ
)

+ 2
(
μm D(
U), D(
ξ)

)
−
(
P,∇. 
ξ

)
− Psing

〈

ωm, 
ξ

〉h

Γ m

+
1
2

(
ρm, [(
Im

2

Um.∇) 
U ]. 
ξ − [(
Im

2

Um.∇) 
ξ]. 
U

)
+

1
τ
ρΓ

〈

U, 
ξ
〉h

Γ m
+ 2μΓ

〈
Dm

s (
πm 
U), Dm
s (
πm 
ξ)

〉
Γ m

−
〈
PΓ ,∇s. (
πm 
ξ)

〉
Γ m

−
〈

FΓ , 
ξ
〉h

Γ m
= 0 ∀ 
ξ ∈ U

m(
0), (5.7a)(
∇. 
U, ϕ

)
= 0 ∀ ϕ ∈ P̂

m and
〈

U, 
ωm

〉h

Γ m
= 0, (5.7b)〈

∇s. (
πm 
U), η
〉

Γ m
= 0 ∀ η ∈ W (Γm), (5.7c)
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1
τ

〈

X, 
χ
〉h

Γ m
=
〈

U, 
χ
〉h

Γ m
∀ 
χ ∈ V (Γm), (5.7d)

〈
κ, 
η〉hΓ m +
〈
∇s


X,∇s 
η
〉

Γ m
= 0 ∀ 
η ∈ V (Γm), (5.7e)〈

W, ζ
〉h

Γ m
+

1
2

〈

νm, [ζ + ζT ]
κ

〉h

Γ m
= 0 ∀ ζ ∈ V (Γm), (5.7f)〈


Y , 
η
〉h

Γ m
− 〈αm 
κ, 
η〉hΓ m = 0 ∀ 
η ∈ V (Γm), (5.7g)〈


FΓ , 
χ
〉h

Γ m
−
〈
∇s


Y ,∇s 
χ
〉

Γ m
= 0 ∀ 
χ ∈ V (Γm). (5.7h)

Choosing 
ξ = 
U in (5.7a), ϕ = P in (5.7b), η = PΓ in (5.7c), 
χ = 
FΓ in (5.7d), 
χ = 
X in (5.7h), 
η = 
Y in (5.7e)
and 
η = 
κ in (5.7g) yields that

1
2

(
(ρm + Im

0 ρm−1) 
U, 
U
)

+ 2 τ
(
μm D(
U), D(
U)

)
+ ρΓ

〈

U, 
U
〉h

Γ m
+ 2 τ μΓ

〈
Dm

s (
πm 
U), Dm
s (
πm 
U)

〉
Γ m

= τ
〈

FΓ , 
U

〉h

Γ m
=
〈

FΓ , 
X

〉h

Γ m
=
〈
∇s


Y ,∇s

X
〉

Γ m
= −
〈

κ, 
Y
〉h

Γ m
= −〈αm 
κ,
κ〉hΓ m . (5.8)

It immediately follows from (5.8), Korn’s inequality and αm > 0, that 
U = 
0 ∈ U
m(
0) and 
κ = 
0. (For

the application of Korn’s inequality we recall that Hd−1(∂1Ω) > 0.) Hence (5.7d,f,g,h) yield that 
X = 
0,
W = 0, 
Y = 
0 and 
FΓ = 
0, respectively. Finally, if (5.3) holds then (5.7a) with 
U = 
0 and 
FΓ = 
0
implies that P = 0 ∈ P̂

m, Psing = 0 and PΓ = 0 ∈ W (Γm). This shows existence and uniqueness of
(
Um+1, Pm+1, Pm+1

sing , Pm+1
Γ , 
Xm+1, 
κm+1, 
Y m+1, 
Fm+1

Γ ,Wm+1) ∈ U
m(
g)×P̂

m×R×W (Γm)×[V (Γm)]4×V (Γm)
to (5.4a–d), (5.5a–d). The proof for the reduced system is very similar. The homogeneous system to con-
sider is (5.7a,d–h) with U

m(
0) replaced by U
m
0 (
0). As before, we infer that (5.8) holds, which yields that


U = 
0 ∈ U
m
0 (
0), 
κ = 
0, and hence 
X = 
FΓ = 
Y = 
0.

In order to prove the existence of a unique solution to (5.6a,b), we adapt the argument in [12] for the Cahn–
Hilliard equation with obstacle potential on a bounded fixed domain in R

d. We introduce the discrete inverse
surface Laplacian Gm+1 : W∫ (Γm+1) → W∫ (Γm+1) defined by〈

∇s Gm+1 v,∇s ξ
〉

Γ m+1 = 〈v, ξ〉hΓ m+1 ∀ ξ ∈ W∫ (Γm+1), (5.9)

where W∫ (Γm+1) := {ξ ∈ W (Γm+1) : 〈ξ, 1〉Γ m+1 = 0}. It immediately follows from 〈∇s v,∇s v〉Γ m+1 = 0 ⇒ v =
0 for all v ∈ W∫ (Γm+1) that Gm+1 is well-posed. Next we rewrite (5.6a,b) as

ϑ

τ

〈
Cm+1 − Ĉm, χm+1

k

〉h

Γ m+1
+
〈
∇s Mm+1,∇s χ

m+1
k

〉
Γ m+1 = 0 ∀ k ∈ {1, . . . ,KΓ }. (5.10a)

β γ
〈
∇s Cm+1,∇s [χ− Cm+1]

〉
Γ m+1 ≥

〈
Mm+1 + g, χ− Cm+1

〉h
Γ m+1 ∀ χ ∈ W≤1(Γm+1), (5.10b)

where Ĉm ∈ W (Γm+1) is such that 〈Ĉm, χm+1
k 〉hΓ m+1 = 〈Cm, χm

k 〉hΓ m for k ∈ {1, . . . ,KΓ}. We note that〈
Cm+1, 1

〉
Γ m+1 =

〈
Ĉm, 1

〉
Γ m+1

= 〈Cm, 1〉Γ m . (5.11)

It follows from (5.11), (5.10a) and (5.9) that

Mm+1 = −ϑ

τ
Gm+1 (Cm+1 − Ĉm) + λm+1, (5.12)

where λm+1 ∈ R is a Lagrange multiplier associated with the constraint (5.11). Hence Cm+1 ∈ W≤1(Γm+1) is
such that 〈Cm+1, 1〉Γ m+1 = 〈Cm, 1〉Γ m and

β γ
〈
∇s Cm+1,∇s [χ− Cm+1]

〉
Γ m+1 +

ϑ

τ

〈
Gm+1 (Cm+1 − Ĉm) − λm+1 − g, χ− Cm+1

〉h

Γ m+1
≥ 0
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∀ χ ∈ W≤1(Γm+1). (5.13)

Clearly, (5.13) is the Euler–Lagrange variational inequality for the strictly convex minimization problem

min
χ∈W≤1(Γ m+1)

〈χ,1〉Γ m+1=〈Cm,1〉Γ m

[
β γ

2
〈∇s χ,∇s χ〉Γ m+1 +

ϑ

2 τ

〈
∇s Gm+1 (χ− Ĉm),∇s Gm+1 (χ− Ĉm)

〉
Γ m+1

− ϑ

τ
〈g, χ〉hΓ m+1

]
.

(5.14)
Hence there exists a unique Cm+1 ∈ W≤1(Γm+1) with 〈Cm+1, 1〉Γ m+1 = 〈Cm, 1〉Γ m and solving (5.13). Existence
of the Lagrange multiplier λm+1 in (5.12) then follows from a fixed point argument, see ([12], p. 151). �

6. Solution methods

In this section we briefly describe possible solution methods for the linear system (5.4a–d), (5.5a–d), where
we note that (5.5b) decouples from the remaining equations, and for the nonlinear system (5.6a,b).

