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AN ADAPTIVE FINITE ELEMENT PML METHOD FOR THE ELASTIC WAVE
SCATTERING PROBLEM IN PERIODIC STRUCTURES
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Abstract. An adaptive finite element method is presented for the elastic scattering of a time-harmonic
plane wave by a periodic surface. First, the unbounded physical domain is truncated into a bounded
computational domain by introducing the perfectly matched layer (PML) technique. The well-posedness
and exponential convergence of the solution are established for the truncated PML problem by devel-
oping an equivalent transparent boundary condition. Second, an a posteriori error estimate is deduced
for the discrete problem and is used to determine the finite elements for refinements and to determine
the PML parameters. Numerical experiments are included to demonstrate the competitive behavior of
the proposed adaptive method.
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1. Introduction

The scattering theory in periodic diffractive structures, which are known as diffraction gratings, has
many significant applications in optical industry [7, 8]. The time-harmonic problems have been stud-
ied extensively in diffraction gratings by many researchers for acoustic, electromagnetic, and elastic
waves [1, 2, 4, 5, 15, 22–24,29, 33]. The underlying equations of these waves are the Helmholtz equation, the
Maxwell equations, and the Navier equation, respectively. This paper is concerned with the numerical solu-
tion of the elastic wave scattering problem in such a periodic structure. The problem has two fundamental
challenges. The first one is to truncate the unbounded physical domain into a bounded computational domain.
The second one is the singularity of the solution due to nonsmooth grating surfaces. Hence, the goal of this
work is two fold to overcome these two issues. First, we adopt the perfectly matched layer (PML) technique to
handle the domain truncation. Second, we use an a posteriori error analysis and design a finite element method
with adaptive mesh refinements to deal with the singularity of the solution.

The research on the PML technique has undergone a tremendous development since Bérenger proposed
a PML for solving the time-dependent Maxwell equations [11]. The basic idea of the PML technique is to
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surround the domain of interest by a layer of finite thickness fictitious material which absorbs all the waves
coming from inside the computational domain. When the waves reach the outer boundary of the PML region,
their energies are so small that the simple homogeneous Dirichlet boundary conditions can be imposed. Various
constructions of PML absorbing layers have been proposed and investigated for the acoustic and electromagnetic
wave scattering problems [10,12,19–21,27,28,32]. The PML technique is much less studied for the elastic wave
scattering problems [25], especially for the rigorous convergence analysis. We refer to [13,18] for recent study on
convergence analysis of the elastic obstacle scattering problem. Combined with the PML technique, an effective
adaptive finite element method was proposed in [6,16] to solve the two-dimensional diffraction grating problem
where the one-dimensional grating structure was considered. Due to the competitive numerical performance,
the method was quickly adopted to solve many other scattering problems including the obstacle scattering
problems [14, 17] and the three-dimensional diffraction grating problem [9]. Based on the a posteriori error
analysis, the adaptive finite element PML method provides an effective numerical strategy which can be used
to solve a variety of wave propagation problems which are posed in unbounded domains.

In this paper, we explore the possibility of applying such an adaptive finite element PML method to solve the
diffraction grating problem of elastic waves. Specifically, we consider the incidence of a time-harmonic elastic
plane wave on a one-dimensional grating surface, which is assumed to be elastically rigid. The open space,
which is above the surface, is assumed to be filled with a homogeneous and isotropic elastic medium. Using the
quasi-periodicity of the solution and the transparent boundary condition, we formulate the scattering problem
equivalently into a boundary value problem in a bounded domain. The conservation of energy is proved for
the model problem and is used to verify our numerical results when the exact solutions are not available.
Following the complex coordinate stretching, we study the truncated PML problem which is an approximation
to the original scattering problem. We develop the transparent boundary condition for the truncated PML
problem and show that it has a unique weak solution which converges exponentially to the solution of the
original scattering problem. Moreover, an a posteriori error estimate is deduced for the discrete PML problem.
It consists of the finite element error and the PML modeling error. The estimate is used to design the adaptive
finite element algorithm to choose elements for refinements and to determine the PML parameters. Numerical
experiments show that the proposed method can effectively overcome the aforementioned two challenges.

This paper presents a nontrivial application of the adaptive finite element PML method for the grating
problem from the Helmholtz (acoustic) and Maxwell (electromagnetic) equations to the Navier (elastic) equation.
The elastic wave equation is complicated due to the coexistence of compressional and shear waves that have
different wavenumbers and propagate at different speeds. In view of this physical feature, we introduce two scalar
potential functions to split the wave field into its compressional and shear parts via the Helmholtz decomposition.
As a consequence, the analysis is much more sophisticated than that for the Helmholtz equation or the Maxwell
equations. We believe that this work not only enriches the range of applications for the PML technique but also
is a valuable contribution to the family of numerical methods for solving elastic wave scattering problems.

The paper is organized as follows. In Section 2, we introduce the model problem of the elastic wave scattering
by a periodic surface and formulate it into a boundary value problem by using a transparent boundary condition.
The conservation of the total energy is proved for the propagating wave modes. In Section 3, we introduce the
PML formulation and prove the well-posedness and convergence of the truncated PML problem. Section 4 is
devoted to the finite element approximation and the a posteriori error estimate. In Section 5, we discuss the
numerical implementation of our adaptive algorithm and present some numerical experiments to illustrate the
performance of the proposed method. The paper is concluded with some general remarks and directions for
future research in Section 6.

2. Problem formulation

In this section, we introduce the model problem and present an exact transparent boundary condition to
reduce the problem into a boundary value problem in a bounded domain. The energy distribution will be
studied for the reflected propagating waves of the scattering problem.
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Figure 1. Geometry of the scattering problem.

2.1. Navier equation

Consider the elastic scattering of a time-harmonic plane wave by a periodic surface S which is assumed
to be Lipschitz continuous and elastically rigid. In this work, we consider the two-dimensional problem by
assuming that the surface is invariant in the z direction. The three-dimensional problem will be studied as
a separate work. Figure 1 shows the problem geometry in one period. Let x = [x, y]� ∈ R2. Denote by
Γ = {x ∈ R

2 : 0 < x < Λ, y = b} the artificial boundary above the scattering surface, where Λ is the period and
b is a constant. Let Ω be the bounded domain which is enclosed from below and above by S and Γ , respectively.
Finally, denote by Ωe = {x ∈ R2 : 0 < x < Λ, y > b} the exterior domain to Ω.

The open space, which is above the grating surface, is assumed to be filled with a homogeneous and isotropic
elastic medium with a unit mass density. The propagation of a time-harmonic elastic wave is governed by the
Navier equation

μΔu + (λ + μ)∇∇ · u + ω2u = 0 in Ω ∪Ωe, (2.1)

where ω > 0 is the angular frequency, μ and λ are the Lamé constants satisfying μ > 0 and λ + μ > 0, and
u = [u1, u2]� is the displacement vector of the total field which satisfies

u = 0 on S. (2.2)

Let the surface be hit from above by either a time-harmonic compressional plane wave

uinc(x) = [sin θ, − cos θ]�eiκ1(x sin θ−y cos θ),

or a time-harmonic shear plane wave

uinc(x) = [cos θ, sin θ]�eiκ2(x sin θ−y cos θ),

where θ ∈ (−π/2, π/2) is the incident angle and

κ1 =
ω√

λ+ 2μ
, κ2 =

ω√
μ

(2.3)

are the compressional and shear wavenumbers, respectively. It can be verified that the incident wave also satisfies
the Navier equation:

μΔuinc + (λ+ μ)∇∇ · uinc + ω2uinc = 0 in Ω ∪Ωe. (2.4)

Remark 2.1. Our method works for either the compressional plane incident wave, or the shear plane incident
wave, or any linear combination of these two plane incident waves. For clarity, we will take the compressional
plane incident wave as an example to present the results in our subsequent analysis.
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Motivated by uniqueness, we are interested in a quasi-periodic solution of u, i.e., u(x, y)e−iαx is periodic
in x with period Λ where α = κ1 sin θ. In addition, the following radiation condition is imposed: the total
displacement u consists of bounded outgoing waves plus the incident wave uinc in Ωe.

We introduce some notation and Sobolev spaces. Let u = [u1, u2]� and u be a vector and scalar function,
respectively. Define the Jacobian matrix of u as

∇u =

[
∂xu1 ∂yu1

∂xu2 ∂yu2

]

and two curl operators
curlu = ∂xu2 − ∂yu1, curlu = [∂yu,−∂xu]�.

Define a quasi-periodic functional space

H1
S,qp(Ω) = {u ∈ H1(Ω) : u(Λ, y) = u(0, y)eiαΛ, u = 0 on S},

which is a subspace of H1(Ω) with the norm ‖·‖H1(Ω). For any quasi-periodic function u defined on Γ , it admits
the Fourier series expansion

u(x) =
∑
n∈Z

u(n)eiαnx, u(n) =
1
Λ

∫ Λ

0

u(x)e−iαnxdx, αn = α+ n

(
2π
Λ

)
·

We define a trace functional space Hs(Γ ) with the norm given by

‖u‖Hs(Γ ) =

(
Λ
∑
n∈Z

(1 + α2
n)s|u(n)|2

)1/2

.

Let H1
S,qp(Ω)2 and Hs(Γ )2 be the Cartesian product spaces equipped with the corresponding 2-norms of

H1
S,qp(Ω) and Hs(Γ ), respectively. It is known that H−s(Γ )2 is the dual space of Hs(Γ )2 with respect to

the L2(Γ )2 inner product

〈u,v〉Γ =
∫

Γ

u · v̄ dx,

where the bar denotes the complex conjugate.

2.2. Boundary value problem

We wish to reduce the problem equivalently into a boundary value problem in Ω by introducing an exact
transparent boundary condition on Γ .

The total field u consists of the incident field uinc and the diffracted field v, i.e.,

u = uinc + v. (2.5)

Noting (2.5) and subtracting (2.4) from (2.1), we obtain the Navier equation for the diffracted field v:

μΔv + (λ+ μ)∇∇ · v + ω2v = 0 in Ωe. (2.6)

For any solution v of (2.6), we introduce the Helmholtz decomposition to split it into the compressional and
shear parts:

v = ∇φ1 + curlφ2, (2.7)

where φ1 and φ2 are scalar potential functions. Substituting (2.7) into (2.6) gives

∇ ((λ+ 2μ)Δφ1 + ω2φ1

)
+ curl(μΔφ2 + ω2φ2) = 0,
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which is fulfilled if φj satisfy the Helmholtz equation

Δφj + κ2
jφj = 0, (2.8)

where κj is the wavenumber defined in (2.3).
Since v is a quasi-periodic function, we have from (2.7) that φj is also a quasi-periodic function in the x

direction with period Λ and it has the Fourier series expansion

φj(x, y) =
∑
n∈Z

φ
(n)
j (y)eiαnx. (2.9)

Plugging (2.9) into (2.8) yields

d2φ
(n)
j (y)
dy2

+
(
β

(n)
j

)2
φ

(n)
j (y) = 0, y > b, (2.10)

where

β
(n)
j =

{
(κ2

j − α2
n)1/2, |αn| < κj ,

i(α2
n − κ2

j)
1/2, |αn| > κj .

(2.11)

Note that β(0)
1 = β = κ1 cos θ. We assume that κj 	= |αn| for all n ∈ Z to exclude possible resonance. Noting

(2.11) and using the bounded outgoing radiation condition, we obtain the solution of (2.10):

φ
(n)
j (y) = φ

(n)
j (b)eiβ

(n)
j (y−b),

which gives Rayleigh’s expansion for φj :

φj(x, y) =
∑
n∈Z

φ
(n)
j (b)ei

(
αnx+β

(n)
j (y−b)

)
, y > b. (2.12)

Combining (2.12) and the Helmholtz decomposition (2.7) yields

v(x, y) = i
∑
n∈Z

[
αn

β
(n)
1

]
φ

(n)
1 (b)ei

(
αnx+β

(n)
1 (y−b)

)
+

[
β

(n)
2

−αn

]
φ

(n)
2 (b)ei

(
αnx+β

(n)
2 (y−b)

)
. (2.13)

On the other hand, as a quasi-periodic function, the diffracted field v also has the Fourier series expansion

v(x, b) =
∑
n∈Z

v(n)(b)eiαnx. (2.14)

From (2.14) and (2.13), we obtain a linear system of algebraic equations for φ(n)
j (b):

[
iαn iβ(n)

2

iβ(n)
1 −iαn

] [
φ

(n)
1 (b)

φ
(n)
2 (b)

]
=

[
v
(n)
1 (b)

v
(n)
2 (b)

]
.

