A finite volume method for nonlocal competition-mutation equations with a gradient flow structure
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 4, pp. 1223-1243.

In this paper, we design, analyze and numerically validate energy dissipating finite volume schemes for a competition-mutation equation with a gradient flow structure. The model describes the evolution of a population structured with respect to a continuous trait. Both semi-discrete and fully discrete schemes are demonstrated to satisfy the two desired properties: positivity of numerical solutions and energy dissipation. These ensure that the positive steady state is asymptotically stable. Moreover, the discrete steady state is proven to be the same as the minimizer of a discrete energy function. As a comparison, the positive steady state can also be produced by a nonlinear programming solver. Finally, a series of numerical tests is provided to demonstrate both accuracy and the energy dissipation property of the numerical schemes. The numerical solutions of the model with small mutation are shown to be close to those of the corresponding model with linear competition.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016058
Classification : 35B40, 65M08, 92D15
Mots-clés : Selection-mutation dynamics, evolutionary stable distribution, energy dissipation
Cai, Wenli 1 ; Liu, Hailiang 2

1 Department of Mathematics, China University of Mining and Technology, Beijing 100083, P.R. China.
2 Department of Mathematics, Iowa State University, Ames, IA 50011, USA.
@article{M2AN_2017__51_4_1223_0,
     author = {Cai, Wenli and Liu, Hailiang},
     title = {A finite volume method for nonlocal competition-mutation equations with a gradient flow structure},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1223--1243},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {4},
     year = {2017},
     doi = {10.1051/m2an/2016058},
     zbl = {1378.92047},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2016058/}
}
TY  - JOUR
AU  - Cai, Wenli
AU  - Liu, Hailiang
TI  - A finite volume method for nonlocal competition-mutation equations with a gradient flow structure
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 1223
EP  - 1243
VL  - 51
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2016058/
DO  - 10.1051/m2an/2016058
LA  - en
ID  - M2AN_2017__51_4_1223_0
ER  - 
%0 Journal Article
%A Cai, Wenli
%A Liu, Hailiang
%T A finite volume method for nonlocal competition-mutation equations with a gradient flow structure
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 1223-1243
%V 51
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2016058/
%R 10.1051/m2an/2016058
%G en
%F M2AN_2017__51_4_1223_0
Cai, Wenli; Liu, Hailiang. A finite volume method for nonlocal competition-mutation equations with a gradient flow structure. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 4, pp. 1223-1243. doi : 10.1051/m2an/2016058. http://www.numdam.org/articles/10.1051/m2an/2016058/

A. Alfaro and R. Carles, Explicit solutions for replicator-mutator equation: extinction vs. acceleration. SIAM J. Appl. Math. 74 (2014) 1919–1934. | DOI | Zbl

G. Barabás and G. Meszzéna, When the exception becomes the rule: the disappearance of limiting similarity in the Lotka-Volterra model. J. Math. Biol. 258 (2009) 89–94. | Zbl

G. Barles, S. Mirrahimi and B. Perthame, Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result. Methods Appl. Anal. 16 (2009) 321–340. | DOI | Zbl

H. Berestycki, G. Nadin, B. Perthame and L. Ryzhik, The non-local Fisher–KPP equation: traveling waves and steady states. Nonlinearity 22 (2009) 2813–2844. | DOI | Zbl

B. Bolker and W. Pacala, Using moment equations to understand stochastically driven spatial pattern formation in ecological systems. Theor. Popul. Biol. 52 (1997) 179–197. | DOI | Zbl

R. Bürger, The mathematical theory of selection, recombination and mutation. Wiley, New York (2000). | Zbl

N. Champagnat, R. Ferrière and S. Méléard, Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models. Theor. Popul. Biol. 69 (2006) 297–231. | DOI | Zbl

N. Champagnat, R. Ferrière and S. Méléard, From individual stochastic processes to macroscopic models in adaptive evolution. Stoch. Models 24 (2008) 2–44. | DOI | Zbl

Y. Cohen and G. Galiano, Evolutionary distributions and competition by way of reaction-diffusion and by way of convolution. Bull. Math. Biol. 75 (2013) 2305–2323. | DOI | Zbl

T.F. Coleman and Y. Li, On the convergence of reflective newton methods for large-scale nonlinear minimization subject to bounds. Math. Program. 67 (1994) 189–224. | DOI | Zbl