In order to derive the linear system of equations for the coefficient vectors of the finite element functions
(
Um+1, Pm+1, Pm+1

sing , Pm+1
Γ , δ 
Xm+1, 
κm+1, 
Y m+1, 
Fm+1

Γ ) corresponding to (5.4a–d), (5.5a,c,d), where δ 
Xm+1 =

Xm+1− 
id |Γ m , we begin by introducing the following matrices and vectors, where we closely follow our previous
work in [6]. The new ingredients needed here are the treatment of the terms depending on Cm, the terms
involving Wm and 
Zm, as well as an adapted Schur complement approach due to the presence of the variable

Y m+1. For the benefit of the reader, and to aid reproducibility of the numerical results, we present the full
linear system in detail. Let i, j = 1, . . . ,Km

U
, n, q = 1, . . . ,Km

P
and k, l = 1, . . . ,KΓ . Then

[ 
BΩ]ij :=
(
ρm + Im

0 ρm−1

2 τ
φU

m

j , φU
m

i

)
Id + 2

((
μm D(φU

m

j 
er), D(φU
m

i 
es)
))d

r,s=1

+
1
2

(
ρm, [(
Im

2

Um.∇)φU

m

j ]φU
m

i − [(
Im
2

Um.∇)φU

m

i ]φU
m

j

)
Id,

+
ρΓ

τ

〈
ϕU

m

j , ϕU
m

i

〉h

Γ m
Id + 2μΓ

(〈
Dm

s (πm φU
m

j 
er), Dm
s (πm φU

m

i 
es)
〉

Γ m

)d

r,s=1

[
CΩ]iq := −
(
φP

m

q ,
(
∇. (φU

m

i 
er)
))d

r=1
, [
SΓ,Ω]il := −

(〈
χm

l ,∇s. (πm φU
m

i 
er)
〉

Γ m

)d

r=1
,


bi :=
(
Im
0 ρm−1

τ

Im
2

Um + ρm 
fm+1, φU

m

i

)
+
ρΓ

τ

〈

Πm

m−1

Um |Γ m−1 , ϕU

m

i

〉h

Γ m
− 1

2
ρ+

〈
(
Um. 
n) 
Um, φU

m

i

〉
∂2Ω

;

(6.1)

where {
er}d
r=1 denotes the standard basis in R

d, and where we have used the convention that the subscripts in
the matrix notations refer to the test and trial domains, respectively. A single subscript is used where the two
domains are the same. The entries of 
DΩ, for i = 1, . . . ,Km

U
, are given by [ 
DΩ]i,1 := −〈φU

m

i , 
ωm〉hΓ m .
In order to provide a matrix-vector formulation for the full system (5.4a–d), (5.5a,c,d), and in particular in

view of (5.5c), we recall from ([20], p. 64) that

2
〈
(∇s


ξ)T , Dm
s (
χ) (∇s


id)T
〉

Γ m

=
d∑

i,j=1

〈
(∇s)j (
ξ)i, (∇s)i (
χ)j

〉
Γ m

−
d∑

i,j=1

〈
(
νm)i (
νm)j ∇s (
ξ)j ,∇s (
χ)i

〉
Γ m

+
〈
∇s


ξ,∇s 
χ
〉

Γ m

=
d∑

i,j=1

〈
(∇s)j (
ξ)i, (∇s)i (
χ)j

〉
Γ m

+
d∑

i,j=1

〈
(δij − (
νm)i (
νm)j)∇s (
ξ)j ,∇s (
χ)i

〉
Γ m

.



FEA FOR THE DYNAMICS OF FLUIDIC TWO-PHASE BIOMEMBRANES 2345

Moreover, we observe that 〈∇s. 
ξ,∇s. 
χ〉Γ m =
∑d

i,j=1 〈(∇s)j (
ξ)j , (∇s)i (
χ)i〉Γ m . Hence, in addition to (6.1), we
introduce the following matrices and vectors, where q = 1, . . . ,Km

U
, and k, l = 1, . . . ,KΓ

[ 
BΓ ]kl :=
(
〈[∇s]j χm

l , [∇s]i χm
k 〉Γ m

)d
i,j=1

, [ 
RΓ ]kl :=
〈
∇s χ

m
l .∇s χ

m
k , Id − 
νm ⊗ 
νm

〉
Γ m

,

[ 
MΓ,Ω]ql :=
〈
χm

l , φ
U

m

q

〉
Γ m

Id, [ 
MΓ ]kl := 〈χm
l , χ

m
k 〉hΓ m Id,

[ 
MΓ,α]kl := 〈αm χm
l , χ

m
k 〉hΓ m Id, [AΓ ]kl := 〈∇s χ

m
l ,∇s χ

m
k 〉Γ m , [ 
AΓ ]kl := [AΓ ]kl Id,


ck := −〈αm
κ

m 
νm, χm
k 〉hΓ m +

〈
αG,m ( 
Πm

m−1 
κ
m +Πm

m−1 W
m 
νm), χm

k

〉h

Γ m
,

[
dα]k :=
〈
αm

κ
m, ( 
Πm

m−1 
κ
m.∇s χ

m
k )
νm

〉h

Γ m
,

[
dκ]k :=
1
2

〈
αm | 
Πm

m−1 
κ
m − κ

m 
νm|2 − 2 
Πm
m−1


Y m. 
Πm
m−1 
κ

m,∇s χ
m
k

〉h

Γ m
,

[
dβ ]k := β 〈bGL(Cm),∇s χ
m
k 〉hΓ m − β γ (〈(∇s Cm) ⊗ (∇s Cm), 
er ⊗∇s χ

m
k 〉Γ m)d

r=1

= β 〈bGL(Cm),∇s χ
m
k 〉hΓ m − β γ 〈∇s Cm.∇s χ

m
k ,∇s Cm〉Γ m ,

[
dG]k :=
1
2

〈
αG,m (| 
Πm

m−1 
κ
m|2 + |Πm

m−1W
m|2),∇s χ

m
k

〉h

Γ m
,

[
dZ ]k :=
〈
(Zm 
Πm

m−1 
κ
m + ∇s. Z

m).∇s χ
m
k , 
ν

m
〉h

Γ m
−
〈
(Zm 
Πm

m−1 
κ
m + ∇s. Z

m). 
νm,∇s χ
m
k

〉h

Γ m

−
d∑

i=1

(〈
νm

i ∇s

Zm

i , νm
r [
νm ⊗∇s χ

m
k ] −∇s χ

m
k ⊗ 
er

〉
Γ m

)d

r=1
.

Here we have made use of the facts that

[ 
BΓ ]kl =
(
〈∇s. (χm

l 
ej),∇s. (χm
k 
ei)〉Γ m

)d
i,j=1

=
(
〈(∇s χ

m
l ). 
ej , (∇s χ

m
k ). 
ei〉Γ m

)d
i,j=1

=
(
〈[∇s]j χm

l , [∇s]i χm
k 〉Γ m

)d
i,j=1

and that(〈
νm

i ∇s

Zm

i , 
er ⊗∇s χ
m
k − PΓ m [
er ⊗∇s χ

m
k ] − [∇s χ

m
k ⊗ 
er]PΓ m

〉
Γ m

)d

r=1

=
(〈

νm
i ∇s


Zm
i , [
νm ⊗ 
νm] [
er ⊗∇s χ

m
k ] −∇s χ

m
k ⊗ 
er + [∇s χ

m
k ⊗ 
er] [
νm ⊗ 
νm]

〉
Γ m

)d

r=1

=
(〈

νm
i ∇s


Zm
i , νm

r [
νm ⊗∇s χ
m
k ] −∇s χ

m
k ⊗ 
er + νm

r [∇s χ
m
k ⊗ 
νm]

〉
Γ m

)d

r=1

=
(〈

νm
i ∇s


Zm
i , νm

r [
νm ⊗∇s χ
m
k ] −∇s χ

m
k ⊗ 
er

〉
Γ m

)d

r=1

for i = 1, . . . , d, on noting that ∇s

Zm

i : [∇s χ
m
k ⊗ 
νm] = [(∇s


Zm
i )
νm].∇s χ

m
k = 
0.∇s χ

m
k = 0. Moreover, it

clearly holds that ([ 
BΓ ]kl)T = [ 
BΓ ]lk =: [ 
B�
Γ ]kl.