Solving the above equations via Cramer’s rule gives

φ
(n)
1 (b) = − i

χ(n)

(
αnv

(n)
1 (b) + β

(n)
2 v

(n)
2 (b)

)
, (2.15a)

φ
(n)
2 (b) = − i

χ(n)

(
β

(n)
1 v

(n)
1 (b) − αnv

(n)
2 (b)

)
, (2.15b)
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where
χ(n) = α2

n + β
(n)
1 β

(n)
2 . (2.16)

Plugging (2.15) into (2.13), we obtain Rayleigh’s expansion for the diffracted field v in Ωe:

v(x, y) =
∑
n∈Z

1
χ(n)

[
α2

n αnβ
(n)
2

αnβ
(n)
1 β

(n)
1 β

(n)
2

]
v(n)(b)ei

(
αnx+β

(n)
1 (y−b)

)

+
1

χ(n)

[
β

(n)
1 β

(n)
2 −αnβ

(n)
2

−αnβ
(n)
1 α2

n

]
v(n)(b)ei

(
αnx+β

(n)
2 (y−b)

)
. (2.17)

Given a vector field v = [v1, v2]�, we define a differential operator on Γ :

Dv = μ∂yv + (λ+ μ)[0, 1]�∇ · v = [μ∂yv1, (λ+ μ)∂xv1 + (λ + 2μ)∂yv2]�. (2.18)

By (2.18), and (2.17), we deduce the transparent boundary condition

Dv = T v :=
∑
n∈Z

M (n)v(n)(b)eiαnx on Γ,

where the matrix

M (n) =
i

χ(n)

[
ω2β

(n)
1 μαnχ

(n) − ω2αn

ω2αn − μαnχ
(n) ω2β

(n)
2

]
.

Equivalently, we have the transparent boundary condition for the total field u:

Du = T u + f on Γ,

where f = Duinc − T uinc.
The scattering problem can be reduced to the following boundary value problem:⎧⎪⎨

⎪⎩
μΔu + (λ + μ)∇∇ · u + ω2u = 0 in Ω,
u = 0 on S,
Du = T u + f on Γ.

(2.19)

The weak formulation of (2.19) reads as follows: find u ∈ H1
S,qp(Ω)2 such that

a(u,v) = 〈f ,v〉Γ , ∀v ∈ H1
S,qp(Ω)2, (2.20)

where the sesquilinear form a : H1
S,qp(Ω)2 ×H1

S,qp(Ω)2 → C is defined by

a(u,v) = μ

∫
Ω

∇u : ∇v̄ dx + (λ+ μ)
∫

Ω

(∇ · u)(∇ · v̄) dx − ω2

∫
Ω

u · v̄ dx − 〈T u,v〉Γ . (2.21)

Here A : B = tr(AB�) is the Frobenius inner product of square matrices A and B.
The well-posedness of the variational problem (2.20) was discussed in [23], where the authors proved that

the variational problem had a unique weak solution except for a discrete set of frequencies. It is unclear if the
scattering problem has a unique solution for all the frequencies. In this paper, we assume that the variational
problem (2.20) admits a unique solution. It follows from the general theory in [3] that there exists a constant
γ1 > 0 such that the following inf-sup condition holds

sup
0�=v∈H1

S,qp(Ω)2

|a(u,v)|
‖v‖H1(Ω)2

≥ γ1‖u‖H1(Ω)2 , ∀u ∈ H1
S,qp(Ω)2. (2.22)
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2.3. Energy distribution

We study the energy distribution for the propagating reflected wave modes of the displacement. The result
will be used to verify the accuracy of our numerical method when the analytic solution is not available.

Denote by ν = (ν1, ν2)� and τ = (τ1, τ2)� the unit normal and tangential vectors on S, where τ1 = ν2

and τ2 = −ν1. Let Δ(n)
j = |κ2

j − α2
n|1/2 and Uj = {n : |αn| < κj}. We point out that U1 and U2 are the

collections of all the propagating modes for the compressional and shear waves, respectively. It is clear to note
that β(n)

j = Δ
(n)
j for n ∈ Uj and β(n)

j = iΔ(n)
j for n /∈ Uj .

Consider the Helmholtz decomposition for the total field:

u = ∇ϕ1 + curlϕ2. (2.23)

Substituting (2.23) into (2.1), we may verify that ϕj also satisfies the Helmholtz equation

Δϕj + κ2
jϕj = 0 in Ω ∪Ωe.

Using the boundary condition (2.2), we have

∂νϕ1 − ∂τϕ2 = 0 and ∂νϕ2 + ∂τϕ1 = 0 on S.

Correspondingly, we introduce the Helmholtz decomposition for the incident field:

uinc = ∇ψ1 + curlψ2,

which gives explicitly that

ψ1 = − 1
κ2

1

∇ · uinc = − i
κ1

ei(αx−βy), ψ2 =
1
κ2

2

curluinc = 0.

Hence we have
ϕ1 = φ1 + ψ1, ϕ2 = φ2.

Using the Rayleigh expansions (2.12), we get

ϕ1(x, y) = r0ei(αx−βy) +
∑
n∈Z

r
(n)
1 ei

(
αnx+β

(n)
1 y
)
, (2.24)

ϕ2(x, y) =
∑
n∈Z

r
(n)
2 ei

(
αnx+β

(n)
2 y
)
, (2.25)

where
r0 = − i

κ1
, r

(n)
1 = φ

(n)
1 (b)e−iβ

(n)
1 b, r

(n)
2 = φ

(n)
2 (b)e−iβ

(n)
2 b. (2.26)

The grating efficiency is defined by

e
(n)
1 =

β
(n)
1 |r(n)

1 |2
β|r0|2 , e

(n)
2 =

β
(n)
2 |r(n)

2 |2
β|r0|2 , (2.27)

where e(n)
1 and e(n)

2 are the efficiency of the nth order reflected modes for the compressional wave and the shear
wave, respectively. We have the following conservation of energy.

Theorem 2.2. The total energy is conserved, i.e.,∑
n∈U1

e
(n)
1 +

∑
n∈U2

e
(n)
2 = 1.
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Proof. Consider the following coupled problem:⎧⎪⎨
⎪⎩
Δϕj + κ2

jϕj = 0 in Ω,
∂νϕ1 − ∂τϕ2 = 0 on S,
∂νϕ2 + ∂τϕ1 = 0 on S.

(2.28)

It is clear to note that ϕ̄j also satisfies the problem (2.28) since the wavenumber κj is real. Using Green’s
theorem and quasi-periodicity of the solution, we have

0 =
∫

Ω

(ϕ̄1Δϕ1 − ϕ1Δϕ̄1) dx + (ϕ̄2Δϕ2 − ϕ2Δϕ̄2) dx

=
∫

S

(ϕ̄1∂νϕ1 − ϕ1∂ν ϕ̄1) ds+
∫

S

(ϕ̄2∂νϕ2 − ϕ2∂ν ϕ̄2) ds

+
∫

Γ

(ϕ̄1∂yϕ1 − ϕ1∂yϕ̄1) dx+
∫

Γ

(ϕ̄2∂yϕ2 − ϕ2∂yϕ̄2) dx. (2.29)

It follows from integration by parts and the boundary conditions on S in (2.28) that∫
S

ϕ̄1∂νϕ1 ds =
∫

S

ϕ̄1∂τϕ2 ds = −
∫

S

ϕ2∂τ ϕ̄1 ds =
∫

S

ϕ2∂ν ϕ̄2 ds,∫
S

ϕ̄2∂νϕ2 ds = −
∫

S

ϕ̄2∂τϕ1 ds =
∫

S

ϕ1∂τ ϕ̄2 ds =
∫

S

ϕ1∂ν ϕ̄1 ds,

which yields after taking the imaginary part of (2.29) that

Im
∫

Γ

(ϕ̄1∂yϕ1 + ϕ̄2∂yϕ2) dx = 0. (2.30)

It follows from (2.24) and (2.25) that we have

ϕ1(x, b) = r0ei(αx−βb) +
∑

n∈U1

r
(n)
1 e

(
iαnx+iΔ

(n)
1 b
)

+
∑

n/∈U1

r
(n)
1 e

(
iαnx−Δ

(n)
1 b
)
,

ϕ2(x, b) =
∑

n∈U2

r
(n)
2 e

(
iαnx+iΔ

(n)
2 b
)

+
∑

n/∈U2

r
(n)
2 e

(
iαnx−Δ

(n)
2 b
)
,

and

∂yϕ1(x, b) = −iβr0ei(αx−βb) +
∑

n∈U1

iΔ(n)
1 r

(n)
1 e

(
iαnx+iΔ

(n)
1 b
)
−
∑

n/∈U1

Δ
(n)
1 r

(n)
1 e

(
iαnx−Δ

(n)
1 b
)
,

∂yϕ2(x, b) =
∑

n∈U2

iΔ(n)
2 r

(n)
2 e

(
iαnx+iΔ

(n)
2 b
)
−
∑

n/∈U2

Δ
(n)
2 r

(n)
2 e

(
iαnx−Δ

(n)
2 b
)
.

Substituting the above four functions into (2.30) and using the orthogonality of Fourier series, we get∑
n∈U1

Δ
(n)
1 |r(n)

1 |2 +
∑

n∈U2

Δ
(n)
2 |r(n)

2 |2 = β|r0|2,

which completes the proof. �

In practice, the grating efficiencies (2.27) can be computed in the follows: (1) solve the scattering problem and
obtain the diffracted field v(x, b) = [v1(x, b), v2(x, b)]� on Γ ; (2) compute the Fourier coefficients of v(x, b) to
get v(n)

1 (b) and v(n)
2 (b); use (2.15) to compute φ(n)

1 (b) and φ(n)
2 (b); use (2.26) to compute r(n)

1 and r(n)
2 ; use (2.27)

to calculate the grating efficiencies e(n)
1 and e(n)

2 .
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Figure 2. Geometry of the PML problem.

3. The PML problem

In this section, we shall introduce the PML formulation for the scattering problem and establish the well-
posedness of the PML problem. An error estimate will be shown for the solutions between the original scattering
problem and the PML problem.

3.1. PML formulation

Now we turn to the introduction of an absorbing PML layer. As is shown in Figure 2, the domain Ω is covered
by a slab of PML layer of thickness δ in Ωe. Let ρ(τ) = ρ1(τ)+ iρ2(τ) be the PML function which is continuous
and satisfies

ρ1 = 1, ρ2 = 0 for τ < b and ρ1 ≥ 1, ρ2 > 0 otherwise.

We introduce the PML by complex coordinate stretching:

ŷ =
∫ y

0

ρ(τ)dτ. (3.1)

Let x̂ = (x, ŷ)�. Noting that scattering field v(x) satisfies Navier equation in Ω ∪Ωe, we have

μ
x̂v(x̂) + (λ+ μ)∇x̂∇x̂ · v(x̂),+ω2v(x̂) = 0,

where v(x̂) = u(x̂) − uinc(x̂) and ∇x̂ = [∂x, ∂ŷ]� = [∂x, ρ
−1∂y]�. Introduce a new field

û(x) =

{
uinc(x) + (u(x̂) − uinc(x̂)), x ∈ Ωe,

u(x̂), x ∈ Ω.
(3.2)

It is clear to note that û(x) = u(x) in Ω since x̂ = x in Ω. It can be verified that û satisfies

μ
x̂(û(x) − uinc(x)) + (λ+ μ)∇x̂∇x̂ · (û(x) − uinc(x)) + ω2(û(x) − uinc(x)) = 0.