T.F. Coleman and Y. Li, An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6 (1996) 418–445. | DOI | Zbl

L. Desvillettes, P.E. Jabin, S. Mischler and G. Raoul, On selection dynamics for continuous structured populations. Commun. Math. Sci. 6 (2008) 729–747. | DOI | Zbl

N. Fournier and S. Méléard, A microscopic probabilistic description of a locally regulated population and macroscopic approximations. Ann. Appl. Probab. 14 (2004) 1880–1919. | DOI | Zbl

D. Furihata and T. Matsuo, Discrete variational derivative method: a structure-preserving numerical method for partial differential equations. Chapman and Hall/CRC numerical analysis and scientific computation series. ISBN 978-1-4200-9445-9 (2011). | Zbl

S. Génieys and B. Perthame, Dynamics of Nonlocal Fisher concentration points: a nonlinear analysis of Turing patterns. Math. Model. Nat. Phenomenon 2 (2007) 135–151.

S. Génieys, V. Volpert and P. Auger, Adaptive dynamics: modeling Darwin’s divergence principle. C. R. Biol. 329 (2006) 876–879. | DOI

P.E. Gill, W. Murray and M.H. Wright, Practical Optimization. London, Academic Press (1981). | Zbl

S.A. Gourley, Traveling front of a nonlocal Fisher equation. J. Math. Biol. 41 (2000) 272–284. | DOI | Zbl

S.P. Han, A globally convergent method for nonlinear programming. J. Optimiz. Theory Appl. 22 (1977) 297–309. | DOI | Zbl

P.E. Jabin and G. Raoul, On selection dynamics for competitive interactions. J. Math. Biol. 63 (2011) 493–517. | DOI | Zbl

J. Lasalle, Some extensions of Liapunov’s second method. IRE Trans. Circuit Theory 7 (1960) 520–527. | DOI

H.L. Liu, W.L. Cai and N. Su, Entropy satisfying schemes for computing selection dynamics in competitive interactions. SIAM J. Numer. Anal. 53 (2015) 1393–1417. | DOI | Zbl

H.L. Liu and H. Yu, Entropy/energy stable schemes for evolutionary dispersal models. J. Comput. Phys. 256 (2014) 656–677. | DOI | Zbl

H.L. Liu, Optimal error estimates of the direct discontinuous Galerkin method for convection-diffusion equations. Math. Comput. 84 (2015) 2263–2295. | DOI | Zbl

H.L. Liu Hl and J. Yan, The direct discontinuous Galerkin (DDG) method for diffusion with interface corrections. Commun. Comput. Phys. 8 (2010) 541–564. | DOI | Zbl

A. Lorz, S. Mirrahimi and B. Perthame, Dirac mass dynamics in multidimensional nonlocal parabolic equations. Commun. Partial Differ. Eq. 36 (2011) 1071–1098. | DOI | Zbl

S. Mirrahimi, B. Perthame, E. Bouin and P. Millien, Population formulation of adaptative meso-evolution: theory and numerics. Mathematics and Biosciences in Interaction (2011) 159–174.

S. Mirrahimi, B. Perthame and J.Y. Wakano, Direct competition results from strong competition for limited resource. J. Math. Biol. 68 (2014) 931–949. | DOI | Zbl

J. Nocedal and S.J. Wright, Numerical Optimization, 2nd edn. Springer Series in Operations Research. Springer Verlag (2006).

B. Perthame and G. Barles, Dirac concentrations in Lotka-Volterra parabolic PDEs. Indiana Univ. Math. J. 57 (2008) 3275–3301. | DOI | Zbl

G. Raoul, Long time evolution of populations under selection and vanishing mutations. Acta Appl. Math. 114 (2011) 1–14. | DOI | Zbl

G. Raoul, Local stability of evolutionary attractors for continuous structured populations. Monatsh. Math. 165 (2012) 117–144. | DOI | Zbl

K. Shirakihara and S. Tanaka, Two fish species competition model with nonlinear interactions and equilibrium catches. Res. Popul. Ecol. 20 (1978) 123–140. | DOI

R.A. Waltz, J.L. Morales, J. Nocedal and D. Orban, An interior algorithm for nonlinear optimization that combines line search and trust region steps. Math. Program. 107 (2006) 391–408. | DOI | Zbl

Cité par Sources :