Denoting the system matrix ⎛⎜⎜⎜⎜⎜⎝

BΩ


CΩ

DΩ


SΓ,Ω


CT
Ω 0 0 0


DT
Ω 0 0 0


ST
Γ,Ω 0 0 0

⎞⎟⎟⎟⎟⎟⎠
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as
(

	BΩ
	C

	CT 0

)
, and letting P̃m+1 = (Pm+1, Pm+1

sing , Pm+1
Γ )T , then the linear system (5.4a–d), (5.5a,c,d) can be

written as ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


BΩ

C 0 0 0 − 
MΓ,Ω


CT 0 0 0 0 0

( 
MΓ,Ω)T 0 0 − 1
τ

MΓ 0 0

0 0 
MΓ

AΓ 0 0

0 0 − 
MΓ,α 0 
MΓ 0

0 0 0 0 − 
AΓ

MΓ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝


Um+1

P̃m+1


κm+1

δ 
Xm+1


Y m+1


Fm+1
Γ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


b
0

0
− 
AΓ


Xm


c


ZΓ

Y m − 
d

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6.2)

where 
ZΓ := 
BΓ − 
B�
Γ − 
RΓ and 
d = 
dκ+
dα+
dβ+
dG+
dZ . For the solution of (6.2) a Schur complement approach

similar to [6] can be used. In particular, the Schur approach for eliminating (
κm+1, δ 
Xm+1, 
Y m+1, 
Fm+1
Γ ) from

(6.2) can be obtained as follows. Let

ΘΓ :=

⎛⎜⎜⎜⎜⎜⎝
0 − 1

τ

MΓ 0 0


MΓ

AΓ 0 0

− 
MΓ,α 0 
MΓ 0

0 0 − 
AΓ

MΓ

⎞⎟⎟⎟⎟⎟⎠ .

Then (6.2) can be reduced to (

BΩ + α 
TΩ


C

CT 0

)(

Um+1

P̃m+1

)
=
(

b+ α
g

0

)
(6.3a)

and ⎛⎜⎜⎜⎜⎝

κm+1

δ 
Xm+1


Y m+1


Fm+1
Γ

⎞⎟⎟⎟⎟⎠ = Θ−1
Γ

⎛⎜⎜⎜⎜⎝
−( 
MΓ,Ω)T 
Um+1

− 
AΓ

Xm


c


ZΓ

Y m − 
d

⎞⎟⎟⎟⎟⎠ . (6.3b)

In (6.3a) we have used the definitions


TΩ = (0 0 0 
MΓ,Ω)Θ−1
Γ

(
( 	MΓ,Ω)T

0
0
0

)
= τ 
MΓ,Ω


M−1
Γ


AΓ

M−1

Γ

MΓ,α


M−1
Γ


AΓ

M−1

Γ ( 
MΓ,Ω)T

and


g = (0 0 0 
MΓ,Ω)Θ−1
Γ

⎛⎜⎜⎝
0

− 
AΓ

Xm


c

ZΓ


Y m − 
d

⎞⎟⎟⎠ .

For the linear system (6.3a) well-known solution methods for finite element discretizations for the standard
Navier–Stokes equations may be employed. We refer to ([4], Sect. 5), where we describe such solution methods
in detail for a very similar situation.

The nonlinear system of algebraic equations arising from the discrete surface Cahn–Hilliard equation (5.6a,b)
can be solved in the same way that such variational inequalities for standard Cahn–Hilliard equations are solved.
In practice we employ the projection Gauss–Seidel method from [9], or the Uzawa-type iteration from [3].
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7. Numerical results

We implemented the scheme (5.4a–d), (5.5a–d), (5.6a,b) with the help of the finite element toolbox
ALBERTA, see [40]. For the bulk mesh adaptation in our numerical computations we use the strategy from [4],
which results in a fine mesh around Γm and a coarse mesh further away from it.

Given the initial triangulation Γ 0 and C0 ∈ W (Γ 0), with C0 ∈ [−1, 1], the initial data 
Y 0 ∈ V (Γ 0), 
κ0 ∈
V (Γ 0) and W 0 ∈ V (Γ 0) are always computed as〈


Y 0, 
η
〉h

Γ 0
=
〈
α(C0) (
κ0 − κ(C0)
ν0) − αG(C0) (
κ0 +W 0 
ν0), 
η

〉h
Γ 0 ∀ 
η ∈ V (Γ 0),

where 
κ0 ∈ V (Γ 0) is the solution to〈

κ0, 
η
〉h

Γ 0 +
〈
∇s


id,∇s 
η
〉

Γ 0
= 0 ∀ 
η ∈ V (Γ 0),

and where W 0 ∈ V (Γ 0) is the solution to〈
W 0, ζ

〉h

Γ 0
+

1
2

〈

ν0, [ζ + ζT ]
κ0 + ∇s. [ζ + ζT ]

〉h

Γ 0
= 0 ∀ ζ ∈ V (Γ 0).

Throughout this section we set

α(s) = αL(s) :=
1
2

(α+ + α−) +
1
2

(α+ − α−) s, (7.1a)

κ(s) =
1
2

(κ+ + κ−) +
1
2

(κ+ − κ−) s, (7.1b)

αG(s) =
1
2

(αG
+ + αG

−) +
1
2

(αG
+ − αG

−) s. (7.1c)

We recall from the discussion around (1.3) that it follows from (7.1c), (1.2a) and (1.3) that only the differ-
ence (αG

+ − αG
−) plays a role in the evolutions with Gaussian curvature. Moreover, for the choices (7.1a,c) the

constraint (1.4) reduces to

min{α−, α+} ≥ 1
2

∣∣αG
+ − αG

−
∣∣ . (7.2)

Unless otherwise stated, we use ρ± = 0, μ± = 1, μΓ = 1, ρΓ = 0, α± = 1, κ± = 0 and αG
± = 0. Moreover, we

normally use ϑ = β = 1.
At times we will discuss the discrete energy of the numerical solutions. On recalling Theorems 4.2 and (5.2),

the discrete energy is defined by
Eh
total = Eh

kin + Eh
κ + Eh

GL,

where

Eh
kin =

1
2
‖[ρm]

1
2 
Um+1‖2

0 +
1
2
ρΓ

〈

Um+1, 
Um+1

〉h

Γ m
,

Eh
κ =

1
2
〈
αm, |
κm+1 − κ

m 
νm|2
〉h

Γ m +
1
2
〈
αG,m, |
κm+1|2 − |Wm+1|2

〉h
Γ m ,

Eh
GL = β 〈bGL(Cm), 1〉hΓ m ,

represent the kinetic, curvature and Cahn–Hilliard parts of the discrete energy.
In plots where we show the concentration Cm in grey scales, the shade scales linearly with Cm ranging from

−1 (white) to 1 (black).



2348 J.W. BARRETT ET AL.

-0.4

-0.2

 0

 0.2

 0.4

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

-0.4

-0.2

 0

 0.2

 0.4

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

-0.4

-0.2

 0

 0.2

 0.4

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

-0.4

-0.2

 0

 0.2

 0.4

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  0.2  0.4  0.6  0.8  1

total
CH

curvature

Figure 2. (α± = 1, κ− = − 1
2 , κ+ = −2, β = 1) Flow for a smooth letter “U”. We show Cm

on Γm at times t = 0, 0.1, 0.2, 1. Below a superimposed plot of the total discrete energy Eh
total,

the discrete Cahn–Hilliard energy, and the discrete curvature energy over [0, 1].