Let
L (û − uinc) = 0 in Ω ∪Ωe,

where the PML differential operator

L u :=

[
(λ+ 2μ)∂x(ρ(y)∂xu1) + μ∂y(ρ−1(y)∂yu1) + (λ+ μ)∂2

xyu2 + ω2ρ(y)u1

μ∂x(ρ(y)∂xu2) + (λ + 2μ)∂y(ρ−1(y)∂yu2) + (λ+ μ)∂2
xyu1 + ω2ρ(y)u2

]
.
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Define the PML region
ΩPML = {x ∈ R

2 : 0 < x < Λ, b < y < b+ δ}.
Clearly, we have from (3.2) and (2.17) that the outgoing wave û(x) − uinc(x) in Ωe decays exponentially as
y → ∞. Therefore, the homogeneous Dirichlet boundary condition can be imposed on

ΓPML = {x ∈ R
2 : 0 < x < Λ, y = b+ δ}

to truncate the PML problem. Define the computational domain for the PML problem D = Ω ∪ ΩPML. We
arrive at the following truncated PML problem: find a quasi-periodic solution û such that⎧⎪⎨

⎪⎩
L û = g in D,
û = uinc on ΓPML,

û = 0 on S,
(3.3)

where

g =

{
L uinc in ΩPML,

0 in Ω.

Define H1
0,qp(D) = {u ∈ H1

qp(D) : u = 0 on S ∪ ΓPML}. The weak formulation of the PML problem (3.3)
reads as follows: find û ∈ H1

S,qp(D)2 such that û = uinc on ΓPML and

bD(û,v) = −
∫

D

g · v̄dx, ∀v ∈ H1
0,qp(D)2. (3.4)

Here for any domain G ⊂ R
2, the sesquilinear form bG : H1

qp(G)2 ×H1
qp(G)2 → C is defined by

bG(u,v) =
∫

G

(λ + 2μ)(ρ∂xu1∂xv̄1 + ρ−1∂yu2∂y v̄2) + μ(ρ−1∂yu1∂y v̄1 + ρ∂xu2∂xv̄2)

+ (λ+ μ)(∂xu2∂y v̄1 + ∂xu1∂y v̄2) − ω2ρ(u1v̄1 + u2v̄2) dx.

We will reformulate the variational problem (3.4) in the domainD into an equivalent variational formulation in
the domain Ω, and discuss the existence and uniqueness of the weak solution to the equivalent weak formulation.
To do so, we need to introduce the transparent boundary condition for the truncated PML problem.

3.2. Transparent boundary condition of the PML problem

Let v̂(x) = v(x̂) = u(x̂) − uinc(x̂). It is clear to note that v̂ satisfies the Navier equation in the complex
coordinate

μΔx̂v̂ + (λ + μ)∇x̂∇x̂ · v̂ + ω2v̂ = 0 in ΩPML, (3.5)

where ∇x̂ = [∂x, ∂ŷ]� with ∂ŷ = ρ−1(y)∂y.
We introduce the Helmholtz decomposition to the solution of (3.5):

v̂ = ∇x̂φ̂1 + curlx̂φ̂2, (3.6)

where curlx̂ = [∂ŷ,−∂x]� and φ̂j(x) = φj(x̂) satisfies the Helmholtz equation

Δx̂φ̂j + κ2
j φ̂j = 0. (3.7)

Due to the quasi-periodicity of the solution, we have the Fourier series expansion

φ̂j(x, y) =
∑
n∈Z

φ̂
(n)
j (y)eiαnx. (3.8)
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Substituting (3.8) into (3.7) yields

ρ−1 d
dy

(
ρ−1 d

dy
φ̂

(n)
j (y)

)
+ (β(n)

j )2φ̂(n)
j (y) = 0. (3.9)

The general solutions of (3.9) is

φ̂
(n)
j (y) = A

(n)
j eiβ

(n)
j

∫ y
b

ρ(τ)dτ +B
(n)
j e−iβ

(n)
j

∫ y
b

ρ(τ)dτ .

Denote by

ζ =
∫ b+δ

b

ρ(τ)dτ. (3.10)

The coefficients A(n)
j and B(n)

j can be uniquely determined by solving the following linear equations⎡
⎢⎢⎢⎢⎢⎢⎣

αn αn β
(n)
2 −β(n)

2

β
(n)
1 −β(n)

1 −αn −αn

αneiβ
(n)
1 ζ αne−iβ

(n)
1 ζ β

(n)
2 eiβ

(n)
2 ζ −β(n)

2 e−iβ
(n)
2 ζ

β
(n)
1 eiβ

(n)
1 ζ −β(n)

1 e−iβ
(n)
1 ζ −αneiβ

(n)
2 ζ −αne−iβ

(n)
2 ζ

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

A
(n)
1

B
(n)
1

A
(n)
2

B
(n)
2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
−iv̂(n)

1 (b)

−iv̂(n)
2 (b)

0

0

⎤
⎥⎥⎥⎥⎥⎦ , (3.11)

where we have used the Helmholtz decomposition (3.6) and the homogeneous Dirichlet boundary condition

v̂(x, b+ δ) = 0 on ΓPML

due to the PML absorbing layer. Solving the linear equations (3.11), we obtain

A
(n)
1 =

i
2χ(n)χ̂(n)

{
− χ(n)(ε(n)

1 + 2)
(
αnv̂

(n)
1 (b) + β

(n)
2 v̂

(n)
2 (b)

)
+ 2β(n)

2 (ε(n)
1 + 2δ(n)

1 )(1 + δ
(n)
2 − η(n))

(
αnβ

(n)
1 v̂

(n)
1 (b) + α2

nv̂
(n)
2 (b)

)}
,

B
(n)
1 =

i
2χ(n)χ̂(n)

{
χ(n)ε

(n)
1

(
αnv̂

(n)
1 (b) − β

(n)
2 v̂

(n)
2 (b)

)
+ 2(ε(n)

1 δ
(n)
2 + 2(δ(n)

1 + δ
(n)
1 δ

(n)
2 )

(
αnβ

(n)
1 β

(n)
2 v̂

(n)
1 (b) − α2

nβ
(n)
2 v̂

(n)
2 (b)

)}
,

A
(n)
2 =

i
2χ(n)χ̂(n)

{
χ(n)

[
ε
(n)
1 η(n) − 2(ε(n)

1 + 1)(1 + δ
(n)
2 )

] (
β

(n)
1 v̂

(n)
1 (b) − αnv̂

(n)
2 (b)

)
+ 2ε(n)

1 (1 + δ
(n)
2 − η(n))

(
(β(n)

1 )2β(n)
2 v̂

(n)
1 (b) − α3

nv̂
(n)
2 (b)

)}
,

B
(n)
2 =

i
2χ(n)χ̂(n)

{
χ(n)

[
2δ(n)

2 (ε(n)
1 + 1) − ε

(n)
1 η(n)

] (
β

(n)
1 v̂

(n)
1 (b) + αnv̂

(n)
2 (b)

)
− 2δ(n)

2 (ε(n)
1 + 2)

(
(β(n)

1 )2β(n)
2 v̂

(n)
1 (b) + α3

nv̂
(n)
2 (b)

)}
,

where ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε
(n)
j = coth

(
−iβ(n)

j ζ
)
− 1,

δ
(n)
j =

(
eiβ

(n)
2 ζ − eiβ

(n)
1 ζ

)
/
(
e−iβ

(n)
j ζ − eiβ

(n)
j ζ

)
,

η(n) = δ
(n)
2 /δ

(n)
1 =

(
e−iβ

(n)
1 ζ − eiβ

(n)
1 ζ

)/(
e−iβ

(n)
2 ζ − eiβ

(n)
2 ζ

) (3.12)

and
χ̂(n) = χ(n) + 4(δ(n)

2 − δ
(n)
1 − δ

(n)
1 δ

(n)
2 )α2

nβ
(n)
1 β

(n)
2 /χ(n). (3.13)
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Here, the hyperbolic cotangent function is defined as

coth(t) = (et + e−t)/(et − e−t).

Following the Helmholtz decomposition (3.6) again, we have

v̂(x, y) = i
∑
n∈Z

[
αn

β
(n)
1

]
A

(n)
1 ei

(
αnx+β

(n)
1

∫ y
b

ρ(τ)dτ
)

+

[
αn

−β(n)
1

]
B

(n)
1 ei

(
αnx−β

(n)
1

∫ y
b

ρ(τ)dτ
)

[
β

(n)
2

−αn

]
A

(n)
2 ei

(
αnx+β

(n)
2

∫ y
b

ρ(τ)dτ
)
−
[
β

(n)
2

αn

]
B

(n)
2 ei

(
αnx−β

(n)
2

∫ y
b

ρ(τ)dτ
)
. (3.14)

Combining (3.14) and (2.18), we derive the transparent boundary condition for the PML problem on Γ :

D v̂ = T PMLv̂ :=
∑
n∈Z

M̂ (n)v̂(n)(b)eiαnx,

where the matrix

M̂ (n) =

[
m̂

(n)
11 m̂

(n)
12

m̂
(n)
21 m̂

(n)
22

]
.

Here the entries are

m̂
(n)
11 =

iω2β
(n)
1

χ̂(n)
+

iω2β
(n)
1

χ(n)χ̂(n)

[
ε
(n)
1 α2

n +
(
ε
(n)
1 η(n) + 2δ(n)

2

)
β

(n)
1 β

(n)
2

]
,

m̂
(n)
12 = iμαn − iω2αn

χ̂(n)
− iω2αnβ

(n)
1 β

(n)
2

χ(n)χ̂(n)

[
ε
(n)
1

(
1 + 2δ(n)

2 − η(n)
)

+ 2δ(n)
2

]
,

m̂
(n)
21 = −iμαn +

iω2αn

χ̂(n)
− iω2αnβ

(n)
1 β

(n)
2

χ(n)χ̂(n)

[
ε
(n)
1

(
1 + 2δ(n)

2 − η(n)
)

+ 2
(
2δ(n)

1 + 2δ(n)
1 δ

(n)
2 − δ

(n)
2

)]
,

m̂
(n)
22 =

iω2β
(n)
2

χ̂(n)
+

iω2β
(n)
2

χ(n)χ̂(n)

[
ε
(n)
1 β

(n)
1 β

(n)
2 +

(
ε
(n)
1 η(n) + 2δ(n)

2

)
α2

n

]
.

Equivalently, we have the transparent boundary condition for the total field û on Γ :

Dû = T PMLû + fPML,

where fPML = Dûinc − T PMLûinc.
The PML problem can be reduced to the following boundary value problem:⎧⎪⎪⎨

⎪⎪⎩
μΔuPML + (λ + μ)∇∇ · uPML + ω2uPML = 0 in Ω,

uPML = 0 on S,

DuPML = T PMLuPML + fPML on Γ.

(3.15)

The weak formulation of (3.15) is to find uPML ∈ H1
S,qp(Ω)2 such that

aPML(uPML,v) = 〈fPML,v〉Γ , ∀v ∈ H1
S,qp(Ω)2, (3.16)

where the sesquilinear form aPML : H1
S,qp(Ω)2 ×H1

S,qp(Ω)2 → C is defined by

aPML(u,v) = μ

∫
Ω

∇u : ∇v̄dx + (λ+ μ)
∫

Ω

(∇ · u)(∇ · v̄) dx

− ω2

∫
Ω

u · v̄ dx − 〈T PMLu,v〉Γ . (3.17)
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The following lemma establishes the relationship between the variational problem (3.16) and the weak for-
mulation (3.4). The proof is straightforward based on our constructions of the transparent boundary conditions
for the PML problem. The details of the proof is omitted for simplicity.

