An adaptive finite element PML method for the elastic wave scattering problem in periodic structures
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 5, pp. 2017-2047.

An adaptive finite element method is presented for the elastic scattering of a time-harmonic plane wave by a periodic surface. First, the unbounded physical domain is truncated into a bounded computational domain by introducing the perfectly matched layer (PML) technique. The well-posedness and exponential convergence of the solution are established for the truncated PML problem by developing an equivalent transparent boundary condition. Second, an a posteriori error estimate is deduced for the discrete problem and is used to determine the finite elements for refinements and to determine the PML parameters. Numerical experiments are included to demonstrate the competitive behavior of the proposed adaptive method.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017018
Classification : 65N30, 78A45, 35Q60
Mots-clés : Elastic wave equation, adaptive finite element, perfectly matched layer, a posteriori error estimate
Jiang, Xue 1 ; Li, Peijun 2 ; Lv, Junliang 3 ; Zheng, Weiying 4

1 School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, P.R. China.
2 Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA.
3 School of Mathematics, Jilin University, Changchun 130012, P.R. China.
4 LSEC, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences; School of Mathematical Science, University of Chinese Academy of Sciences, 100190, P.R. China.
@article{M2AN_2017__51_5_2017_0,
     author = {Jiang, Xue and Li, Peijun and Lv, Junliang and Zheng, Weiying},
     title = {An adaptive finite element {PML} method for the elastic wave scattering problem in periodic structures},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2017--2047},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {5},
     year = {2017},
     doi = {10.1051/m2an/2017018},
     mrnumber = {3731558},
     zbl = {1408.74048},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2017018/}
}
TY  - JOUR
AU  - Jiang, Xue
AU  - Li, Peijun
AU  - Lv, Junliang
AU  - Zheng, Weiying
TI  - An adaptive finite element PML method for the elastic wave scattering problem in periodic structures
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 2017
EP  - 2047
VL  - 51
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2017018/
DO  - 10.1051/m2an/2017018
LA  - en
ID  - M2AN_2017__51_5_2017_0
ER  - 
%0 Journal Article
%A Jiang, Xue
%A Li, Peijun
%A Lv, Junliang
%A Zheng, Weiying
%T An adaptive finite element PML method for the elastic wave scattering problem in periodic structures
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 2017-2047
%V 51
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2017018/
%R 10.1051/m2an/2017018
%G en
%F M2AN_2017__51_5_2017_0
Jiang, Xue; Li, Peijun; Lv, Junliang; Zheng, Weiying. An adaptive finite element PML method for the elastic wave scattering problem in periodic structures. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 5, pp. 2017-2047. doi : 10.1051/m2an/2017018. http://www.numdam.org/articles/10.1051/m2an/2017018/

T. Arens, The scattering of plane elastic waves by a one-dimensional periodic surface. Math. Methods Appl. Sci. 22 (1999) 55–72. | DOI | MR | Zbl

T. Arens, A new integral equation formulation for the scattering of plane elastic waves by diffraction gratings. J. Int. Equ. Appl. 11 (1999) 275–297. | MR | Zbl

I. Babuška and A. Aziz, Survey Lectures on Mathematical Foundations of the Finite Element Method, in The Mathematical Foundations of the Finite Element Method with Application to the Partial Differential Equations, edited by A. Aziz. Academic Press, New York (1973) 5–359. | MR | Zbl

G. Bao, Finite element approximation of time harmonic waves in periodic structures. SIAM J. Numer. Anal. 32 (1995) 1155–1169. | DOI | MR | Zbl

G. Bao, Variational approximation of Maxwell’s equations in biperiodic structures. SIAM J. Appl. Math. 57 (1997) 364–381. | DOI | MR | Zbl

G. Bao, Z. Chen and H. Wu, Adaptive finite element method for diffraction gratings. J. Opt. Soc. Amer. A 22 (2005) 1106–1114. | DOI | MR

G. Bao, D.C. Dobson and J.A. Cox, Mathematical studies in rigorous grating theory. J. Opt. Soc. Amer. A 12 (1995) 1029–1042. | DOI | MR

G. Bao, L. Cowsar and W. Masters, Mathematical Modeling in Optical Science. Vol. 22 of Front. Appl. Math. SIAM, Philadelphia (2001). | MR | Zbl