7.1. Numerical simulations in 2D

We start with an initial shape in the form of a smooth letter “U”. The curve has length 2.823 and we use 257
elements on it. For our choice of γ = 0.02 this yields on average about 6 elements across the interface, which
asymptotically has thickness γ π. The time step size is τ = 5 × 10−4. For the computational domain we choose
Ω = (−1, 1)2, and we choose a random distribution for C0 with mean value −0.4. An experiment for κ− = − 1

2

and κ+ = −2 is shown in Figures 2. We observe that due to the choice of κ±, the phase +1 occupies the regions
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Figure 3. (α± = 1, κ− = − 1
2 , κ+ = −2, β = 1) Flow for a smooth letter “U”. We show

arclength plots of Cm at times t = 0, 0.001, 0.01, 0.1, 0.2, 1.

with smaller principal radius, while the phase −1 can be found where the membrane is rather flat. We show
some more detail of the initial spinodal decomposition in Figure 3.

We conducted the following shearing experiments on the domain Ω = (−2, 2)2 for an initial interface in the
form of an ellipse, centred at the origin, with axis lengths 1 and 2.5. The length of the polygonal interface is
5.75, and it has 257 elements. For our choice of γ = 0.05 this yields on average about 7 elements across the
interface. The time step size is τ = 5 × 10−4. Once again we choose a random distribution for C0 with mean
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Figure 4. (α− = 0.05, α+ = 0.2, κ± = 0, β = 1) Shear flow with parameters as in (7.3a),
leading to tank treading. The plots show the interface Γm, together with the concentration Cm

at times t = 1, 11, 13, 15 (top left to bottom right).

value −0.4. In particular, we prescribe the inhomogeneous Dirichlet boundary condition 
g(
z) = (z2, 0)T on
∂1Ω = [−2, 2]× {±2}. The remaining parameters are given by ρ = ρΓ = 1, α− = 0.05, α+ = 0.2 and either

(a) μ+ = 1, μ− = 1, or (b) μ+ = 1, μ− = 10. (7.3)

The results can be seen in Figures 4 and 5, and they should be compared to the corresponding computations
in the absence of any species effect, i.e. for C0 = −1 constant, which can be seen in Figures 2 and 3 in [6].
As there, we observe tank treading when there is no viscosity contrast between inner and outer phase, and we
observe tumbling when there is a viscosity contrast. The main difference to the computations in [6], though, is
that here the regions occupied by the +1 phase on the vesicle remain relatively straight throughout. This means
that the tank treading motion in Figure 4 leads to concave shapes at times. Similarly, the phase distributions
on the tumbling vesicle in Figure 5 have a notable effect on the vesicle shape, when compared with Figure 3
in [6].

Next we show a computation that highlights the Marangoni-type effects due to the tangential terms in (2.9).
To this end, we start off with an initial interface that has an elliptic shape, on which the two phases are already
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Figure 5. (α− = 0.05, α+ = 0.2, κ± = 0, β = 1) Shear flow with parameters as in (7.3b),
leading to tumbling. The plots show the interface Γm, together with the concentration Cm at
times t = 8, 11, 14, 17 (top left to bottom right).

well separated. The values of κ± are then chosen such that a tangential movement of the phases leads to a
decrease in energy. In particular, we let κ− = 0.5, κ+ = 2 and β = 10. The length of the polygonal interface
is 5.75, and it has 257 elements. For our choice of γ = 0.05 this yields on average about 7 elements across the
interface. The computational domain is Ω = (−2, 2)2, and the chosen time step size is τ = 5×10−4. The results
of the simulation are shown in Figure 6. It can be seen that due to the choice of κ±, the +1 phase moves away
from an area of large convex bending to an area that is at first almost flat, and then settles on an area with
a small concave bending. In Figure 7 we visualize the flow field for this computation, and compare it with a
computation when C0 = 1 constant, so that there are no tangential forces in (2.9). One clearly sees the effect of
the tangential force which induces flow close to the interface also at later times.

On replacing the definition in (7.1a) with

α(s) = s2 αL(s) =
1
2

(α+ + α−) s2 +
1
2

(α+ − α−) s3, (7.4a)

or α(s) = (s2 + δ)αL(s), δ > 0, (7.4b)
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Figure 6. (α± = 1, κ− = 0.5, κ+ = 2, β = 10) Flow for an ellipse. We show Cm on Γm at
times t = 0, 1, 2, 3, 4, 10.

Figure 7. (α± = 1, κ− = 0.5, κ+ = 2, β = 10) Visualization of the flow field 
Um at times
t = 1, 2, 3 for the computation in Figure 6 (top), compared to the same computation with
Cm = 1 constant throughout (bottom).
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Figure 8. (α± = 1, κ− = −0.2, κ+ = −2, β = 10) Solution at time t = 1 for the C1–case
(left) and the C0–case (right). Below a superimposed plot of the total discrete energy Eh

total, the
discrete Cahn–Hilliard energy, and the discrete curvature energy over [0, 1].

we can simulate C0–junctions, see also [29], as long as δ → 0 for γ → 0. We obtain interesting results starting
from an ellipse, on which the two phases are already well separated, and using κ− = −0.2, κ+ = −2 and β = 10.
The length of the polygonal interface is 5.75, and it has 257 elements. For our choice of γ = 0.05 this yields
on average about 7 elements across the interface. The computational domain is Ω = (−2, 2)2, and the chosen
time step size is τ = 5× 10−4. In Figure 8 we show the numerical steady states for the two different evolutions,
where for the C0–case we employ the definition (7.4a). The nature of the C0–junction can clearly be seen, which
allows for tangent discontinuities at the interface. This allows the +1 phase to reduce its contribution to the
overall curvature energy. As a result, the total energy for the C0–steady state is 33.52, which is smaller than the
value 33.97 for the C1–case. For the curvature energy contributions the comparison is 2.32 versus 2.83, again
in favour of the C0–junction.

7.2. Numerical simulations in 3D

As a first example for a three-dimensional simulation, we consider the evolution for an initially flat plate
of total dimension 4 × 4 × 1, similarly to ([6], Fig. 8). The triangulations Γm satisfy (KΓ , JΓ ) = (1538, 3072),
and the polygonal surfaces have a surface area of 35.7. This means that for our chosen value of γ = 0.2, there
are on average about 5 elements across the interfacial region on Γm. As the computational domain we choose
Ω = (−2.5, 2.5)3, and we use the time step size τ = 10−3. First we set α± = 1, κ± = 0 and β = 1, so that
the only effect of the two phase aspect is given by the line energy contributions in the free energy. The initial
distribution for C0 is random with mean value −0.4. See Figure 9 for the evolution in this case. Repeating the
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Figure 9. (α± = 1, κ± = 0, β = 1) Plots of Cm on Γm at times t = 0.5, 1, 2, 10. Below
a superimposed plot of the total discrete energy Eh

total, the discrete Cahn–Hilliard energy, and
the discrete curvature energy over [0, 10].
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Figure 10. (α− = 1
2 , α+ = 2, κ± = 0, β = 1) Plots of Cm on Γm at times t = 0.5, 1, 2, 10.

Compared to Figure 9, the final plot is less concave. Below a superimposed plot of the total
discrete energy Eh

total, the discrete Cahn–Hilliard energy, and the discrete curvature energy
over [0, 10].

same experiment for α− = 1
2 , α+ = 2 gives the results in Figure 10. We note that the final shape is now a bit

flatter, since the +1 phase does not allow the inner part of the membrane to become very concave.
In order to investigate budding, we start from a four-armed shape with well-developed interfaces between the

two surface phases. As we use a finer mesh with (KΓ , JΓ ) = (3074, 6144), we now choose γ = 0.1. Moreover, we
have set α± = 1, κ− = − 1

2 , κ+ = −2 to encourage the forming of the buds. In the first experiment we set β = 1
and observe the results shown in Figure 11. The same experiment with β = 5 is shown in Figure 12, where we
observe budding behaviour now. In particular, the +1 phase would like to pinch off the membrane at the four
corners.
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Figure 11. (α± = 1, κ− = − 1
2 , κ+ = −2, β = 1) Plots of Cm on Γm at times t = 0.5, 1, 5.
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Figure 12. (α± = 1, κ− = − 1
2 , κ+ = −2, β = 5) Plots of Cm on Γm at times t = 0.5, 1, 5.
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Figure 13. (α− = 0.05, α+ = 0.1, κ± = 0, β = 1, ϑ = 100) Flow through a constriction. Plots
of Cm on Γm at times t = 0, 0.3, 0.5, 1, 1.2, 1.5. Below we show enlarged plots of Cm on Γm

at times t = 1, 1.2, 1.5.