Lemma 3.1. Any solution û of the variational problem (3.4) restricted to Ω is a solution of the varia-
tional (3.16); conversely, any solution uPML of the variational problem (3.16) can be uniquely extended to
the whole domain to be a solution û of the variational problem (3.4) in D.

3.3. Convergence of the PML solution

Now we turn to estimating the error between uPML and u. The key is to estimate the error of the boundary
operators T PML and T .

Let
Δ−

j = min{Δ(n)
j : n ∈ Uj}, Δ+

j = min{Δ(n)
j : n /∈ Uj}.

Denote

F = max
j=1,2

(
Δ−

j

e
1
2 Δ−

j Imζ − 1
,

Δ+
j

e
1
2 Δ+

j Reζ − 1

)
× max

{
12κ2, 16κ4

2, 8 + 2κ2
2,

16κ3
2

κ2
1

,
24(16 + κ2

2)
2

κ2
1

}
.

The constant F will be used to control the modeling error between the PML problem and the original scattering
problem. Once the incoming plane wave uinc is fixed, the quantities Δ−

j , Δ
+
j are fixed. Thus the constant F

approaches to zero exponentially as the PML parameters Reζ and Imζ tend to infinity. Recalling the definition
of ζ in (3.10), we know that Reζ and Imζ can be calculated by the medium property ρ(y), which is usually
taken as a power function:

ρ(y) = 1 + σ

(
y − b

δ

)m

if y ≥ b, m ≥ 1.

Thus we have

Reζ =
(

1 +
Reσ
m+ 1

)
δ, Imζ =

(
Imσ
m+ 1

)
δ.

In practice, we may pick some appropriate PML parameters σ and δ such that Reζ ≥ 1.

Lemma 3.2. For any u,v ∈ H1
S,qp(Ω)2, we have

|〈(T PML − T )u,v〉Γ | ≤ F̂‖u‖L2(Γ )2‖v‖L2(Γ )2 ,

where F̂ = 17ω2F/κ4
1.

Proof. For any u,v ∈ H1
S,qp(Ω)2, we have the following Fourier series expansions:

u(x, b) =
∑
n∈Z

u(n)(b)eiαnx, v(x, b) =
∑
n∈Z

v(n)(b)eiαnx,

which gives
‖u‖2

L2(Γ )2 = Λ
∑
n∈Z

|u(n)(b)|2, ‖v‖2
L2(Γ )2 = Λ

∑
n∈Z

|v(n)(b)|2.

It follows from the orthogonality of Fourier series, the Cauchy–Schwarz inequality, and Proposition A.4 that we
have

|〈(T PML − T )u,v〉Γ | =

∣∣∣∣∣Λ
∑
n∈Z

(
(M (n) − M̂ (n))u(n)(b)

) · v̄(n)(b)

∣∣∣∣∣
≤
(
Λ
∑
n∈Z

‖M (n) − M̂ (n)‖2
2 |u(n)(b)|2

)1/2(
Λ
∑
n∈Z

|v(n)(b)|2
)1/2

≤ F̂‖u‖L2(Γ )2‖v‖L2(Γ )2 ,

which completes the proof. �
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Let a = miny{x ∈ S}. Denote Ω̃ = {x ∈ R2 : 0 < x < Λ, a < y < b}.

Lemma 3.3. For any u ∈ H1
S,qp(Ω)2, we have

‖u‖L2(Γ )2 ≤ ‖u‖H1/2(Γ )2 ≤ γ2‖u‖H1(Ω)2 ,

where γ2 = (1 + (b− a)−1)1/2.

Proof. First we have

(b− a)|u(b)|2 =
∫ b

a

|u(y)|2dy +
∫ b

a

∫ b

y

d
dt

|u(t)|2dtdy

≤
∫ b

a

|u(y)|2dy + (b− a)
∫ b

a

2|u(y)||u′(y)|dy,

which gives by applying Young’s inequality that

(1 + α2
n)1/2|u(b)|2 ≤ γ2

2(1 + α2
n)
∫ b

a

|u(y)|2dy +
∫ b

a

|u′(y)|2dy.

Given u ∈ H1
S,qp(Ω)2, we consider the zero extension

ũ =

{
u in Ω,
0 in Ω̃ \ Ω̄,

which has the Fourier series expansion

ũ(x, y) =
∑
n∈Z

ũ(n)(y)eiαnx in Ω̃.

By definitions, we have

‖ũ‖2
H1/2(Γ )2 = Λ

∑
n∈Z

(1 + α2
n)1/2|ũ(n)(b)|2

and

‖ũ‖2
H1(Ω̃)2

= Λ
∑
n∈Z

∫ b

a

(1 + α2
n)|ũ(n)(y)|2 + |u(n)′(y)|2dy.

Noting ‖u‖H1/2(Γ )2 = ‖ũ‖H1/2(Γ )2 and ‖u‖H1(Ω)2 = ‖ũ‖H1(Ω̃)2 , we complete the proof by combining the above
estimates. �

Theorem 3.4. Let γ1 and γ2 be the constants in the inf-sup condition (2.22) and in Lemma 3.3, respectively.
If F̂ γ2

2 < γ1, then the PML variational problem (3.16) has a unique weak solution uPML, which satisfies the
error estimate

‖u − uPML‖Ω := sup
0�=v∈H1

S,qp(Ω)2

|a(u − uPML,v)|
‖v‖H1(Ω)2

≤ F̂ γ2‖uPML − uinc‖L2(Γ )2 , (3.18)

where u is the unique weak solution of the variational problem (2.20).
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Proof. It suffices to show the coercivity of the sesquilinear form aPML defined in (3.17) in order to prove the
unique solvability of the weak problem (3.16). Using Lemmas 3.2, 3.3 and the assumption F̂ γ2

2 < γ1, we get for
any u,v in H1

S,qp(Ω)2 that

|aPML(u,v)| ≥ |a(u,v)| − |〈(T PML − T )u,v〉Γ |
≥ |a(u,v)| − F̂ γ2

2‖u‖H1(Ω)2‖v‖H1(Ω)2

≥ (γ1 − F̂ γ2
2

)‖u‖H1(Ω)2‖v‖H1(Ω)2 .

It remains to show the error estimate (3.18). It follows from (2.20)–(2.21) and (3.16)–(3.17) that

a(u − uPML,v) = a(u,v) − a(uPML,v)

= 〈f ,v〉Γ − 〈fPML,v〉Γ + aPML(uPML,v) − a(uPML,v)

= 〈(T PML − T )uinc,v〉Γ − 〈(T PML − T )uPML,v〉Γ
= 〈(T − T PML)(uPML − uinc),v〉Γ ,

which completes the proof upon using Lemmas 3.2 and 3.3. �

We remark that the error estimate (3.18) is a posteriori in nature as it depends only on the PML solution
uPML, which makes a posteriori error control possible. Moreover, the PML approximation error can be reduced
exponentially by either enlarging the thickness δ of the PML layers or enlarging the medium parameters Reσ
and Imσ.

4. Finite element approximation

In this section, we consider the finite element approximation of the PML problem (3.4) and deduce the a
posterior error estimate.

4.1. The discrete problem

Let Mh be a regular triangulation of the domain D. Every triangle T ∈ Mh is considered as closed. We
assume that any element T must be completely included in ΩPML or Ω. In order to introduce a finite element
space whose functions are quasi-periodic in the x direction, we require that if (0, y) is a node on the left boundary,
then (Λ, y) is also a node on the right boundary, and vice versa. Let Vh(D) ⊂ H1

qp(D) be a conforming finite
element space, and V̊h(D) = Vh(D) ∩H1

0,qp(D).
Denote by Πh : C(D̄)2 → Vh(D)2 the Scott–Zhang interpolation operator [31], which has the following

properties:
‖v −Πhv‖L2(T )2 ≤ ChT ‖∇v‖F (T̃), ‖v −Πhv‖L2(e)2 ≤ Ch1/2

e ‖∇v‖F (ẽ),

where hT is the diameter of the triangle T , he is the length of the edge e, T̃ and ẽ are the unions of all elements
which have nonempty intersection with the element T and the edge e, respectively, and the Frobenius norm of
the Jacobian matrix ∇v is defined by

‖∇v‖F (G) =

⎛
⎝ 2∑

j=1

∫
G

|∇vj |2dx

⎞
⎠

1/2

.

The finite element approximation to the problem (3.4) reads as follows: Find ûh ∈ Vh(D)2 such that ûh = Πhuinc

on ΓPML, ûh = 0 on S, and

bD(ûh,vh) = −
∫

D

g · v̄hdx, ∀ vh ∈ V̊h(D)2. (4.1)
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Following the general theory in [3], the existence of a unique solution of the discrete problem (4.1) and the finite
element convergence analysis depend on the following discrete inf-sup condition:

sup
0�=vh∈V̊h(D)2

|bD(ûh,vh)|
‖vh‖H1(D)2

≥ γ0‖ûh‖H1(D)2 , ∀ ûh ∈ V̊h(D)2, (4.2)

where the constant γ0 > 0 is independent of the finite element mesh size. Since the continuous problem (3.4) has
a unique solution by Theorem 3.4, the sesquilinear form b : H1

qp(D)2 ×H1
qp(D)2 → C satisfies the continuous

inf-sup condition. Then a general argument of Schatz [30] implies that (4.2) is valid for sufficiently small mesh
size h < h∗. Thanks to (4.2), an appropriate a priori error estimate can be derived and the estimate depends on
the regularity of the PML solution uPML. We assume that the discrete problem (4.1) admits a unique solution
ûh ∈ Vh(D)2, since we are interested in the a posteriori error estimate and the associated adaptive algorithm.

Denote by Bh the set of all edges that do not lie on ΓPML and S. For any T ∈ Mh, we introduce the residual

RT := (L ûh + g)|T =

{
L (ûh − uinc)|T if T ∈ ΩPML,

L ûh|T otherwise.

For any interior edge e ∈ Bh which is the common edge of T1 and T2, we define the jump residual across e as

Je = Dν ûh|T1 − Dνûh|T2 ,

where the unit normal vector ν on e points from T2 to T1 and the differential operator

Dνv = μ∂νv + (λ+ μ)(∇ · v)ν.

Define
Γleft = {x ∈ ∂D : x = 0}, Γright = {x ∈ ∂D : x = Λ}.

If e = Γleft ∩ ∂T for some element T ∈ Mh and e′ be the corresponding edge on Γright, which is also an edge for
some element T ′, then we define the jump residual as

Je =
[
μ∂x(ûh|T ) + (λ + μ)[1, 0]�∇x̂ · (ûh|T )

]
− e−iαΛ

[
μ∂x(ûh|T ′) + (λ+ μ)[1, 0]�∇x̂ · (ûh|T ′)

]
,

Je′ =eiαΛ
[
μ∂x(ûh|T ) + (λ+ μ)[1, 0]�∇x̂ · (ûh|T )

]
−
[
μ∂x(ûh|T ′) + (λ+ μ)[1, 0]�∇x̂ · (ûh|T ′)

]
.

For any T ∈ Mh, denote by ηT the local error estimator:

ηT = hT ‖RT ‖L2(T )2 +

(
1
2

∑
e⊂∂T

he‖Je‖2
L2(e)2

)1/2

.

The following theorem is the main result of this paper.

Theorem 4.1. There exists a positive constant C such that the following a posteriori error estimate holds

‖u − ûh‖H1(Ω)2 ≤ γ2F̂‖ûh − uinc‖L2(Γ )2 + γ2C2‖Πhuinc − uinc‖L2(ΓPML)2

+ C(1 + γ2C1)

( ∑
T∈Mh

η2
T

)1/2

,

where the constants F̂ , γ2, and Cj are defined in Lemmas 3.2, 3.3, 4.3, 4.4, respectively.
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4.2. A posteriori error analysis

For any v ∈ H1
qp(Ω)2, we denote by ṽ the extension of v such that ṽ = v in Ω and ṽ satisfies the following

boundary value problem

⎧⎪⎪⎨
⎪⎪⎩
μΔx̂

¯̃v + (λ+ μ)∇x̂∇x̂ · ¯̃v + ω2¯̃v = 0 inΩPML,

ṽ(x, b) = v(x, b) on Γ,

ṽ(x, b+ δ) = 0 on ΓPML.