G. Bao, P. Li and H. Wu, An adaptive edge element method with perfectly matched absorbing layers for wave scattering by periodic structures. Math. Comput. 79 (2010) 1–34. | DOI | MR | Zbl

G. Bao and H. Wu, On the convergence of the solutions of PML equations for Maxwell’s equations. SIAM J. Numer. Anal. 43 (2005) 2121–2143. | MR | Zbl

J.-P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114 (1994) 185–200. | DOI | MR | Zbl

J.H. Bramble and J.E. Pasciak, Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems. Math. Comput. 76 (2007) 597–614. | DOI | MR | Zbl

J.H. Bramble, J.E. Pasciak and D. Trenev, Analysis of a finite PML approximation to the three dimensional elastic wave scattering problem. Math. Comput. 79 (2010) 2079–2101. | DOI | MR | Zbl

J. Chen and Z. Chen, An adaptive perfectly matched layer technique for 3-D time-harmonic electromagnetic scattering problems. Math. Comput. 77 (2008) 673–698. | DOI | MR | Zbl

X. Chen and A. Friedman, Maxwell’s equations in a periodic structure. Trans. Amer. Math. Soc. 323 (1991) 4650–507. | MR | Zbl

Z. Chen and H. Wu, An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures. SIAM J. Numer. Anal. 41 (2003) 799–826. | DOI | MR | Zbl

Z. Chen and X. Liu, An adaptive perfectly matched layer technique for time-harmonic scattering problems. SIAM J. Numer. Anal. 43 (2005) 645–671. | DOI | MR | Zbl

Z. Chen, X. Xiang and X. Zhang, Convergence of the PML method for elastic wave scattering problems. Math. Comput. 85 (2016) 2687–2714. | DOI | MR | Zbl

F. Collino and P. Monk, The perfectly matched layer in curvilinear coordinates. SIAM J. Sci. Comput. 19 (1998) 2061–1090. | DOI | MR | Zbl

F. Collino and C. Tsogka, Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media. Geophys. 66 (2001) 294–307. | DOI

W. Chew and W. Weedon, A 3D perfectly matched medium for modified Maxwell’s equations with stretched coordinates. Microwave Opt. Technol. Lett. 13 (1994) 599–604. | DOI

D. Dobson and A. Friedman, The time-harmonic Maxwell equations in a doubly periodic structure. J. Math. Anal. Appl. 166 (1992) 507–528. | DOI | MR | Zbl

J. Elschner and G. Hu, Variational approach to scattering of plane elastic waves by diffraction gratings. Math. Meth. Appl. Sci. 33 (2010) 1924–1941. | MR | Zbl

J. Elschner and G. Hu, Scattering of plane elastic waves by three-dimensional diffraction gratings. Math. Models Methods Appl. Sci. 22 (2012) 1150019. | DOI | MR | Zbl

F.D. Hastings, J.B. Schneider and S.L. Broschat, Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation. J. Acoust. Soc. Am. 100 (1996) 3061–3069. | DOI

F. Hecht, New development in FreeFem++. J. Numer. Math. 20 (2012) 251–265. | DOI | MR | Zbl

T. Hohage, F. Schmidt and L. Zschiedrich, Solving time-harmonic scattering problems based on the pole condition. II: Convergence of the PML method. SIAM J. Math. Anal. 35 (2003) 547–560. | DOI | MR | Zbl

M. Lassas and E. Somersalo, On the existence and convergence of the solution of PML equations. Computing 60 (1998) 229–241. | DOI | MR | Zbl

P. Li, Y. Wang and Y. Zhao, Inverse elastic surface scattering with near-field data. Inverse Probl. 31 (2015) 035009. | DOI | MR | Zbl

A. H. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comput. 28 (1974) 959–962. | DOI | MR | Zbl

L. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483-493. | DOI | MR | Zbl

E. Turkel and A. Yefet, Absorbing PML boundary layers for wave-like equations. Appl. Numer. Math. 27 (1998) 533–557. | DOI | MR | Zbl

Z. Wang, G. Bao, J. Li, P. Li and H. Wu, An adaptive finite element method for the diffraction grating problem with transparent boundary condition. SIAM J. Numer. Anal. 53 (2015) 1585–1607. | DOI | MR | Zbl

Cité par Sources :