The numerical simulation of a vesicle flowing through a constriction can be seen in Figure 13. This is a two-
phase analogue of the simulation shown in ([6], Fig. 9). Here we choose the initial shape of the interface to be



2356 J.W. BARRETT ET AL.

-0.8

-0.4

0

0.4

0.8

-1

1

-0.8

-0.4

0

0.4

0.8

-1

1

-0.8

-0.4

0

0.4

0.8

-1

1

-0.8

-0.4

0

0.4

0.8

-1

1

-0.8

-0.4

0

0.4

0.8

-1

1

-0.8

-0.4

0

0.4

0.8

-1

1

 50

 100

 150

 200

 250

 300

 0  0.05  0.1  0.15  0.2  0.25  0.3

total
CH

curvature

Figure 14. (α± = 1, κ± = 0, β = 1) Spinodal decomposition on a membrane. Plots of Cm on
Γm at times t = 0.01, 0.02, 0.05, 0.1, 0.2, 0.3. Below a superimposed plot of the total discrete
energy Eh

total, the discrete Cahn–Hilliard energy, and the discrete curvature energy over [0, 0.3].

a biconcave surface resembling a human red blood cell. The shape has surface area 2.23, and the triangulations
Γm satisfy (KΓ , JΓ ) = (3074, 6144). This means that for our chosen value of γ = 0.05, there are on average
about 6 elements across the interfacial region on Γm. As the computational domain we choose Ω = (−2,−1)×
(−1, 1)2 ∪ [−1, 1] × (−0.5, 0.5)2 ∪ (1, 2) × (−1, 1)2. We define ∂2Ω = {2} × (−1, 1)2 and on ∂1Ω we set no-slip
conditions, except on the left hand part {−2} × [−1, 1]2, where we prescribe the inhomogeneous boundary
conditions 
g(
z) = ([1 − z2

2 − z2
3 ]+, 0, 0)T in order to model a Poiseuille-type flow. For the remaining parameters

we set α− = 0.05, α+ = 0.1 and ϑ = 100. We notice that during the evolution the membrane in Figure 13 deforms
more than in the corresponding simulation with only a single phase C0 = 1, see ([6], Fig. 9). In particular, we
observe that the +1 phase, which prefers a relatively flat surface, forces the surface to remain deformed also
long after it has left the constriction.

In Figure 14 we show a numerical experiment for spinodal decomposition on a membrane, starting from a
random distribution of phases with mean value −0.4. The shape has surface area 35.7, and the triangulations
Γm satisfy (KΓ , JΓ ) = (6146, 12288). This means that for our chosen value of γ = 0.1, there are on average
about 6 elements across the interfacial region on Γm. Similarly, in Figure 15 we show the evolution for spinodal
decomposition on a seven-arm surface, where the initial phase variable is C0 = −0.4 constant. The shape has
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Figure 15. (α± = 1, κ− = −0.5, κ+ = −2, β = 1) Spinodal decomposition on a seven-
arm membrane. Plots of Cm on Γm at times t = 0, 0.01, 0.02, 0.03, 0.05, 0.1. Below a
superimposed plot of the total discrete energy Eh

total, the discrete Cahn–Hilliard energy, and
the discrete curvature energy over [0, 0.1].

surface area 10.5, and the triangulations Γm satisfy (KΓ , JΓ ) = (2314, 4624). This means that for our chosen
value of γ = 0.2, there are on average about 9 elements across the interfacial region on Γm. For the phase
parameters we choose κ− = −0.5 and κ+ = −2. The spontaneous curvature of the +1 phase leads to a
preference of the +1 phase to be curved away from the outer normal. In accordance with this remark we observe
that the +1 phase appears after the phase separation at the more highly curved tips of the fingers.

In the following, we present some computations for αG
± �= 0. When we repeat the experiment in Figure 9 for

the choices αG
− = 0.5, αG

+ = 0 and αG
− = 0, αG

+ = 0.5, we obtain the results in Figures 16 and 17, respectively.
We note that for this choice of parameters, the bound (7.2) holds. Comparing the results in Figure 9 with the
ones in Figures 16 and 17 clearly shows the influence of the Gaussian energy terms. In Figure 16 the region of
the largest Gaussian curvature is in the +1 phase and the region of the smallest Gaussian curvature is in the −1
phase. This is in accordance with the fact that the energy penalizes Gaussian curvature only in the −1 phase.
On the other hand, in Figure 17 the region with the largest Gaussian curvature is the −1 phase and the +1
phase has a smaller Gaussian curvature when compared to Figure 16.
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Figure 16. (α± = 1, κ± = 0, αG
− = 0.5, αG

+ = 0, β = 1) Plots of Cm on Γm at times
t = 0.5, 1, 2, 3. Below a superimposed plot of the total discrete energy Eh

total, the discrete
Cahn–Hilliard energy, and the discrete curvature energy over [0, 3].
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Figure 17. (α± = 1, κ± = 0, αG
− = 0, αG

+ = 0.5, β = 1) Plots of Cm on Γm at times
t = 0.5, 1, 2, 3. Below a superimposed plot of the total discrete energy Eh

total, the discrete
Cahn–Hilliard energy, and the discrete curvature energy over [0, 3].

Appendix A. Strong and weak formulations

The goal of this Appendix is to relate the weak formulation, (3.30a–e), (3.31b), of the first variations with
respect to the geometry and c of the energy in (1.2a), to the strong formulations (2.9) and (1.5b), respectively.



FEA FOR THE DYNAMICS OF FLUIDIC TWO-PHASE BIOMEMBRANES 2359

As we allow for tangential motion, it is necessary to take into account variations which are not necessarily
normal. This is in contrast to [25], where only normal variations were considered.

We recall that ∇s = (∂s1 , . . . , ∂sd
)T , and note from ([21], Lem. 2.6) that for sufficiently smooth φ it holds

that
∂sk

∂si φ− ∂si ∂sk
φ = [(∇s 
ν)∇s φ]i νk − [(∇s 
ν)∇s φ]k νi ∀ i, k ∈ {1, . . . , d} on Γ (t). (A.1)

It follows from (2.13), (A.1) and (2.14) that

Δs 
ν = ∇s (∇s. 
ν) − |∇s 
ν|2 
ν = −|∇s 
ν|2 
ν −∇s κ. (A.2)

Moreover, we have from (2.14), (3.22), (3.19), (2.13), (3.21a) and (A.2) that

∂0
ε κ = −∂0

ε (∇s. 
ν) = −[∇s 
χ− 2Ds(
χ)] : ∇s 
ν −∇s. (∂0
ε 
ν)

= ∇s 
χ : ∇s 
ν + ∇s. ([∇s 
χ]T 
ν) = 2∇s 
χ : ∇s 
ν + (Δs 
χ)
ν = Δs (
χ. 
ν) − 
χ.Δs 
ν

= Δs (
χ.
ν) + |∇s 
ν|2 (
χ. 
ν) + 
χ.∇s κ. (A.3)

A.1. Derivation of the strong formulation

We admit general variations 
χ = χ
ν + 
χtan, where 
χtan. 
ν = 0, of (1.2a) with respect to Γ , whereas in [25]
only normal variations 
χ = χ
ν of the geometry are considered.