(4.3)

Lemma 4.2. For any u, v ∈ H1
qp(Ω)2 we have

∫
Γ

T PMLu · v̄dx =
∫

Γ

u · D ¯̃vdx.

Proof. Introduce a function ŵ ∈ H1
qp(ΩPML)2 which satisfies

⎧⎪⎪⎨
⎪⎪⎩
μΔx̂ŵ + (λ+ μ)∇x̂∇x̂ · ŵ + ω2ŵ = 0 in ΩPML,

ŵ(x, b) = u(x, b) on Γ,

ŵ(x, b+ δ) = 0 on ΓPML.

Using the definitions of the operators T PML and D , we have

T PMLu = Dŵ on Γ.

On the other hand, it follows from Green’s formula and the extension that∫
Γ

u · D ¯̃vdx =
∫

Γ

ŵ · D ¯̃vdx = −
∫

ΩPML

[
μ∇x̂

¯̃v : ∇x̂ŵ + (λ+ μ)(∇x̂ · ¯̃v)(∇x̂ · ŵ) − ω2¯̃v · ŵ
]
dx

=
∫

ΩPML

[
μΔx̂ŵ + (λ+ μ)∇x̂∇x̂ · ŵ + ω2ŵ

]
· ¯̃vdx +

∫
Γ

Dŵ · ¯̃vdx

=
∫

Γ

Dŵ · ¯̃vdx =
∫

Γ

T PMLu · ¯̃vdx,

which completes the proof. �

Define H̊1
qp(D) = {v ∈ H1

qp(D) : v = 0 on ΓPML}. The following two lemmas are concerned with the stability
of the extension. The proofs are given in appendix.

Lemma 4.3. Let v ∈ H1
qp(Ω)2 and ṽ ∈ H̊1

qp(D)2 be its extension satisfying (4.3). Then there exists a positive
constant C1 such that

‖∇ṽ‖F (ΩPML) ≤ γ2C1‖v‖H1(Ω)2 ,

Lemma 4.4. Let v ∈ H1
qp(Ω)2 and ṽ ∈ H̊1

qp(D)2 be its extension satisfying (4.3). Then there exists a positive
constant C2 such that

‖D ṽ‖L2(ΓPML)2 ≤ γ2C2‖v‖H1(Ω)2 .

For simplicity, we shall write ṽ as v in the rest of the paper since no confusion of the notation is incurred.



2034 X. JIANG ET AL.

Lemma 4.5 (Error representation formula). For any v ∈ H1
S,qp(Ω)2, which is extended to be a function in

H1
0,qp(D)2 according to (4.3), and vh ∈ V̊h(D)2, we have

a(u − ûh,v) = −
∫

D

g · (v̄ − v̄h)dx − bD(ûh,v − vh)

+
∫

Γ

(T − T PML)(ûh − uinc) · v̄dx+
∫

ΓPML
(Πhuinc − uinc) · Dx̂v̄dx.

Proof. It follows from (2.21) and (3.4) that

a(u − ûh,v) = a(u − û,v) + a(û − ûh,v)

=
∫

Γ

(T − T PML)(û − uinc) · v̄dx+ aPML(û − ûh,v) −
∫

Γ

(T − T PML)(û − ûh) · v̄dx

=
∫

Γ

(T − T PML)(ûh − uinc) · v̄dx+ aPML(û − ûh,v).

Using (2.21) and Lemma 4.2 give

aPML(û − ûh,v) = bΩ(û − ûh,v) −
∫

Γ

T PML(û − ûh) · vdx = bΩ(û − ûh,v) −
∫

Γ

(û − ûh) · D v̄dx.

Since L v̄ = 0 in ΩPML, we deduce by Green’s formula that

bΩPML(û − ûh,v) = −
∫

Γ

(û − ûh) · D v̄dx+
∫

ΓPML
(û − ûh) · Dx̂v̄dx.

Applying (3.4) and (4.1) yields

aPML(û − ûh,v) =bD(û − ûh,v) −
∫

ΓPML
(û − ûh) · Dx̂v̄dx

= −
∫

D

g(v̄ − v̄h)dx − bD(ûh,v − vh) −
∫

ΓPML
(û − ûh) · Dx̂v̄dx,

which completes the proof. �

Clearly, it suffices to evaluate all the terms in the error representation formula in order to show the posteriori
error estimate in Theorem 4.1. Now we present the proof as follows.

Proof. Taking vh = Πhvh ∈ H1
0,qp(D)2 in Lemma 4.5 for the error representation formula, we have

a(u − ûh,v) = −
∫

D

g(v̄ − v̄h)dx − bD(ûh,v − vh)

+
∫

Γ

(T − T PML)(ûh − uinc) · vdx+
∫

ΓPML
(Πhuinc − uinc) · Dx̂v̄dx

=J1 + J2 + J3 + J4.

It follows from integration by parts that

J1 + J2 =
∑

T∈Mh

(∫
T

RT · (v̄ −Πhv̄)dx +
∑

e⊂∂T

1
2

∫
e

Je · (v̄ −Πhv̄)dx

)
,
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which gives after using the interpolation estimates and Lemma 4.3 that

|J1 + J2| ≤ C
∑

T∈Mh

ηT ‖∇v‖F (T̃) ≤ C(1 + γ2C1)

( ∑
T∈Mh

η2
T

)1/2

‖v‖H1(Ω)2 .

By Lemmas 3.2 and 3.3, we obtain

|J3| ≤ F̂‖ûh − uinc‖L2(Γ )2‖v‖L2(Γ )2 ≤ γ2F̂‖ûh − uinc‖L2(Γ )2‖v‖H1(Ω)2 .

Finally, it follows from Lemmas 3.3 and 4.4 that

|J4| ≤C2‖Πhuinc − uinc‖L2(ΓPML)2‖v‖L2(Γ )2

≤γ2C2‖Πhuinc − uinc‖L2(ΓPML)2‖v‖H1(Ω)2 .

The proof is completed by combining the above estimates �

5. Numerical experiments

According to the discussion in Section 3, we choose the PML medium property as the power function and
need to specify the thickness δ of the layers and the medium parameter σ. Recall from Theorem 4.1 that the
a posteriori error estimate consists of two parts: the PML error εPML and the finite element discretization error
εFEM, where

εPML = F̂‖uPML
h − uinc‖L2(Γ )2 , (5.1)

εFEM = ‖uPML
h − uinc‖L2(ΓPML)2 +

( ∑
T∈Mh

η2
T

)1/2

. (5.2)

In our implementation, we first choose δ and σ such that F̂Λ1/2 ≤ 10−8, which makes the PML error negligible
compared with the finite element discretization error. Once the PML region and the medium property are fixed,
we use the standard finite element adaptive strategy to modify the mesh according to the a posteriori error
estimate (5.2). For any T ∈ Mh, we define the local a posteriori error estimator

η̂T = ηT + ‖Πhuinc − uinc‖L2(ΓPML∩∂T )2 .

The adaptive FEM algorithm is summarized in Table 1.

Table 1. The adaptive FEM algorithm.

1 Given the tolerance ε > 0, τ ∈ (0, 1);

2 Choose δ and σ such that F̂Λ1/2 ≤ 10−8;
3 Construct an initial triangulation Mh over Ω and compute error estimators;
4 While εh > ε do

5 choose M̂h ⊂ Mh according to the strategy ηM̂h
> τηMh ;

6 refine all the elements in M̂h and obtain a new mesh denoted still by Mh;
7 solve the discrete problem (4.1) on the new mesh Mh;
8 compute the corresponding error estimators;
9 End while.

In the following, we present two examples to demonstrate the competitive numerical performance of the
proposed algorithm. We choose λ = 1, μ = 2 and the wavelength is the same as the period Λ = 1. The
implementation of the adaptive algorithm is based on FreeFem++-cs [26].
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Figure 3. Example 1: Quasi-optimality of the a priori (left) and a posteriori (right) error
estimates.

Example 5.1. We consider the simplest periodic structure, a straight line. In this situation, the exact solution
is available, which allows us to test the accuracy of the numerical algorithm. Assume that a plane compressional
plane wave

uinc = [sin θ, − cos θ]�ei(αx−βy)

is incident on the straight line y = 0, where α = κ1 sin θ, β = κ1 cos θ, θ ∈ (−π/2, π/2) is the incident angle. It
follows from the Navier equation, Helmholtz decomposition, and outgoing radiation condition that we obtain
the exact solution

u(x, y) = uinc(x, y) − [α, β]�R1ei(αx+βy) − [β(0)
2 , −α]�R2ei(αx+β

(0)
2 y),

where β(0)
2 = (κ2

2 − α2)1/2 and

R1 =

(
α sin θ − β

(0)
2 cos θ

α2 + ββ
(0)
2

)
, R2 =

(
α cos θ + β sin θ

α2 + ββ
(0)
2

)
·

In our experiment, the parameters are chosen as θ = π/6, ω = 2π, and the domain Ω = (0, 1)× (0, 1). Figure 3
shows the curves of log ‖∇(u− ûk)‖F (Ω) versus logNk for both the a priori and the a posteriori error estimates,
where Nk is the number of nodes of the mesh Mk. The result shows that the meshes and the associated
numerical complexity are quasi-optimal for the proposed method, i.e., log ‖∇(u − ûk)‖F (Ω) = CN

−1/2
k is valid

asymptotically.

Example 5.2. This example is concerned with the scattering of the compressional plane wave

uinc = [sin θ, − cos θ]�ei(αx−βy)

on a grating surface with a sharp angle. The problem geometry is shown in Figure 4a. The parameters are
chosen the same as those for Example 1. Since there is no exact solution for this example, we plot in Figure 4b
the curves of log ‖∇(u − ûk)‖F (Ω) versus logNk for the a posteriori error estimate, where Nk is the number of
nodes of the mesh Mk. Again, the result shows that the meshes and the associated numerical complexity are
quasi-optimal for the proposed method. To verify Theorem 2.2, we plot in Figure 5 the grating efficiencies and
the errors of the total efficiency for different PML thickness. Figure 6 shows the mesh and the amplitude of
the associated solution after 6 adaptive iterations when the grating efficiency is stabilized. The mesh has 8986
nodes. This example shows clearly the ability of the proposed method to capture the singularity of the solution
around the corner.
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Figure 4. Example 2: (left) geometry of the domain; (right) quasi-optimality of the a posteriori
error estimates for different PML thickness.
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Figure 5. Example 2: (left) grating efficiency with δ = 0.5; (right) robustness of grating
efficiency with respect to the thickness of PML layers.

Figure 6. Example 2: the mesh (left) and the surface plot of the amplitude of the associated
solution (right) after 6 adaptive iterations. The mesh has 8986 nodes.
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Figure 7. Example 2: two zoom-in subplots of the mesh around the corner point; the right
one is a zoom-in subplot of the left one.

6. Concluding remarks

We presented an adaptive finite element method with the PML absorbing layer technique for the elastic
wave scattering problem in a periodic structure. We showed that the truncated PML problem has a unique
weak solution which converges exponentially to the solution of the original problem by increasing the PML
parameters. We deduced the a posteriori error estimate for the PML solution which serves as a basis for the
adaptive finite element approximation. Numerical results show that the proposed method is effective to solve
the diffractive grating problem of elastic waves. The method can be directly applied to solve the diffraction
grating problems with other interface and/or boundary conditions. We are also currently extending the method
to the three-dimensional problem where biperiodic structures need to be considered.

Appendix A. Technical estimates

In this section, we present the proofs for some technical estimates which are used in our analysis for the error
estimate between the solutions of the PML problem and the original scattering problem.

Proposition A.1. For any n ∈ Z, we have κ2
1 < |χ(n)| < κ2

2.

Proof. Recalling (2.16) and (2.11), we consider three cases:

(i) For n ∈ U1, β
(n)
1 = (κ2

1 − α2
n)1/2 and β(n)

2 = (κ2
2 − α2

n)1/2. We have

χ(n) = α2
n + β

(n)
1 β

(n)
2 = α2

n + (κ2
1 − α2

n)1/2(κ2
2 − α2

n)1/2.

Consider the function
g1(t) = t+ (k1 − t)1/2(k2 − t)1/2, 0 < k1 < k2.

It is easy to know that g1 is decreasing for 0 < t < k1. Hence

k1 = g1(k1) < g1(t) < g1(0) = (k1k2)1/2,

which gives κ2
1 < χ(n) < κ1κ2.

(ii) For n ∈ U2 \ U1, β
(n)
1 = i(α2

n − κ2
1)

1/2, β
(n)
2 = (κ2

2 − α2
n)1/2. We have

χ(n) = α2
n + i(α2

n − κ2
1)

1/2(κ2
2 − α2

n)1/2

and
|χ(n)|2 = (κ2

1 + κ2
2)α

2
n − (κ1κ2)2,

which gives κ2
1 < |χ(n)| < κ2

2.
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(iii) For n /∈ U2, β
(n)
1 = i(α2

n − κ2
1)

1/2, β
(n)
2 = i(α2

n − κ2
2)

1/2. We have

χ(n) = α2
n − (α2

n − κ2
1)

1/2(α2
n − κ2

2)
1/2.

Let
g2(t) = t− (t− k1)1/2(t− k2)1/2, 0 < k1 < k2.

It is easy to verify that the function g2 is decreasing for t > k2. Hence we have

(k1 + k2)/2 = lim
t→∞ g2(t) < g2(t) < g2(k2) = k2,

which gives (κ2
1 + κ2

2)/2 < χ(n) < κ2
2.

Combining the above estimates, we get κ2
1 < |χ(n)| < κ2

2 for any n ∈ Z. �

Proposition A.2. The function g3(t) = t/(et − 1) is a decreasing function for t > 0.

Proof. A simple calculation yields

g′3(t) =
(1 − t)et − 1

(et − 1)2
< 0, t > 0,

which completes the proof. �

Proposition A.3. The function g4(t) = tk/e(t2−s2)1/2/2 satisfies g4(t) ≤ (s2 + k2)k/2 for any t > s > 0, k ≥ 2.

Proof. Using the change of variables τ = (t2 − s2)1/2, we have

ĝ4(τ) =
(τ2 + s2)k/2

eτ/2
·

Taking the derivative of ĝ4 gives

ĝ′4(τ) = − (τ2 − kτ + s2)(τ2 + s2)1/2

eτ/2
·

(i) If s ≥ k/2, then ĝ′4 ≤ 0 for τ > 0. The function ĝ4 is decreasing and reaches its maximum at τ = 0, i.e.,

g4(t) ≤ ĝ4(0) = sk.

(ii) If s < k/2, then ĝ′4 < 0 for τ ∈ (0, (k − (k2 − 4s2)1/2)/2) ∪ ((k + (k2 − 4s2)1/2)/2,∞) and ĝ4 > 0 for
τ ∈ ((k − (k2 − 4s2)1/2)/2, (k + (k2 − 4s2)1/2)/2). Thus ĝ4 reaches its maximum at either τ1 = 0 or
τ2 = (k + (k2 − 4s2)1/2)/2. Thus we have

g4(t) = ĝ4(τ) ≤ max{ĝ4(τ1), ĝ4(τ2)} ≤ (s2 + k2)k/2.

The proof is completed by combining the above estimates. �

Proposition A.4. For any n ∈ Z, we have ‖M (n) − M̂ (n)‖2 ≤ F̂ , where F̂ = 17ω2F/κ4
1.

Proof. First, we have from (3.12) that

|ε(n)
j | =

∣∣∣coth(−iβ(n)
j ζ) − 1

∣∣∣ =
2∣∣∣e−2iβ

(n)
j ζ − 1

∣∣∣ ≤
2∣∣∣e−2iβ

(n)
j ζ

∣∣∣− 1
,

∣∣∣δ(n)
j

∣∣∣ =

∣∣∣∣∣ eiβ
(n)
2 ζ − eiβ

(n)
1 ζ

e−iβ
(n)
j ζ − eiβ

(n)
j ζ

∣∣∣∣∣ ≤ 2∣∣∣e−iβ
(n)
j ζ

∣∣∣− 1
=

2

eImβ
(n)
j Reζ+Reβ

(n)
j Imζ − 1

,
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and

|ε(n)
1 η(n)| =

∣∣∣∣∣ 2eiβ
(n)
1 ζ

e−iβ
(n)
2 ζ − eiβ

(n)
2 ζ

∣∣∣∣∣ ≤ 2∣∣∣|e−iβ
(n)
2 ζ

∣∣∣− 1
·

Thus we can take proper PML parameters σ and δ such that |δ(n)
j | < 1 for any n ∈ Z.

Next we consider three cases:

(i) For n ∈ U1, we have β(n)
1 = Δ

(n)
1 , β

(n)
2 = Δ

(n)
2 . Using the facts that Δ(n)

j ≥ Δ−
j for n ∈ U1 and the function

g3 is decreasing for t > 0, we obtain from (2.16) and (3.13) that

|χ̂(n) − χ(n)| ≤ 24Δ(n)
1 Δ

(n)
2

|e−iβ
(n)
1 ζ | − 1

≤ 12κ2Δ
−
1

e
1
2 Δ−

1 Imζ − 1
≤ F,

and

max
{|αn(χ̂(n) − χ(n))|, |β(n)

1 (χ̂(n) − χ(n))|, |β(n)
2 (χ̂(n) − χ(n))|}

≤ 24κ2
2Δ

(n)
1

|e−iβ
(n)
1 ζ | − 1

≤ 12κ2
2Δ

−
1

e
1
2 Δ−

1 Imζ − 1
≤ F,

max
{|ε1α2

nβ
(n)
1 |, |ε1αnβ

(n)
1 β

(n)
2 |, |ε1β(n)

1 (β(n)
2 )2|, |δ(n)

1 αnβ
(n)
1 β

(n)
2 |}

≤ 2κ2
2Δ

(n)
1

e2Δ
(n)
1 Imζ − 1

≤ κ2
2Δ

−
1

eΔ−
1 Imζ − 1

≤ F,

max
{
|ε(n)

1 η(n)αnβ
(n)
1 β

(n)
2 |, |ε(n)

1 η(n)α2
nβ

(n)
2 |, |δ(n)

2 α2
nβ

(n)
2 |,

|ε(n)
1 η(n)(β(n)

1 )2β(n)
2 |, |δ(n)

2 αnβ
(n)
1 β

(n)
2 |, |δ(n)

2 (β(n)
1 )2β(n)

2 |
}

≤ 2κ2
2Δ

(n)
2

eΔ
(n)
2 Imζ − 1

≤ κ2
2Δ

−
2

e
1
2 Δ−

2 Imζ − 1
≤ F.

(ii) For n ∈ U2 \ U1, we have β(n)
1 = iΔ1(n), β(n)

2 = Δ
(n)
2 . Using the facts that Δ1(n) ≥ Δ+

1 , Δ
(n)
2 ≥ Δ−

2 for
n ∈ U2 \ U1 and the function g3 is decreasing for t > 0 again, we get

|χ̂(n) − χ(n)| ≤ 16κ3
2

κ2
1

Δ
(n)
2

eΔ
(n)
2 Imζ − 1

+
8κ3

2

κ2
1

Δ
(n)
1

eΔ
(n)
1 Reζ − 1

≤ 8κ3
2

κ2
1

Δ−
2

e
1
2 Δ−

2 Imζ − 1
+

4κ3
2

κ2
1

Δ+
1

e
1
2 Δ+

1 Reζ − 1
≤ F,

and

max
{ ∣∣∣αn(χ̂(n) − χ(n))

∣∣∣ , ∣∣∣β(n)
1 (χ̂(n) − χ(n))

∣∣∣ , ∣∣∣β(n)
2 (χ̂(n) − χ(n))

∣∣∣ }

≤ 16κ4
2Δ

(n)
2

eΔ
(n)
2 Imζ − 1

+
8κ4

2Δ
(n)
1

eΔ
(n)
1 Reζ − 1

≤ 8κ4
2Δ

−
2

e
1
2 Δ−

2 Imζ − 1
+

4κ4
2Δ

+
1

e
1
2 Δ+

1 Reζ − 1
≤ F,

max
{ ∣∣∣ε1α2

nβ
(n)
1

∣∣∣ , ∣∣∣ε1αnβ
(n)
1 β

(n)
2

∣∣∣ , ∣∣∣ε1β(n)
1 (β(n)

2 )2
∣∣∣ , ∣∣∣δ(n)

1 αnβ
(n)
1 β

(n)
2

∣∣∣}
≤ 2κ2

2Δ
(n)
1

e2Δ
(n)
1 Reζ − 1

≤ κ2
2Δ

−
1

eΔ−
1 Reζ − 1

≤ κ2
2Δ

−
1

e
1
2 Δ−

1 Reζ − 1
≤ F,
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max
{ ∣∣∣ε(n)

1 η(n)αnβ
(n)
1 β

(n)
2

∣∣∣ , ∣∣∣ε(n)
1 η(n)(αn)2β(n)

2

∣∣∣ , ∣∣∣δ(n)
2 (αn)2β(n)

2

∣∣∣ ,∣∣∣ε(n)
1 η(n)(β(n)

1 )2β(n)
2

∣∣∣ , ∣∣∣δ(n)
2 αnβ

(n)
1 β

(n)
2

∣∣∣ , ∣∣∣δ(n)
2 (β(n)

1 )2β(n)
2

∣∣∣ }

≤ 2κ2
2Δ

(n)
2

eΔ
(n)
2 Imζ − 1

≤ κ2
2Δ

−
2

e
1
2 Δ−

2 Imζ − 1
≤ F.

(iii) For n /∈ U2, we have β(n)
1 = iΔ(n)

1 , β
(n)
2 = iΔ(n)

2 , and Δ(n)
1 > Δ

(n)
2 . Noting Reζ ≥ 1, we obtain

∣∣∣χ̂(n) − χ(n)
∣∣∣ ≤ 24

κ2
1

|αn|3Δ(n)
2

eΔ
(n)
2 Reζ − 1

≤ 24
κ2

1

|αn|3
e

1
2 Δ

(n)
2

Δ
(n)
2

e
1
2 Δ

(n)
2 Reζ − 1

≤ 24(9 + κ2
2)3/2

κ2
1

Δ+
1

e
1
2 Δ+

1 Reζ − 1
≤ F,

and

max
{ ∣∣∣αn(χ̂(n) − χ(n))

∣∣∣ , ∣∣∣β(n)
1 (χ̂(n) − χ(n))

∣∣∣ , ∣∣∣β(n)
2 (χ̂(n) − χ(n))

∣∣∣}

≤ 24
κ2

1

|αn|4Δ(n)
2

eΔ
(n)
2 Reζ − 1

≤ 24
κ2

1

|αn|4
e

1
2 Δ

(n)
2

Δ
(n)
2

e
1
2 Δ

(n)
2 Reζ − 1

≤ 24(16 + κ2
2)2

κ2
1

Δ+
1

e
1
2 Δ+

1 Reζ − 1
≤ F,

max
{ ∣∣∣ε1α2

nβ
(n)
1

∣∣∣ , ∣∣∣ε1αnβ
(n)
1 β

(n)
2

∣∣∣ , ∣∣∣ε1β(n)
1 (β(n)

2 )2
∣∣∣ , ∣∣∣δ(n)

1 αnβ
(n)
1 β

(n)
2

∣∣∣ }

≤ 2α2
nΔ

(n)
1

e2Δ
(n)
1 Reζ − 1

≤ 2α2
n

eΔ
(n)
1

Δ
(n)
1

eΔ
(n)
1 Reζ − 1

≤ 2(4 + κ2
1)

Δ+
1

eΔ+
1 Reζ − 1

≤ F,

max
{ ∣∣∣ε(n)

1 η(n)αnβ
(n)
1 β

(n)
2

∣∣∣ , ∣∣∣ε(n)
1 η(n)(αn)2β(n)

2

∣∣∣ , ∣∣∣δ(n)
2 (αn)2β(n)

2

∣∣∣ ,∣∣∣ε(n)
1 η(n)(β(n)

1 )2β(n)
2

∣∣∣ , ∣∣∣δ(n)
2 αnβ

(n)
1 β

(n)
2

∣∣∣ , ∣∣∣δ(n)
2 (β(n)

1 )2β(n)
2

∣∣∣ }

≤ 2α2
nΔ

(n)
2

eΔ
(n)
2 Reζ − 1

≤ 2α2
n

e
1
2 Δ

(n)
2

Δ
(n)
2

e
1
2 Δ

(n)
2 Reζ − 1

≤ 2(4 + k2
2)

Δ+
2

e
1
2 Δ+

2 Reζ − 1
≤ F,

where we have used the estimate for g4 and the facts that Δ(n)
j ≥ Δ+

j for n /∈ U2 and g3 is a decreasing
function.