We consider first the bending energy in (1.2a) and have from (3.17), on recalling (1.2b), that[
δ

δΓ
〈b(κ, c), 1〉Γ (t)

]
(
χ) =

〈
α(c) (κ − κ(c)), ∂0

ε κ
〉

Γ (t)
+ 〈b(κ, c),∇s. 
χ〉Γ (t) . (A.4)

We obtain from (A.4) and (A.3), on recalling (3.11), that[
δ

δΓ
〈b(κ, c), 1〉Γ (t)

]
(
χ) =

〈
Δs [α(c) (κ − κ(c))] + α(c) [(κ − κ(c)) |∇s 
ν|2 −

1
2

(κ − κ(c))2 κ], 
χ. 
ν
〉

Γ (t)

− 〈∇s b(κ, c), 
χ〉Γ (t) + 〈α(c) (κ − κ(c))∇s κ, 
χ〉Γ (t)

=
〈
Δs [α(c) (κ − κ(c))] + α(c) [(κ − κ(c)) |∇s 
ν|2 −

1
2

(κ − κ(c))2 κ], 
χ. 
ν
〉

Γ (t)

− 〈b,c(κ, c), 
χ.∇s c〉Γ (t) . (A.5a)

In addition, it holds that [
δ

δc
〈b(κ, c), 1〉Γ (t)

]
(η) = 〈b,c(κ, c), η〉Γ (t) . (A.5b)

Choosing just a normal variation, 
χ = χ
ν, means that (A.5a,b) collapses to the result in ([25], (4.5)), on
noting (2.10).

Next, we consider the interfacial energy in (1.2a). We have from (3.17), (3.24) and (3.11) that[
δ

δΓ
〈bGL(c), 1〉Γ (t)

]
(
χ) = −γ 〈∇s c, (∇s 
χ)∇s c〉Γ (t) +

〈
1
2
γ |∇s c|2 + γ−1 Ψ(c),∇s. 
χ

〉
Γ (t)

= −
〈(

1
2
γ |∇s c|2 + γ−1 Ψ(c)

)
κ, 
χ. 
ν

〉
Γ (t)

−
〈
∇s

(
1
2
γ |∇s c|2 + γ−1 Ψ(c)

)
, 
χ

〉
Γ (t)

+ γ 〈∇s. [(∇s c) ⊗ (∇s c)], 
χ〉Γ (t) , (A.6a)

where we have noted from (3.11) that

〈∇s c, (∇s 
χ)∇s c〉Γ (t) = −〈∇s. [(∇s c) ⊗ (∇s c)], 
χ〉Γ (t) .
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In addition, it holds that

[
δ

δc
〈bGL(c), 1〉Γ (t)

]
(η) =

〈
−γ Δs c + γ−1 Ψ ′(c), η

〉
Γ (t)

. (A.6b)

Once again, choosing a normal variation, 
χ = χ
ν, means that (A.6a,b) collapses to ([25], (4.8)), on noting that


ν. (∇s. [(∇s c) ⊗ (∇s c)]) = −∇s 
ν : [(∇s c) ⊗ (∇s c)].

For d = 3 only, we compute the first variation of the Gaussian curvature bending energy in (1.2a). We start
by deriving an expression for ∂0

ε K. On recalling (2.15), we first compute

1
2
∂0

ε |∇s 
ν|2 = ∇s 
ν : ∂0
ε (∇s 
ν). (A.7)

From (3.23) we have that

∂0
ε (∇s νi) = [∇s 
χ− 2Ds(
χ)]∇s νi + ∇s (∂0

ε νi) i ∈ {1, 2, 3},

yielding, on noting (2.13) and (3.19), that

∂0
ε (∇s 
ν) = ∂0

ε (∇s 
ν)T = [∇s 
χ−2Ds(
χ)] (∇s 
ν)T +[∇s (∂0
ε 
ν)]

T = [∇s 
χ−2Ds(
χ)]∇s 
ν+[∇s ([∇s 
χ]T 
ν)]T . (A.8)

We deduce from (A.7), (A.8), (2.13), (2.7b) and (3.21a) that

1
2
∂0

ε |∇s 
ν|2 = −∇s 
ν : (∇s 
χ)T ∇s 
ν −∇s 
ν : ∇s ([∇s
χ]T 
ν) = T1 + T2. (A.9)

Adopting the standard summation convention, we have that

= −(∂sj νi) (∂sk
χi) ∂sj νk = −(∂si νk) (∂sj χk) ∂si νj = −(∂sk

νi) (∂sj χk) ∂sj νi (A.10)

and, on noting (2.13), that

T2 = −(∂sj νi) ∂sj ((∂si χk) νk) = −(∂sj νi) ∂sj (∂si (χk νk) − χk ∂si νk)
= −∂sj ((∂sj νi) ∂si (χk νk)) + (∂sj ∂sj νi) ∂si (χk νk) + (∂sj νi) ∂sj (χk ∂sk

νi)
= −∂sj ((∂sj νi) ∂si (χk νk)) + (∂sj ∂sj νi) ∂si (χk νk) + (∂sj νi)

[
(∂sj ∂sk

νi)χk + (∂sj χk) ∂sk
νi

]
= −∇s. ((∇s 
ν)∇s (
χ. 
ν)) + (Δs 
ν).∇s (
χ. 
ν) + (∂sj νi)

[
(∂sj ∂sk

νi)χk + (∂sj χk) ∂sk
νi

]
. (A.11)

Next, we note from (A.7) and (2.13) that

χk (∂sj νi) (∂sj ∂sk
νi) = χk (∂sj νi)

[
∂sk

∂sj νi − [(∇s 
ν)∇s νi]j νk

]
=

1
2

χ.∇s |∇s 
ν|2 − ((∇s 
ν)2 : ∇s 
ν) 
χ. 
ν.

(A.12)
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Combining (A.9)–(A.12) and noting (2.13) yields that

1
2
∂0

ε |∇s 
ν|2 = −∇s. ((∇s 
ν)∇s (
χ. 
ν)) + (Δs 
ν).∇s (
χ. 
ν) +
1
2

χ.∇s |∇s 
ν|2 − tr((∇s 
ν)3) 
χ. 
ν. (A.13)

As the eigenvalues of −∇s
ν are 0, κ1 and κ2, we have from (2.13) and (2.14) that

(∇s 
ν)2 : (∇s 
ν) = tr((∇s 
ν)3) = −(κ3
1 + κ

3
2) = −(κ2

1 + κ
2
2 − κ1 κ2) (κ1 + κ2) = (K − |∇s 
ν|2) κ. (A.14)

Combining (A.13) and (A.14), on noting (A.2), yields that

1
2
∂0

ε |∇s 
ν|2 = −∇s. ((∇s 
ν)∇s (
χ. 
ν)) − (∇s κ).∇s (
χ. 
ν) +
1
2

(∇s |∇s 
ν|2). 
χ + (|∇s 
ν|2 − K) κ 
χ. 
ν. (A.15)

On recalling (2.15) and (A.3), and combining with (A.15), we finally have that

∂0
ε K =

1
2
∂0

ε (κ2 − |∇s 
ν|2) = κ ∂0
ε κ − 1

2
∂0

ε |∇s 
ν|2

= κ
[
Δs (
χ. 
ν) + |∇s 
ν|2 
χ. 
ν + 
χ.∇s κ

]
+ ∇s. ((∇s 
ν)∇s (
χ. 
ν)) + (∇s κ).∇s (
χ. 
ν) − 1

2
(∇s |∇s 
ν|2). 
χ

− (|∇s 
ν|2 −K) κ 
χ. 
ν

= κΔs (
χ. 
ν) +
1
2

(∇s κ
2). 
χ− 1

2
(∇s |∇s 
ν|2). 
χ+ ∇s. ((∇s 
ν)∇s (
χ. 
ν)) + (∇s κ).∇s (
χ. 
ν) + Kκ 
χ. 
ν

= ∇s. [(κ Id + ∇s 
ν)∇s (
χ. 
ν)] + ∇s K. 
χ + Kκ 
χ. 
ν. (A.16)