It follows from Proposition A.1 and the estimate |χ̂(n) − χ(n)| ≤ F that κ2
1 − F ≤ |χ̂(n)| ≤ κ2

2 + F. Again, we
may choose some proper PML parameters σ and δ such that F ≤ κ2

1/2, which gives |χ̂(n)| ≥ κ2
1/2.

Last, using the matrix norm and combining all the above estimates, we get

‖M (n) − M̂ (n)‖2
2 ≤ 4ω4

κ8
1

( ∣∣∣β(n)
1

(
χ̂(n) − χ(n)

)∣∣∣2 + 2
∣∣∣αn

(
χ̂(n) − χ(n)

)∣∣∣2 +
∣∣∣β(n)

2

(
χ̂(n) − χ(n)

)∣∣∣2

+
∣∣∣ε(n)

1 α2
nβ

(n)
1

∣∣∣2 +
∣∣∣∣ε(n)

1 β
(n)
1

(
β

(n)
2

)2
∣∣∣∣
2

+ 10
∣∣∣ε(n)

1 αnβ
(n)
1 β

(n)
2

∣∣∣2 +
∣∣∣∣ε(n)

1 η(n)
(
β

(n)
1

)2

β
(n)
2

∣∣∣∣
2

+ 2
∣∣∣ε(n)

1 η(n)αnβ
(n)
1 β

(n)
2

∣∣∣2 +
∣∣∣ε(n)

1 η(n)α2
nβ

(n)
2

∣∣∣2 + 4
∣∣∣∣δ(n)

2

(
β

(n)
1

)2

β
(n)
2

∣∣∣∣
2

+ 16
∣∣∣δ(n)

1 αnβ
(n)
1 β

(n)
2

∣∣∣2 + 4
∣∣∣δ(n)

2 α2
nβ

(n)
2

∣∣∣2 + 24
∣∣∣δ(n)

2 αnβ
(n)
1 β

(n)
2

∣∣∣2 ) ≤ 272ω4

κ8
1

F 2,

which completes the proof. �
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Appendix B. Proof of Lemma 4.3

Let w = ¯̃v. The problem (4.3) can be written as

⎧⎪⎪⎨
⎪⎪⎩
μΔx̂w + (λ+ μ)∇x̂∇x̂ · w + ω2w = 0 inΩPML,

w(x, b) = v̄(x, b) on Γ,

w(x, b+ δ) = 0 on ΓPML.

(B.1)

We introduce the Helmholtz decomposition to the solution of (B.1):

w = ∇x̂ψ1 + curlx̂ψ2, (B.2)

where ψj(x̂) satisfies the Helmholtz equation

Δx̂ψj + κ2
jψj = 0. (B.3)

Due to the quasi-periodicity of the solution, we have the Fourier series expansion

ψj(x, y) =
∑
n∈Z

ψ
(n)
j (y)e−iαnx. (B.4)

Substituting (B.4) into (B.3) yields

ρ−1 d
dy

(
ρ−1 d

dy
ψ

(n)
j (y)

)
+ (β(n)

j )2ψ(n)
j (y) = 0. (B.5)

The general solutions of (B.5) is

ψ
(n)
j (y) = Ã

(n)
j eiβ

(n)
j

∫ y
b

ρ(τ)dτ + B̃
(n)
j e−iβ

(n)
j

∫ y
b

ρ(τ)dτ .

It follows from (B.2) that the coefficients Ã(n)
j and B̃

(n)
j can be uniquely determined by solving the following

linear equations ⎡
⎢⎢⎢⎢⎢⎢⎣

−αn −αn β
(n)
2 −β(n)

2

β
(n)
1 −β(n)

1 αn αn

−αneiβ
(n)
1 ζ −αne−iβ

(n)
1 ζ β

(n)
2 eiβ

(n)
2 ζ −β(n)

2 e−iβ
(n)
2 ζ

β
(n)
1 eiβ

(n)
1 ζ −β(n)

1 e−iβ
(n)
1 ζ αneiβ

(n)
2 ζ αne−iβ

(n)
2 ζ

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

Ã
(n)
1

B̃
(n)
1

Ã
(n)
2

B̃
(n)
2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
−iv̄(n)

1 (b)

−iv̄(n)
2 (b)

0

0

⎤
⎥⎥⎥⎥⎥⎦ . (B.6)

A straightforward calculation yields the solution of (B.6):

Ã
(n)
1 =

i
2χ(n)χ̂(n)

{
− χ(n)

(
ε
(n)
1 + 2

)(
−αnv̄

(n)
1 (b) + β

(n)
2 v̄

(n)
2 (b)

)
+ 2β(n)

2

(
ε
(n)
1 + 2δ(n)

1

)(
1 + δ

(n)
2 − η(n)

)(
−αnβ

(n)
1 v̄

(n)
1 (b) + α2

nv̄
(n)
2 (b)

)}
,

B̃
(n)
1 =

i
2χ(n)χ̂(n)

{
χ(n)ε

(n)
1

(
−αnv̄

(n)
1 (b) − β

(n)
2 v̄

(n)
2 (b)

)
+ 2

(
ε
(n)
1 δ

(n)
2

)
+ 2

(
δ
(n)
1 + δ

(n)
1 δ

(n)
2

)(
−αnβ

(n)
1 β

(n)
2 v̄

(n)
1 (b) − α2

nβ
(n)
2 v̄

(n)
2 (b)

)}
,
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Ã
(n)
2 =

i
2χ(n)χ̂(n)

{
χ(n)

[
ε
(n)
1 η(n) − 2

(
ε
(n)
1 + 1)(1 + δ

(n)
2

)](
β

(n)
1 v̄

(n)
1 (b) + αnv̄

(n)
2 (b)

)
+ 2ε(n)

1

(
1 + δ

(n)
2 − η(n)

)(
(β(n)

1 )2β(n)
2 v̄

(n)
1 (b) + α3

nv̄
(n)
2 (b)

)}
,

B̃
(n)
2 =

i
2χ(n)χ̂(n)

{
χ(n)

[
2δ(n)

2

(
ε
(n)
1 + 1

)
− ε

(n)
1 η(n)

] (
β

(n)
1 v̄

(n)
1 (b) − αnv̄

(n)
2 (b)

)
− 2δ(n)

2

(
ε
(n)
1 + 2

)(
(β(n)

1 )2β(n)
2 v̄

(n)
1 (b) − α3

nv̄
(n)
2 (b)

)}
.

Noting ṽ = w̄ and using the Helmholtz decomposition (B.2) again, we obtain

ṽ(x, y) = i
∑
n∈Z

[
αn

−β̄(n)
1

]
¯̃A(n)
1 ei

(
αnx−β̄

(n)
1

∫
y
b

ρ̄(τ)dτ
)

+

[
αn

β̄
(n)
1

]
¯̃B(n)
1 ei

(
αnx+β̄

(n)
1

∫
y
b

ρ̄(τ)dτ
)

−
[
β̄

(n)
2

αn

]
¯̃A(n)
2 ei

(
αnx−β̄

(n)
2

∫
y
b

ρ̄(τ)dτ
)

+

[
β̄

(n)
2

−αn

]
¯̃B(n)
2 ei

(
αnx+β̄

(n)
2

∫
y
b

ρ̄(τ)dτ
)
. (B.7)

Using the orthogonality of the Fourier modes in (B.7), we have

∫ Λ

0

(
|∂xṽ1|2 + |∂xṽ2|2 + |∂y ṽ1|2 + |∂y ṽ2|2

)
dx ≤ 2Λ

∑
n∈Z

[ ∣∣∣α2
n

¯̃A(n)
1 e−iβ

(n)
1 ŷ

∣∣∣2 +
∣∣∣α2

n
¯̃B(n)
1 eiβ

(n)
1 ŷ

∣∣∣2

+
∣∣∣αnβ

(n)
2

¯̃A(n)
2 e−iβ

(n)
2 ŷ

∣∣∣2 +
∣∣∣αnβ

(n)
2

¯̃B(n)
2 eiβ

(n)
2 ŷ

∣∣∣2 +
∣∣∣αnβ

(n)
1

¯̃A(n)
1 e−iβ

(n)
1 ŷ

∣∣∣2
+
∣∣∣αnβ

(n)
1

¯̃B(n)
1 eiβ

(n)
1 ŷ

∣∣∣2 +
∣∣∣α2

n
¯̃A(n)
2 e−iβ

(n)
2 ŷ

∣∣∣2 +
∣∣∣α2

n
¯̃B(n)
2 eiβ

(n)
2 ŷ

∣∣∣2 +
∣∣∣αnβ

(n)
1

¯̃A(n)
1 e−iβ

(n)
1 ŷ

∣∣∣2
+
∣∣∣αnβ

(n)
1

¯̃B(n)
1 eiβ

(n)
1 ŷ

∣∣∣2 +
∣∣∣(β(n)

2 )2 ¯̃A(n)
2 e−iβ

(n)
1 ŷ

∣∣∣2 +
∣∣∣(β(n)

2 )2 ¯̃B(n)
2 eiβ

(n)
1 ŷ

∣∣∣2 +
∣∣∣(β(n)

1 )2 ¯̃A(n)
1 e−iβ

(n)
1 ŷ

∣∣∣2
+
∣∣∣(β(n)

1 )2 ¯̃B(n)
1 eiβ

(n)
1 ŷ

∣∣∣2 +
∣∣∣αnβ

(n)
2

¯̃A(n)
2 e−iβ

(n)
1 ŷ

∣∣∣2 +
∣∣∣αnβ

(n)
2

¯̃B(n)
2 eiβ

(n)
1 ŷ

∣∣∣2 ].
We may pick some appropriate PML parameters σ and δ such that |χ(n) − χ̂(n)| ≤ κ2

1/2 and |χ̂(n)| ≥ κ2
1/2. It

follows from the definition of ¯̃A(n)
1 that

∣∣∣α2
n

¯̃A(n)
1 e−iβ

(n)
1 ŷ

∣∣∣ ≤ |αn|
κ8

1

{
κ4

2|αn|5
∣∣∣ε(n)

1 e−iβ
(n)
1 ŷ

∣∣∣2 + 4|αn|5
∣∣∣ (ε(n)

1 δ
(n)
2 + 2

(
δ
(n)
1 + δ

(n)
1 δ

(n)
2

))

× β
(n)
1 β

(n)
2 e−iβ

(n)
1 ŷ

∣∣∣2} ∣∣∣v(n)
1 (b)

∣∣∣2 +
|αn|
κ8

1

{
κ4

2|αn|5
∣∣ε(n)

1 e−iβ
(n)
1 ŷ

∣∣2
+ 4|αn|7

∣∣∣(ε(n)
1 δ

(n)
2 + 2

(
δ
(n)
1 + δ

(n)
1 δ

(n)
2

))
β

(n)
2 e−iβ

(n)
1 ŷ

∣∣∣2} ∣∣∣v(n)
2 (b)

∣∣∣2 . (B.8)

Since the estimates are similar for the coefficients in front of v(n)
1 (b) and v

(n)
2 (b) in (B.8), we just present the

estimates for the coefficients in front of v(n)
1 (b).