On noting (3.17), (3.11) and (A.16), we have that[
δ

δΓ

〈
αG(c),K

〉
Γ (t)

]
(
χ) =

〈
αG(c), ∂0

ε K
〉

Γ (t)
+
〈
αG(c)K,∇s. 
χ

〉
Γ (t)

= −
〈
K, 
χ.∇s α

G(c)
〉

Γ (t)
+
〈
αG(c), ∂0

ε K − 
χ.∇s K − κ K 
χ.
ν
〉

Γ (t)

= −
〈
K, 
χ.∇s α

G(c)
〉

Γ (t)
+
〈
αG(c),∇s. [(κ Id + ∇s 
ν)∇s (
χ. 
ν)]

〉
Γ (t)

= −
〈
K, 
χ.∇s α

G(c)
〉

Γ (t)
+
〈
∇s. [(κ Id + ∇s 
ν)∇s α

G(c)], 
χ. 
ν]
〉

Γ (t)
. (A.17a)

In addition, it holds that [
δ

δc

〈
αG(c),K

〉
Γ (t)

]
(η) =

〈
(αG)′(c) η,K

〉
Γ (t)

. (A.17b)

Once again, (A.17a,b) collapses to ([25], (4.6)) if 
χ = χ
ν. Finally, the Cayley–Hamilton theorem applied to
−∇s 
ν yields, on recalling (2.13), that

(∇s 
ν)3 + κ (∇s 
ν)2 + K∇s 
ν = 0 ⇒ (∇s 
ν + κ Id)PΓ = K (−∇s 
ν)−1 PΓ ,

where we note that (∇s 
ν)−1 is well-defined on the tangent space. With this identity it is possible to show that
∇s. ([κ Id+∇s 
ν]∇s α

G(c)) = Δ̂s α
G(c), where Δ̂s is the second surface Laplacian used in the paper [36] to derive

the first variation of the Gaussian curvature bending energy. However, comparing our (2.9) and e.g. Lemma 5.1
in [36], there appears to be a sign discrepancy in the latter.

It follows from (A.5a,b), (A.6a,b), (A.17a,b) and (1.2a,b) that[
δ

δΓ
E(Γ (t), c(t))

]
(
χ) = −

〈

fΓ , 
χ
〉

Γ (t)
(A.18a)

and [
δ

δc
E(Γ (t), c(t))

]
(η) = 〈m, η〉Γ (t) , (A.18b)

where 
fΓ and m are defined in (2.9) and (1.5b), respectively.
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A.2. Weak formulation equals strong formulation

Here we show that the weak formulation (3.30a–e), (3.31b) equals the strong formulation (2.9), (1.5b).
Recall from (3.29a) and (3.30a) that minus the first variation of the Lagrangian (3.28) with respect to the

geometry is given by


fΓ = −
[
δ

δΓ
L

]
(
χ)

= 〈∇s 
y,∇s 
χ〉Γ (t) + 〈∇s. 
y,∇s. 
χ〉Γ (t) − 2
〈
(∇s 
y)T , Ds(
χ) (∇s


id)T
〉

Γ (t)

− 1
2

〈
[α(c) |
κ − κ(c)
ν|2 − 2 (
y. 
κ)]∇s


id,∇s 
χ
〉

Γ (t)
−
〈
α(c) (
κ − κ(c)
ν) κ(c), [∇s 
χ]T 
ν

〉
Γ (t)

− β

〈
1
2
γ |∇s c|2 + γ−1 Ψ(c),∇s. 
χ

〉
Γ (t)

+ β γ 〈(∇s c) ⊗ (∇s c),∇s 
χ〉Γ (t)

− 1
2
〈
αG(c) (|
κ|2 − |w|2),∇s. 
χ

〉
Γ (t)

+
〈
w : z,∇s. 
χ

〉
Γ (t)

+
〈

ν. (∇s. z),∇s. 
χ

〉
Γ (t)

+
〈

ν. (z 
κ),∇s. 
χ

〉
Γ (t)

+
d∑

i=1

[
〈νi ∇s 
zi,∇s 
χ〉Γ (t) − 2

〈
νi (∇s 
zi)T , Ds(
χ) (∇s


id)T
〉

Γ (t)

]

−
〈
z 
κ, [∇s 
χ]T 
ν

〉
Γ (t)

−
〈
∇s. z, [∇s 
χ]T 
ν

〉
Γ (t)

=
14∑

�=1

T� (A.19)

for 
χ ∈ [H1(Γ (t))]d.
On recalling Remark 3.2 and 
κ = κ 
ν, we have that

z = −αG(c)w = −αG(c)∇s 
ν ⇒ 
zi = z 
ei = −αG(c)∇s νi = −αG(c) ∂si 
ν, (A.20)

and so it follows that z 
κ = 
0. Hence T11 = T13 = 0. Moreover, 
ν. [∇s 
χ]T 
ν = 0, which implies that T5 = 0. In
addition, we recall from (3.30b) and wT 
ν = w
ν = 
0 that


y = y 
ν with y = α(c) (κ − κ(c)) + αG(c) κ, (A.21)

and so as ∇s. 
ν = −κ it holds, on recalling (1.2b), (3.9) and (3.11), that∑
�∈{2,4,8}

T� = −〈yκ,∇s. 
χ〉Γ (t) + T4 + T8 = −
〈
b(κ, c) + αG(c)K,∇s. 
χ

〉
Γ (t)

=
〈
∇s

[
b(κ, c) + αG(c)K

]
, 
χ
〉

Γ (t)
+
〈[
b(κ, c) + αG(c)K

]
κ, 
χ. 
ν

〉
Γ (t)

. (A.22)

It also holds, on noting ([8], (A.22), (A.19)) and (3.21b), where we stress that the notation D(
χ) there differs
from Ds(
χ) here by a factor 2 and by the absence of the projections PΓ , that∑

�∈{1,3}
T� = 〈∇s (y 
ν),∇s 
χ〉Γ (t) − 2

〈
[∇s (y 
ν)]T , Ds(
χ) (∇s


id)T
〉

Γ (t)

= 〈∇s (y 
ν),∇s 
χ〉Γ (t) −
〈
[∇s (y 
ν)]T , (∇s 
χ+ (∇s 
χ)T )PΓ

〉
Γ (t)

= 〈∇s (y 
ν), (
ν ⊗ 
ν)∇s 
χ〉Γ (t) − 〈y∇s 
ν,∇s 
χ〉Γ (t)

= 〈∇s y,∇s (
χ. 
ν)〉Γ (t) −
〈
∇s. [y (∇s 
ν)T 
χ], 1

〉
Γ (t)

−
〈
y (|∇s 
ν|2 
ν + ∇s κ), 
χ

〉
Γ (t)

= 〈∇s y,∇s (
χ. 
ν)〉Γ (t) −
〈
y (|∇s 
ν|2 
ν + ∇s κ), 
χ

〉
Γ (t)

, (A.23)
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where in the last equality we have noted that Γ (t) is a closed surface. Moreover, we note from (A.21) and (1.2b)
that

y∇s κ = [α(c) (κ − κ(c)) + αG(c) κ]∇s κ

= ∇s (b(κ, c) +
1
2
αG(c) κ

2) − [b,c(κ, c) +
1
2

(αG)′(c) κ
2]∇s c. (A.24)

Combining (A.22), (A.23) and (A.24) yields, on noting (3.11), (A.21) and (3.9), that∑
�∈{1,...,4,8}

T� = −
〈
Δs [α(c) (κ − κ(c)) + αG(c) κ], 
χ. 
ν

〉
Γ (t)

+
〈
[b(κ, c) + αG(c)K] κ, 
χ. 
ν

〉
Γ (t)

+
〈

[b,c(κ, c) +
1
2

(αG)′(c) κ
2]∇s c, 
χ

〉
Γ (t)

−
〈
(α(c) (κ − κ(c)) + αG(c) κ) |∇s 
ν|2, 
χ. 
ν

〉
Γ (t)

− 1
2
〈
∇s (αG(c) |∇s 
ν|2), 
χ

〉
Γ (t)

. (A.25)

It holds on noting (3.11) that∑
�∈{6,7}

T� = β
〈
∇s [12 γ |∇s c|2 + γ−1 Ψ(c)], 
χ

〉
Γ (t)

+ β
〈
[12 γ |∇s c|2 + γ−1 Ψ(c)] κ, 
χ. 
ν

〉
Γ (t)

− β γ 〈∇s. ((∇s c) ⊗ (∇s c)), 
χ〉Γ (t) . (A.26)

In addition, we have from (A.20) that∑
�∈{9,10}

T� =
〈
w : z + 
ν. (∇s. z),∇s. 
χ

〉
Γ (t)

= −
〈
αG(c) |∇s 
ν|2 + 
ν. [∇s. (αG(c)∇s 
ν)],∇s. 
χ

〉
Γ (t)

= 0,

where we have observed from (A.2) that


ν. [∇s. (αG(c)∇s 
ν)] = 
ν. [αG(c)Δs 
ν + (∇s 
ν)∇s α
G(c)] = αG(c)
ν.Δs 
ν

= αG(c)
ν. [−|∇s 
ν|2 
ν −∇s κ] = −αG(c) |∇s 
ν|2.

It follows from (3.21b) and PΓ = ∇s

id that

T12 =
d∑

i=1

[
〈νi ∇s 
zi,∇s 
χ〉Γ (t) − 2

〈
νi (∇s 
zi)T , Ds(
χ) (∇s


id)T
〉

Γ (t)

]
= −

d∑
i=1

〈
νi (∇s 
zi)T ,∇s 
χ

〉
Γ (t)

, (A.27)

provided that we can show that

d∑
i=1

[
〈νi ∇s 
zi,∇s 
χ〉Γ (t) −

〈
νi (∇s 
zi)T , (∇s 
χ)T PΓ

〉
Γ (t)

]
= 0. (A.28)

In order to establish (A.28), we note, on recalling (A.20) and (A.1), that

νi ∇s 
zi : ∇s 
χ− νi (∇s 
zi)T : [(∇s 
χ)T PΓ ] = νi (∇s 
zi)kj

[
∂sj χk − (∂sj χl) (δlk − νl νk)

]
= νi (∇s 
zi)kj (∂sj χl) νl νk = −νi [∂sj (αG(c) ∂sk

νi)] (∂sj χl) νl νk

= −νi νl νk α
G(c) (∂sj ∂sk

νi) ∂sj χl = νi νl νk α
G(c) [(∇s 
ν)∇s νi]j νk ∂sj χl

= νi νl α
G(c) [(∇s 
ν)∇s νi]j ∂sj χl = νi νl α

G(c) (∂sk
νj) (∂sk

νi) ∂sj χl = 0,

since νi ∂sk
νi = 1

2 ∂sk
|
ν|2 = 0.
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Returning to (A.27), we have on noting (A.20), (3.11), (A.1) and (A.2) that

T12 = −
d∑

i=1

〈
νi ∇s 
zi, (∇s 
χ)T

〉
Γ (t)

=
〈
νi ∂sl

(αG(c) ∂sk
νi), ∂sk

χl

〉
Γ (t)

=
〈
αG(c) νi ∂sl

∂sk
νi, ∂sk

χl

〉
Γ (t)

= −
〈
αG(c) (∂sl

νi) ∂sk
νi, ∂sk

χl

〉
Γ (t)

=
〈
αG(c) [(∂sk

∂sl
νi) ∂sk

νi + (∂sl
νi) ∂sk

∂sk
νi] + (∂sk

αG(c)) (∂sl
νi) ∂sk

νi, χl

〉
Γ (t)

=
〈
αG(c) ∂sk

νi [∂sl
∂sk

νi − [(∇s 
ν)∇s νi]k νl] , χl

〉
Γ (t)

−
〈
αG(c) (∂sl

νi) ∂si κ, χl

〉
Γ (t)

+
〈
(∂sk

αG(c)) (∂sl
νi) ∂sk

νi, χl

〉
Γ (t)

=
1
2
〈
αG(c)∇s |∇s 
ν|2, 
χ

〉
Γ (t)

−
〈
αG(c) (∇s 
ν)2,∇s 
ν (
χ. 
ν)

〉
Γ (t)

−
〈
αG(c) (∇s 
ν)∇s κ, 
χ

〉
Γ (t)

+
〈
(∇s 
ν)2 ∇s α

G(c), 
χ
〉

Γ (t)
. (A.29)

The remaining term from (A.19) can be rewritten, on noting (A.20), (3.11), (A.2) and (2.13), as

T14 = −
d∑

i=1

〈
(∂si 
zi) ⊗ 
ν, (∇s 
χ)T

〉
Γ (t)

=
〈
∂si (αG(c) ∂si νk), νl ∂sk

χl

〉
Γ (t)

=
〈
(∂si α

G(c)) ∂si νk + αG(c) ∂si ∂si νk, νl ∂sk
χl

〉
Γ (t)

=
〈
(∂si α

G(c)) ∂si νk − αG(c) ∂sk
κ, νl ∂sk

χl

〉
Γ (t)

= −
〈
(∂sk

[(∂si α
G(c)) ∂si νk]) νl + (∂si α

G(c)) (∂si νk) ∂sk
νl, χl

〉
Γ (t)

−
〈
(∂si α

G(c)) (∂sk
νi) κ νk, χl νl

〉
Γ (t)

+
〈
(∂sk

[αG(c) ∂sk
κ]) νl + αG(c) (∂sk

κ) ∂sk
νl, χl

〉
Γ (t)

= −
〈
∇s. [(∇s 
ν)∇s α

G(c)], 
χ. 
ν
〉

Γ (t)
−
〈
(∇s 
ν)2 ∇s α

G(c), 
χ
〉

Γ (t)

+
〈
∇s. (αG(c)∇s κ), 
χ. 
ν

〉
Γ (t)

+
〈
αG(c) (∇s 
ν)∇s κ, 
χ

〉
Γ (t)

. (A.30)

Hence we have from (A.29) and (A.30), on noting (A.14) for d = 3 and on recalling that αG = 0 for d = 2, that∑
�∈{12,14}

T� =
1
2
〈
αG(c)∇s |∇s 
ν|2, 
χ

〉
Γ (t)

+
〈
αG(c) [|∇s 
ν|2 −K] κ, 
χ. 
ν

〉
Γ (t)

−
〈
∇s. [(∇s 
ν)∇s α

G(c)], 
χ. 
ν
〉

Γ (t)
+
〈
∇s. [αG(c)∇s κ], 
χ. 
ν

〉
Γ (t)

. (A.31)

Combining (A.31) with (A.25) yields, on recalling (3.9), that∑
�∈{1,...4,8,12,14}

T� = −
〈
Δs [α(c) (κ − κ(c))] + α(c) (κ − κ(c)) |∇s
ν|2 − b(κ, c) κ, 
χ. 
ν

〉
Γ (t)

−
〈
∇s. ([κ Id + ∇s 
ν]∇s α

G(c)), 
χ. 
ν
〉

Γ (t)
+
〈
[b,c(κ, c) + (αG)′(c)K]∇s c, 
χ

〉
Γ (t)

. (A.32)

Summing (A.32) and (A.26) yields the strong form (2.9).
Finally, (3.31b), (2.10), (A.20), (2.15) and (3.11) immediately yield (1.5b).
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