Again, it is necessary to consider three cases:

(i) If n ∈ U1, we have β(n)
1 = Δ

(n)
1 , β(n)

2 = Δ
(n)
2 , Δ(n)

1 < Δ
(n)
2 , |αn| ≤ κ1, |βn

1 | ≤ κ1, |βn
2 | ≤ κ2, and

|αn|5/2
∣∣∣ε(n)

1 e−iβ
(n)
1 ŷ

∣∣∣ ≤ 2κ5/2
1 eΔ

(n)
1 (Imŷ−Imζ)

eΔ
(n)
1 Imζ − 1

≤ 2κ5/2
1

eΔ−
1 Imζ − 1

,
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|αn|5/2
∣∣∣β(n)

1 β
(n)
2

∣∣∣ ∣∣∣ε(n)
1 δ

(n)
2 e−iβ

(n)
1 ŷ

∣∣∣ ≤ 2κ7/2
1 κ2e−Δ

(n)
1 Imζ

eΔ
(n)
1 Imζ − 1

2

eΔ
(n)
2 Imζ − 1

eΔ
(n)
1 Imŷ

≤ 4κ7/2
1 κ2

(eΔ−
1 Imζ − 1)(eΔ−

2 Imζ − 1)
,

|αn|5/2
∣∣∣β(n)

1 β
(n)
2

∣∣∣ ∣∣∣δ(n)
1 e−iβ

(n)
1 ŷ

∣∣∣ ≤ 2κ7/2
1 κ2(e−Δ

(n)
2 Imζ + e−Δ

(n)
1 Imζ)

eΔ
(n)
1 Imζ − 1

eΔ
(n)
1 Imŷ

≤ 4κ7/2
1 κ2

eΔ−
1 Imζ − 1

,

|αn|5/2
∣∣∣β(n)

1 β
(n)
2

∣∣∣ ∣∣∣δ(n)
1 δ

(n)
2 e−iβ

(n)
1 ŷ

∣∣∣ ≤ |αn|5/2|β(n)
1 β

(n)
2 δ

(n)
2 |

∣∣∣δ(n)
1 e−iβ

(n)
1 ŷ

∣∣∣
≤ 8κ7/2

1 κ2

(eΔ−
1 Imζ − 1)(eΔ−

2 Imζ − 1)
·

(ii) If n ∈ U2\U1, we have β(n)
1 = iΔ(n)

1 , β(n)
2 = Δ

(n)
2 , |αn| ≤ κ2, Δ

(n)
j ≤ κ2, and

|αn|5/2
∣∣∣ε(n)

1 e−iβ
(n)
1 ŷ

∣∣∣ ≤ 2κ5/2
2 eΔ

(n)
1 (Reŷ−Reζ)

eΔ
(n)
1 Reζ − 1

≤ 2κ5/2
2

eΔ+
1 Reζ − 1

,

|αn|5/2
∣∣∣β(n)

1 β
(n)
2

∣∣∣ ∣∣∣ε(n)
1 δ

(n)
2 e−iβ

(n)
1 ŷ

∣∣∣ ≤ 2κ9/2
2 e−Δ

(n)
1 Reζ

eΔ
(n)
1 Reζ − 1

2

eΔ
(n)
2 Imζ − 1

eΔ
(n)
1 Reŷ

≤ 4κ9/2
2(

eΔ+
1 Reζ − 1

)(
eΔ−

2 Imζ − 1
) ,

|αn|5/2
∣∣∣β(n)

1 β
(n)
2

∣∣∣ ∣∣∣δ(n)
1 e−iβ

(n)
1 ŷ

∣∣∣ ≤ 2κ9/2
2

eΔ
(n)
1 Reζ − 1

eΔ
(n)
1 Reŷ

≤ 2κ9/2
2 eΔ

(n)
1 Reζ

eΔ
(n)
1 Reζ − 1

≤ 2κ9/2
2 eΔ+

1 Reζ

eΔ+
1 Reζ − 1

,

|αn|5/2
∣∣∣β(n)

1 β
(n)
2

∣∣∣ ∣∣∣δ(n)
1 δ

(n)
2 e−iβ

(n)
1 ŷ

∣∣∣ ≤ |αn|5/2
∣∣∣β(n)

1 β
(n)
2 δ

(n)
2

∣∣∣ ∣∣∣δ(n)
1 e−iβ

(n)
1 ŷ

∣∣∣
≤ 4κ9/2

2 eΔ+
1 Reζ(

eΔ+
1 Reζ − 1

)(
eΔ−

2 Imζ − 1
) ·

(iii) If n /∈ U2, we have β(n)
1 = iΔ(n)

1 , β(n)
2 = iΔ(n)

2 , Δ(n)
2 < Δ

(n)
1 ≤ |αn|, and

|αn|5/2
∣∣∣ε(n)

1 e−iβ
(n)
1 ŷ

∣∣∣ ≤ 2|αn|5/2eΔ
(n)
1 (Reŷ−Reζ)

eΔ
(n)
1 Reζ − 1

≤ 2|αn|5/2

e
1
2 Δ

(n)
1

1

e
1
2 Δ+

1 Reζ − 1

≤ 2(κ2
1 + 25/4)5/4

e
1
2 Δ+

1 Reζ − 1
,
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|αn|5/2
∣∣∣β(n)

1 β
(n)
2

∣∣∣ ∣∣∣ε(n)
1 δ

(n)
2 e−iβ

(n)
1 ŷ

∣∣∣ ≤ |αn|9/2
∣∣∣ε(n)

1 e−iβ
(n)
1 ŷ

∣∣∣ ∣∣∣δ(n)
2

∣∣∣
≤ 4

(
κ2

1 + 81/4
)9/4(

e
1
2 Δ+

1 Reζ − 1
)(

eΔ+
2 Reζ − 1

) ,

|αn|5/2
∣∣∣β(n)

1 β
(n)
2

∣∣∣ ∣∣∣δ(n)
1 e−iβ

(n)
1 ŷ

∣∣∣ ≤ |αn|9/2
(
e−Δ

(n)
2 Reζ + e−Δ

(n)
1 Reζ

)
eΔ

(n)
1 Reζ − 1

eΔ
(n)
1 Reŷ

≤ 2|αn|9/2

eΔ
(n)
1 Reζ − 1

≤ 2(κ2
1 + 81/4)9/4

e
1
2 Δ+

1 Reζ − 1
,

|αn|5/2
∣∣∣β(n)

1 β
(n)
2

∣∣∣ ∣∣∣δ(n)
1 δ

(n)
2 e−iβ

(n)
1 ŷ

∣∣∣ ≤ |αn|5/2
∣∣∣β(n)

1 β
(n)
2 δ

(n)
2

∣∣∣ ∣∣∣δ(n)
1 e−iβ

(n)
1 ŷ

∣∣∣
≤ 4(κ2

1 + 81/4)9/4(
e

1
2 Δ+

1 Reζ − 1
)(

eΔ+
2 Reζ − 1

) ·
We have used Proposition (A.3) in the above estimates. Combining these estimates, we may obtain

∣∣∣α2
n

¯̃A(n)
1 e−iβ

(n)
1 ŷ

∣∣∣2 ≤ C|αn|
(∣∣∣v(n)

1

∣∣∣2 +
∣∣∣v(n)

2

∣∣∣2) ,
where the positive real number C1 depends on κj , Δ

−
j , Δ

+
j ,Reζ, and Imζ. Following from a similar argument

with tedious calculations yields

‖∇ṽ‖2
F (ΩPML) ≤ C1Λ

∑
n∈Z

|αn|
(∣∣∣v(n)

1

∣∣∣2 +
∣∣∣v(n)

2

∣∣∣2) ,
where we have used the fact |β(n)

j | ≤ C(1 + |αn|) for n ∈ Z. Finally, we have from Lemma 3.3 that

‖∇ṽ‖F (ΩPML) ≤ C1‖v‖H1/2(Γ )2 ≤ γ2C1‖v‖H1(Ω)2 ,

which completes the proof.

Appendix C. Proof of Lemma 4.4

Taking the complex conjugate of (B.7) and using (2.18), we have

D ¯̃v(x, b+ δ) = −
∑
n∈Z

⎡
⎣ −μραnβ

(n)
1

(λ+ μ)α2
n + (λ+ 2μ)ρ̄

(
β̄

(n)
1

)2

⎤
⎦ Ã(n)

1 e−i
(

αnx−β
(n)
1 ζ

)

+

⎡
⎣ μραnβ

(n)
1

(λ+ μ)α2
n + (λ+ 2μ)ρ

(
β

(n)
1

)2

⎤
⎦ B̃(n)

1 e−i
(

αnx+β
(n)
1 ζ

)

+

[
μρ(β(n)

2 )2

−(λ+ μ)αnβ
(n)
2 + (λ+ 2μ)ραnβ

(n)
2

]
Ã

(n)
2 e−i

(
αnx−β

(n)
2 ζ

)

+

⎡
⎣ μραn

(
β

(n)
2

)2

(λ+ μ)αnβ
(n)
2 − (λ+ 2μ)ραnβ

(n)
2

⎤
⎦ B̃(n)

2 e−i
(

αnx+β
(n)
2 ζ

)
.



2046 X. JIANG ET AL.

A straightforward calculation yields that

‖D ṽ(x, b+ δ)‖2
L2(ΓPML)2

= ‖D ¯̃v(x, b+ δ)‖2
L2(ΓPML)2

≤ 2Λ
∑
n∈Z

( ∣∣∣μραnβ
(n)
1 Ã

(n)
1 eiβ

(n)
1 ζ

∣∣∣2

+
∣∣∣μραnβ

(n)
1 B̃

(n)
1 e−iβ

(n)
1 ζ

∣∣∣2 +
∣∣∣μρ(β(n)

2 )2Ã(n)
2 eiβ

(n)
2 ζ

∣∣∣2 +
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2 )2B̃(n)
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2 ζ

∣∣∣2
+
∣∣∣((λ + μ)α2

n + (λ+ 2μ)ρ(β(n)
1 )2

)
Ã

(n)
1 eiβ

(n)
1 ζ

∣∣∣2 +
∣∣∣((λ + μ)α2

n + (λ+ 2μ)ρ(β(n)
1 )2

)
B̃

(n)
1 e−iβ

(n)
1 ζ

∣∣∣2
+
∣∣∣((λ+μ)αnβ

(n)
2 −(λ+2μ)ραnβ

(n)
2

)
Ã

(n)
2 eiβ

(n)
1 ζ
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2 e−iβ

(n)
1 ζ

∣∣∣2).
Using the similar technique in the proof of Lemma 4.3 and omitting the details, we may show that there exists
a positive constant C2 such that

‖D ṽ(x, b+ δ)‖2
L2(ΓPML)2 ≤ C2

∑
n∈Z

[
(1 + |αn|)

(
|v(n)

1 (b)|2 +
∣∣∣v(n)

1 (b)
∣∣∣2)] .

Finally, it follows from Lemma 3.3 that

‖D ṽ(x, b+ δ)‖L2(ΓPML)2 ≤ C2‖v‖H1/2(Γ )2 ≤ γ2C2‖v‖H1(Ω)2 ,

which completes the proof.
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